acquisition crate design

21
Acquisition Crate Design BI Technical Board 26 August 2011 Beam Loss Monitoring Section William Vigano’ 26 August 2011 [email protected] 1

Upload: onella

Post on 22-Feb-2016

69 views

Category:

Documents


0 download

DESCRIPTION

Acquisition Crate Design. BI Technical Board 26 August 2011 Beam Loss Monitoring Section William Vigano’. Acquisition Crate Design Philosophy. The design philosophy is the following: Performance Improving System Reliability Protection and Current Limiting - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Acquisition Crate Design

[email protected] 1

Acquisition Crate Design

BI Technical Board

26 August 2011

Beam Loss Monitoring Section

William Vigano’

26 August 2011

Page 2: Acquisition Crate Design

[email protected] 2

Acquisition Crate Design Philosophy

The design philosophy is the following:

• Performance Improving• System Reliability• Protection and Current Limiting• Total separation between System Functionality and System

Safety Functions• Remote Diagnosis• Remote control and calibration

26 August 2011

Page 3: Acquisition Crate Design

[email protected] 3

Acquisition Crate

Extract by the 3D model of the Acquisition Crate26 August 2011

Page 4: Acquisition Crate Design

[email protected] 4

BLEDP

BLEDP – Cards (Analog Front End)26 August 2011

Page 5: Acquisition Crate Design

[email protected] 5

BLEDP – Block Diagram

FRONT ENDCH 1

Calibration Interface

Reset Interface

Data Out

FRONT ENDCH 8

Calibration Interface

Reset Interface

Data Out

SFPTransceiver

Main FPGA

Data In / Out

Ext. PowerPOWER SUPPLY SECTION

PSU

Link

Fully Protected Power Channelswith Diagnosis

FILTERS & PROTECTIONS

OPTICAL LINK

JTAGProg. Interface

PROMProg. Interface

Temperature &Humidity Sensor

SFPTransceiverData In / Out Ethernet LINK

ID Chip

Auxiliary ADCfor HK MonitorData Out HV Feedback

Available Resources: 8 Input Analog Interfaces; FPGA local or remote programming; bidirectional optical link; power supplies with protection and diagnosis; temperature and humidity measurement; ID Chip; auxiliary Ethernet link for diagnosis; Auxiliary ADC for Housekeeping Monitor.

26 August 2011

Page 6: Acquisition Crate Design

[email protected] 6

BLEDP

High Reliability Dc/Dc Converters

Mixed Connector -> 24 pin + 8 Coaxial inserts

Shielded BoxSFP - Transceiver

26 August 2011

Page 7: Acquisition Crate Design

[email protected] 7

BLEDP - Analog Front End principle

The new analog Front End input channel is based on matching two principles:• Advanced Current to Frequency converter (it is a fully

differential Front End based on Giuseppe Venturini’s proposal for the CERN ASIC)

• Direct Acquisition (using the fast ADC capability for the current measurement on the input shunt)

ACFC DADC

Data Output

Reset Interface

Calibration Interface

Input from theMonitor

26 August 2011

Page 8: Acquisition Crate Design

[email protected] 8

ACFC PrincipleFully differential IntegratorInput switch

A status signal selects in which branch of a fully deferential stage the input current is integrated.

Two comparators check the deferential output voltage against a threshold, whenever is exceeded, the status signal changes to the complementary value (0 ! 1 or 1 ! 0) and the input current is integrated in the other branch.

26 August 2011

Page 9: Acquisition Crate Design

[email protected] 9

DADC Principle

R 8 9

10 0

R 9 8

10 0

R 99

1 0 0

R 90

1 0 0

R 84 1 0 0

R 1 0 1 1 0 0

R 9 6

1 0 0

R 9 1

1 0 0

C 21 54 7 p F

C 2 1 24 7 pF

C 2 1 84 7 pF

C 2 1 647 p F

+5 V D C _ 1

-5V D C _ 1

+5 V D C _ 1

-5 V D C _ 1

+5 V D C _ 1

-5 V D C _ 1

+5 V D C _ 1

U 5 5 A

7 4 A B T7 4

C L K3

CLR

1

D2

PR

E4

Q5

VC

C14

GN

D7

Q6

-5 V D C _ 1+5 V D C _ 1

-5 V D C _1

+5 V D C _ 1

-5 V D C _1

+5 V D C _ 1

-2 . 5 V D C _ 1

+5 V D C _ 1

-5V D C _ 1

+2 .5 V D C _ 1

-5 V D C _ 1

+5 V D C _ 1

+5 V D C _ 1

-2 . 5 V D C _ 1

+2 . 5 V D C _ 1

-5 V D C _ 1

+5 V D C _ 1S h u n t _ 1

S h un t _ 1

+5 V D C _ 1 -5 V D C _ 1

-5 V D C _ 1

+5 V D C _ 1

+5 V D C _ 1

S h un t _R e f _1

S TO P _ 1

S TO P _ 1

+5 V D C _ 1

S TO P _ 1

W 1 _ 1A1 _ 1

B1 _ 1

S TO P _ 1

+2 . 5 V D C _ 1

W 1 _ 1

-2 . 5 V D C _ 1

+2 .5 V D C _ 1

B 1 _ 1

A 1 _ 1

A 2 _ 1S hu n t _ R e f _1

A2 _ 1W 2 _ 1

+5 V D C _ 1

+5 V D C _ 1 -5 V D C _ 1

-5V D C _ 1

W 2 _ 1

+5 V D C _ 1

-5 V D C _ 1

R 1 201 0 0

R 10 51 0 0

R 9 51 0 0

C 2 5 46 8 u F

R 1 28

1 K

U5 1 A

M A X9 1 2 C S E

+8

-7

L E4

GN

D1

14

Q1

Q2

V+

11G

ND

03

V-

6

C 2 2 510 0 n F

R 1 1 9

4 7 0K

C 2 3 06 8 u F

L 2 9

2 2 0u

U 5 3 A

74 A B T0 0

1

23

714

C 2 4 51 0µ

C 2 3 51 0 µ

R 1 0 6

4 7 0K

R 1 2 7

1 K

C 2 2 11 0n F

R 9 3

1 K

U 4 7

A D G 8 4 9I N

1

S 14D

5 S 26V D D

2

G N D3

C 2 141 0n F

R 1 3 0 1 0 0

R 1 1 61 K

U 5 0

A D G 71 1

I N 11

I N 21 6

I N 39

I N 48

S 13

D 12

S 21 4

D 21 5

S 31 1

D 31 0

S 46

D 47

VDD

13G

ND

5

C 2 3 61 u F

C 2 4 11 nF

R 8 7

3

U4 3 -2

O P A 2 6 9 0

+5

-6

V+

8V

-4

O U T7

R 8 5

5 M e g

C 2 2 81 0 0n F

C 2 2 61 0µ

C 2 0 71 0 n F

C 2 2 01 0 0 n F

R 9 71 0 0

Q 2 1B S S 1 3 8

C 2 471 0 µ

C 2 5 11 0µ

C 2 0 31 0 0n F

C 2 2 4

1 0 0 p F

R 10 21 0 0

C 2 1 91 0 µ

C 2 3 9

1 0 0 p F

R 8 2

10 0

U 4 4 B

M A X9 1 2 C S E

+9

-1 0

LE1 3

GN

D1

14

Q1 6

Q1 5

V+

11

GN

D0

3V

-6

C 2 1 11 0µ

R 1 0 0

5 1 0

U4 4 A

MA X9 1 2 C S E

+8

-7

L E4

GN

D1

14

Q1

Q2

V+

11G

ND

03

V-

6

R 8 8

1K

C 2 5 01 0 0 nF

R 1 2 9 1 0 0

U 4 6

A D G 1 2 1 9

IN8

S A7 D

6S B5 V D D

2

G N D3

V S S4

E N1

C 2 0 41 0 nF

D 2

B A V 7 4

12

3

C 2 4 81 0 n F

R 9 4 1 K

C 2 3 71 0 0 nF

R 8 32 5 0 K

1 Kohm

256 Step

1 Kohm

256 Step

U 5 7

A D 5 2 5 2

W P3

W 14

V D D1

A D 02 B 1

5A 1

6S D A7

V S S8

S C L9

D G N D1 0

A D 11 1

A 31 2

B 31 3W 31 4

R 11 4

1 K

U 4 8 A

7 4 A B T3 2

1

23

147

C 2 5 51 0 n F

R 1 1 7

1 0 0

U 5 6

TP S 73 0 2 5

IN2

O U T5

GN

D1

E N3

N R4

R 1 2 4 1 0 0

R 1 2 3

1 K

C 2 5 210 0 n F

U 5 8

TP S 73 0 2 5

IN2

O U T5

GN

D1

E N3

N R4

C 2 1 01 0 0 n F

R 1 2 6

1 K

C 2 4 31 0 µ

R 8 12 5 0 K

R 1 2 5 1 0 0

U4 9

O P A 6 5 9

+3

-4

V+

5V

-2

O U T1

+

-

U 4 5

T H S 4 5 0 2

O U T+4

+8

-1

V+

3V

-6

O U T-5

V O C M2

R 1 1 2

1 0 0

C 2 1 71 u F

R 12 11 0 0

C 2 3 11 0 0n F

Q 2 0B S S 1 3 8

C 2 4 21 00 n F

C 2 4 01 0 0 p F

R 1 081 0 0

C 2 4 41 0 0 nF L 2 8

2 2 0u

U 4 2

A D G 1 2 1 9

IN8

S A7 D

6S B5 V D D

2

G N D3

V S S4

E N1

R 8 6

4 7

C 2 0 91 0 µ

C 2 2 71 0 0 p F

C 2 0 61 0 0 nF

R 1 0 7

1 0 0

U4 3 -1

O P A 2 6 9 0

+3

-2

V+

8V

-4

O U T1

C 2 3 41 00 n F

C 2 2 31 u F

C 2 3 24 7 0p F

U5 4

O P A 6 5 9

+3

-4

V+

5V

-2

O U T1

U 4 1

TP S 7 2 3 0 1

I N2

O U T5

GN

D1

E N3

F B4

C 2 4 96 8 u F

F T92 2 n F

13

2

R 1 2 2

1 K

F T1 02 2 n F

13

2

R 11 51 0 0

C 2 2 96 8 u F

C 2 2 21 nF

+

-

U 5 2

T H S 4 5 0 2

O U T+4

+8

-1

V+

3V

-6

O U T-5

V O C M2

R 1 0 4 1 00

C 2 3 31 0 0p F

C 2 1 31 0 nF

C 2 4 610 0 n F

C 2 0 51 0 µ

D 1B A V 1 9 9

21

3

C 2 531 0 µ

R 9 23 K 3

C 2 3 81 0 µ

U5 1 B

M A X9 1 2 C S E

+9

-10

L E13

GN

D1

14

Q1 6

Q1 5

V+

11G

ND

03

V-

6

R 1 0 31 K

R 1 1 8 1 00

C 2 0 81 00 n F

C 2 0 21 0µ

+5 V d c _ C B 1

C L R _1

-5 V d c _ C B 1

S TO P L _ 1

P R E _1

C O U N T+_ 1

C O U N T-_ 1

S D L _ 1S D A _ 1

I N _ 1

W P _1

V in + _ 1

V in -_ 1

V o c m _1

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N DA G N D

A G N D

A G N D

A G N D

A G N D

A G N DA G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N D

A G N DA G N D A G N DA G N D

A G N D

A G N D

NOTMOUNTED

A G N D

NOTMOUNTED

NOTMOUNTED

S t op O ut _ 1S TO P _ 1 R 1 3 1 1 0 0

+2 . 5 V D C _ 1

R 1 1 010 0

R 1 1 310 0

R 1 0 9

4 7 0K

R 1 1 1

4 7 0K

A G N D

+5V D C _ 1

+5V D C _ 1

+5V D C _ 1

-5V D C _ 1

-5V D C _ 1

-5 V D C _ 1

+5V D C _ 1

+5 V D C _ 1

+5 V d c _ C B 1

+5 V d c _ C B 1

+5 V d c _ C B 1

Input 50 ohm resistor split in two: 47 + 3 ohm Re-routing on the ADC buffer amplifier

26 August 2011

Page 10: Acquisition Crate Design

[email protected] 10

Analog Front End Block Diagram

Comparator+Double Integrator

FRONT END

In. Filter &Protection

Comparator-

Input_Switchfor ADC acquisition

Input Switchfor Integrator

Filp Flop D Type

G=0.5 ADC 16 Bit10 Msps

CK

LOGIC

Reset

DQNQ

CNT-

CNT+

Enable

BUS

Saturationmonitor

Filter

Input

Recovery

Recovery

Current TestGenerator

The two different measurement principles are implemented in a machine able to use the same components but connected in a different way. Some switches in the circuit allow commutation from ACFC to DADC and the opposite.

26 August 2011

Page 11: Acquisition Crate Design

[email protected] 11

ACFC & DADCThe input channel circuit is able to measure current input from 10pA to 200mA.

The measurement of the current input is performed by two different techniques: 1) Advanced Current to Frequency Converter (ACFC) used in the range 10pA to 30mA2) Direct ADC acquisition (DADC) used in the range 20.3µA to 200mA

The passage between the 2 ranges is managed by the FPGA.When the FPGA measures the maximum ACFC counts, it switches the circuit to the modality DADC. When the value of the DADC returns below a threshold, the FPGA switches the circuit to the ACFC modality.

26 August 2011

Page 12: Acquisition Crate Design

[email protected] 12

Analog Crate Calibration

BLEDP Input Channel

Input Selector

Monitor Input

Current Source

Optical Transceiver

Analog Comparator Threshold

Offset Current

Internal Flash Memory

48Vdc

Backplane Mezzanine

Parameters settable remotely: Analog Comparator Threshold (Digital potentiometer value – channel A) Offset Current (Digital potentiometer value – channel B) Measurement Period Current Source available on the Backplane with precision 2% Current Source available external with precision 0.1%

26 August 2011

All the Channels of all the Cards in the CRATE can be calibrated from remote with the same current reference (Internal or External)

Page 13: Acquisition Crate Design

[email protected] 13

Main Panel

Power Supply Presence LEDs

Status of Calibration Relays

Main Switch

Input connector for external Current Source

26 August 2011

Page 14: Acquisition Crate Design

[email protected] 14

CRATE Power Supply

The Main Power Supply will be integrated in the CRATE, maintaining the possibility to be replaced in 1 working hour.

It generates a common voltage bus of 48 Volts for all the cards in order to limit the current flowing on the backplane, optimizing in the meantime the ripple noise.

26 August 2011

Page 15: Acquisition Crate Design

[email protected] 15

FILTER±5Vdc @ 20Watt

Dc/Dc Converter FILTER

Circuit BreakerWith full Diagnosis

Analog Front EndChannels 1,2,3,4

Circuit BreakerWith full Diagnosis

Analog Front EndChannels 5,6,7,8

PROM + FPGA VCCIO

SFP - Transceiver

Dc/Dc Converter 1.2V @ 3A

Linear Voltage Regulator2.5V @ 200mA

Front End Card n.N

Front End Card n.1

External Link

Acquisition Crate

FPGA VCCA_GXBFPGA VCCH_GXBFPGA VCCAFPGA VCC_CLKIN

FPGA VCCINTFPGA VCCD_PLLFPGA VCCL_GXB

Optical Link

48V @ 300Watt

Ac/Dc ConverterPower Input EMI FILTER

EMI FILTERInternal CoolingSystem FILTER

3.3Vdc @ 10Watt

Dc/Dc Converter FILTER

Optical Link

Power Supply Structure Block Diagram

Main Power Supply

Local creation of all required voltages in the BLEDP Cards26 August 2011

Circuit Breakers

Page 16: Acquisition Crate Design

[email protected] 16

Backplane

The Backplane will manage the following functions:

• Monitor input wiring• 48Vdc Power Distribution and protection by Resettable Fuses• Internal Current Source• Relays Multiplexer for Calibration of all the channels with the same current

26 August 2011

Page 17: Acquisition Crate Design

[email protected] 17

BLECU

The BLECU is a Controller Card. It will be implemented in a second stage of the project to improve the functionalities of the Backplane.

It will manage the following functions:• Detection of the current break for the 48V lines• Global CRATE current consumption measurement• Remote On/Off of the BLEDP Cards• Current Source selection (Internal/External)• Current Value selection for the Internal Current Source• CRATE Temperature and Humidity measurement

(Sensor mounted on the Backplane)• CRATE Identifier chip readout (Chip mounted on the

Backplane)

26 August 2011

Page 18: Acquisition Crate Design

[email protected] 18

Simulation Models

BLEDP Analog Input Interface PSPICE ModelCurrent Source PSPICE Model

PSPICE Models were create to simulate several working conditions like worst case, Monte Carlo analysis, extreme performance.

Dc/Dc Converter – TI SwitcherPro Model

26 August 2011

The BLEDP Analog Input Interface PSPICE model allows to verify and evaluate all the circuit delay errors, input leakage current and signal distortion.

Page 19: Acquisition Crate Design

[email protected] 19

Prototype Verification

Current SourceBLEDP

Analog Input Interface

Prototypes have been created to verify the BLEDP Analog Input Interface and the Current Source

26 August 2011

Page 20: Acquisition Crate Design

[email protected] 20

Prototype ResultsThe BLEDP Analog Input Interface Prototype allow to measure the current in the range:

3 pA ÷ 200mA

26 August 2011

Better evaluation of performances will be done with the BLEDP PCB (currently in the design and manufacturing phase)

Page 21: Acquisition Crate Design

[email protected] 21

Thank you for your attention

26 August 2011