acoustic simulation with fem

Upload: adele-maccario

Post on 02-Jun-2018

254 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/10/2019 Acoustic Simulation With FEM

    1/47

    Acoustic Simulations with FEM

    1. FE Model

    2. Modal Analysis

    3. Response Analysis

    ( , )P x t

    PPhysics:

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 1

    The ear perceives local oscillations of pressure in the acoustic medium.

    t

    Mathematics:

    Pressure is a scalarfunction scalarwave equation

    Helmholtz equation

    time-harmonic

    2 0p k p + =

  • 8/10/2019 Acoustic Simulation With FEM

    2/47

    1. FE Model

    The cavity volume is partitioned into 3-D elements (Hexa, Tetra, etc.).

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 2

    Each node is associated with one DOF (pressure).

    ( )ip x

    The acoustic element is actually a simplified version of the solid element.

    ( ), ,p x y z

  • 8/10/2019 Acoustic Simulation With FEM

    3/47

    $TITLE = FLUID WITH ACOUSTIC SOURCE 1$SUBTITLE= 2

    $LABEL = 3

    $DISPLACEMENTS 4

    $REAL-IMAGINARY OUTPUT 5

    $SUBCASE ID = 1 6

    $FREQUENCY = 2.0000000E+01 7

    10224 S -1.427161E-11 0.000000E+00 0.000000E+00 8-CONT- 0.000000E+00 0.000000E+00 0.000000E+00 9

    -CONT- 3.049356E-15 0.000000E+00 0.000000E+00 10

    -CONT- 0.000000E+00 0.000000E+00 0.000000E+00 11

    Output of acoustic FRF run to pch file

    Re, Im

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 3

    ( ),ip x

    Practical conclusion: do not animate results as displacements!

  • 8/10/2019 Acoustic Simulation With FEM

    4/47

    Solid Fluid2p n

    2t

    3t

    1t

    2p

    n1p n

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 4

    x xy xz

    y y yz

    xz yz z

    0 00 0

    0 0

    PP

    P

    The fluid element is a solid element representing the hydrostatic stress state.

    The nodal unknowns are the pressure values p(x). Since the pressure satisfies asecond-order differential equation (wave or Helmholtz equation), linear interpolationcan be used inside the elements.

  • 8/10/2019 Acoustic Simulation With FEM

    5/47

    Volume Elements in MSC/ Nastran

    CHEXA EID PID G1 G2 G6

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 5

    Linear Interpolation 8 corner nodes. .

    Quadratic interpolation: + 12 edge nodes.

  • 8/10/2019 Acoustic Simulation With FEM

    6/47

    Fluid Elements in Nastran:

    Solid elements are used for fluid modeling.

    The elements are marked as PFLUID in the PSOLID card.

    Additional entry -1 to the GRID cards.

    GRID 10562 937.500 187.500 62.5000 -1

    CHEXA 10231 3 10001 10219 10399 10222 10227 10401+

    + 1 10531 10404

    PSOLID 3 3 PFLUID

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 6

    $LUFT

    MAT10 3 1.189-12 3.43+05

    The nodal unknowns are the pressure values P(x,t).

    The .pch output for the fluid nodes is the complex-valued amplitude p(x).

    1 20037 G 1.270340E-04 0.000000E+00 0.000000E+00 2

    1 -CONT- 0.000000E+00 0.000000E+00 0.000000E+00 2

    1 -CONT- 1.962794E-04 0.000000E+00 0.000000E+00 2

    1 -CONT- 0.000000E+00 0.000000E+00 0.000000E+00 2

    Real

    Imag

  • 8/10/2019 Acoustic Simulation With FEM

    7/47

    PSOLID PID MID CORDM IN . FCTN

    PSOLID Card in MSC/Nastran

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 7

  • 8/10/2019 Acoustic Simulation With FEM

    8/47

  • 8/10/2019 Acoustic Simulation With FEM

    9/47

    The modal equation (1) is a generalized eigenproblem with

    Specialized EVP:

    0 =Ax Bx

    =2

    Eigenvalue Problems (EVP)

    Generalized EVP:

    0 =Ax x=B I

    Solution: , , 1,i N =x N n

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 9

    [ ]1 2, , , n = x x xThe eigenvectors are collected column-wise in a matrix:

    of dimension . The modes are mass-normalized, i.e.

    It follows that

    n N

    The eigenfrequencies are printed out in a table (see next slide).

    Ti j ij=x Mx

    2T

    i i iK =x x

  • 8/10/2019 Acoustic Simulation With FEM

    10/47

    E I G E N V A L U E A N A L Y S I S S U M M A R Y (READ MODULE FOR FLUID)

    BLOCK SIZE USED ...................... 7

    NUMBER OF DECOMPOSITIONS ............. 1

    NUMBER OF ROOTS FOUND ................ 17

    NUMBER OF SOLVES REQUIRED ............ 14

    Eigenfrequencies in .f06 file (Nastran)

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 10

    R E A L E I G E N V A L U E S F O R F L U I D

    MODE EIGENVALUE RADIANS CYCLES NO. GENERALIZED GENERALIZED

    MASS STIFFNESS

    ` 1 -6.824732E-06 2.612419E-03 4.157794E-04 1.000000E+00 -6.824732E-06

    2 1.164884E+06 1.079298E+03 1.717756E+02 1.000000E+00 1.164884E+06

    3 4.704586E+06 2.169006E+03 3.452080E+02 1.000000E+00 4.704586E+06

    4 1.075588E+07 3.279615E+03 5.219670E+02 1.000000E+00 1.075588E+07

    5 1.955165E+07 4.421725E+03 7.037393E+02 1.000000E+00 1.955165E+07

  • 8/10/2019 Acoustic Simulation With FEM

    11/47

    Mode shapes (eigenvectors)

    Box: Passg. Car cabin:

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 11

  • 8/10/2019 Acoustic Simulation With FEM

    12/47

  • 8/10/2019 Acoustic Simulation With FEM

    13/47

    Damping effects in cavities

    Sound energy of is lost (within or from a bounded cavity) by:

    a) volume damping (internal friction within the cavity volume)

    b) interface damping (friction with boundary interfaces, particularly porous materials)

    c) radiation damping and transmission (sound is leaving the cavity)

    b)

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 13

    a) c)

  • 8/10/2019 Acoustic Simulation With FEM

    14/47

    Volume (Material) Damping

    2(1 i ) + = K M p f

    FEM:

    Loss factor

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 14

    Nastran: PARAM, GFL

  • 8/10/2019 Acoustic Simulation With FEM

    15/47

    Consider the reduced undamped equation

    and add a modal damping matrix to obtain the

    system for damped vibrations in the form

    Modal Damping (Fluid)

    2 2 2diag( )T T i = = K M y I y f

    diag(2 )i i

    It is usually not easy to determine the modal damping factors . In practice one often usesfre uenc -constant modal dam in arameters.

    2 2diag ( ) i diag (2 )i i i = I y f

    i

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 15

    Constant (over the volume) material damping is

    numerically equivalent to constant (over the range ofeigenfrequencies) modal damping with the relation

    Relation to material damping: Equations (1) and (2) can be compared formally by setting

    Modal transform then leads to the diagonal damping matrix

    2i

    i i =K C

    2d ia g ( ).i

    Nastran: TAMDMP1

  • 8/10/2019 Acoustic Simulation With FEM

    16/47

    Interface Damping

    00 0' ,

    Zp ik p Z c= =

    The normal impedanceZn=pn/vn of a plane wave can be written as

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 16

    n

    Nastran:

    generate fluid skin (preprocessor) QUAD, CTRIA CAABSF (editor) introduce material data in PAABSF card

  • 8/10/2019 Acoustic Simulation With FEM

    17/47

    Resistance

    (Damping)

    ,

    i

    n n

    n n n

    p Z v

    Z R X

    =

    = +

    Reactance

    (Mass,Stiffness)

    R

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 17

    ( )nX

    n

    const.nR

    const.nX

  • 8/10/2019 Acoustic Simulation With FEM

    18/47

    $ rho*c for rho=1e-12, c=6e4, Z=20rho*c

    INCLUDE 'cavity_skin.bdf'

    $$234567|1234567|1234567|1234567|1234567|1234567|1234567|1234567|1234567|

    $_______2_______3_______4_______5_______6______7________8_______9_______

    $ PID TZREID TZIMID S A B K RHOC

    PAABSF 10 120.e-8 6.e-8

    Example

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 18

  • 8/10/2019 Acoustic Simulation With FEM

    19/47

    Zn= rn+ ixnMeasured Impedances (1/2)

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 19

    F. Fahy, Foundations of Eng. Acoustics, S. 171ff

  • 8/10/2019 Acoustic Simulation With FEM

    20/47

    Physical Mathematical FEM

    Rigid wall----

    Summary: boundary conditions for the Helmholtz equation

    0p

    n

    =

    reflecting

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 20

    Absorption CAABSF

    Free surface SPC

    0

    n

    ik pn Z

    =

    0p =

    re ec ng o a mos

    nonreflecting

    reflecting

  • 8/10/2019 Acoustic Simulation With FEM

    21/47

    SOL 108

    CEND

    TITLE= FLUID WITH ACOUSTIC SOURCE, DIRECT FREQUENCY RESPONSE

    FREQ=200

    DLOAD = 1000

    $ Pressure in all nodes are output

    DISP(PLOT) = ALL

    $

    BEGIN BULK

    $ DAMPING

    PARAM, GFL, 0.05

    $ Source in Node 1000

    Frequency Response to Acoustic Source, Direct Solution

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 21

    $ SID EXCITEID DELAY DPHASE TP RHO B

    ACSRCE 1000 101 1001 1. 1.$2345678_2345678_2345678_2345678_2345678_2345678_2345678_2345678

    TABLED4 1001 0.0 1.0 0.0 1.E6

    0.0 0.0 1.0 0.0 ENDT

    $ FRQUENCY RANGE

    FREQ 200 1.e3 2.e3

    INCLUDE 'box_fluid.bdf'

    $PARAM,COUPMASS,1

    $ directs output to .op2 file

    PARAM, POST, -1

    $

    ENDDATA

    for plots of operational shapes

  • 8/10/2019 Acoustic Simulation With FEM

    22/47

    Frequency Response to Acoustic Source, Modal Solution

    $ COPIED AND ADAPTED FROM REFERENCE MANUAL

    SOL 111

    CEND

    TITLE= FLUID WITH ACOUSTIC SOURCE

    FREQ=200

    METHOD(FLUID)=50

    DLOAD = 1000

    $ Pressure output of selected MP to punch file

    SET 123=10224,10235,10243,10251

    DISP(SORT1,PUNCH) = 123

    $

    BEGIN BULK

    PARAM, GFL, 0.05

    for graphs of frequency response inselected nodes

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 22

    $ SID EXCITEID DELAY DPHASE TP RHO B

    ACSRCE 1000 101 1001 1. 1.TABLED4 1001 0.0 1.0 0.0 1.E6

    0.0 0.0 1.0 0.0 ENDT

    $ FRQUENCY RANGE

    $2345678_2345678_2345678_2345678_2345678_2345678_2345678_2345678_

    FREQ1 200 20.0 10.0 8

    EIGRL 50 1.2e3

    INCLUDE 'box_fluid.bdf'$

    PARAM,COUPMASS,1

    $

    ENDDATA

  • 8/10/2019 Acoustic Simulation With FEM

    23/47

    09:18:41 Analysis started.

    09:18:41 Finite element model generation started.

    09:18:41 Finite element model generated 425 degrees of freedom.

    09:18:41 Finite element model generation successfully completed.09:18:41 Application of Loads and Boundary Conditions to the finite element model started.

    09:18:41 Application of Loads and Boundary Conditions to the finite element model

    successfully completed.

    09:18:41 Solution of the system equations for frequency response started.

    09:18:41 Solution of the system equations for frequency response successfully completed.

    09:18:41 Frequency response analysis completed.

    09:18:41 29 records read from JID file

    "c:/home/lehre/compa/nastran/box/fluid_s111/box_fluid_s108.dat"09:18:41 A total of 969 records were read from 2 files.

    09:18:41 NSEXIT: EXIT(0)

    09:18:41 Analysis complete 0

    Log, Direct solution

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 23

    11:17:26 Analysis started.11:17:28 Finite element model generation started.

    11:17:29 Finite element model generated 425 degrees of freedom.

    11:17:29 Finite element model generation successfully completed.

    11:17:29 Application of Loads and Boundary Conditions to the finite element model started.

    11:17:29 Application of Loads and Boundary Conditions to the finite element model successfully

    completed.

    11:17:29 Solution of the system equations for normal modes started.

    11:17:31 Solution of the system equations for normal modes successfully completed.11:17:32 Solution of the system equations for frequency response started.

    11:17:32 Solution of the system equations for frequency response successfully completed.

    11:17:33 Frequency response analysis completed.

    11:17:33 27 records read from JID file

    "c:/home/lehre/compa/nastran/box/fluid_acsrce/box_fluid_s111_pch.dat"

    11:17:33 A total of 967 records were read from 2 files.

    11:17:33 NSEXIT: EXIT(0)

    11:17:33 Analysis complete 0

    Log, Modal solution

  • 8/10/2019 Acoustic Simulation With FEM

    24/47

    $TITLE = FLUID WITH ACOUSTIC SOURCE 1$SUBTITLE= 2

    $LABEL = 3

    $DISPLACEMENTS 4

    $REAL-IMAGINARY OUTPUT 5

    $SUBCASE ID = 1 6

    $FREQUENCY = 2.0000000E+01 7

    10224 S -1.427161E-11 0.000000E+00 0.000000E+00 8

    -CONT- 0.000000E+00 0.000000E+00 0.000000E+00 9

    -CONT- 3.049356E-15 0.000000E+00 0.000000E+00 10

    -CONT- 0.000000E+00 0.000000E+00 0.000000E+00 11

    10235 S -1.423625E-11 0.000000E+00 0.000000E+00 12

    -CONT- 0.000000E+00 0.000000E+00 0.000000E+00 13

    -CONT- 1.270832E-15 0.000000E+00 0.000000E+00 14

    Head of punch file

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 24

    -CONT- 0.000000E+00 0.000000E+00 0.000000E+00 15

    10243 S -1.415010E-11 0.000000E+00 0.000000E+00 16-CONT- 0.000000E+00 0.000000E+00 0.000000E+00 17

    -CONT- -3.049356E-15 0.000000E+00 0.000000E+00 18

    -CONT- 0.000000E+00 0.000000E+00 0.000000E+00 19

    10251 S -1.407545E-11 0.000000E+00 0.000000E+00 20

    -CONT- 0.000000E+00 0.000000E+00 0.000000E+00 21

    -CONT- -6.788064E-15 0.000000E+00 0.000000E+00 22

    -CONT- 0.000000E+00 0.000000E+00 0.000000E+00 23$TITLE = FLUID WITH ACOUSTIC SOURCE 24

    $SUBTITLE= 25

    $LABEL = 26

    $DISPLACEMENTS 27

    $REAL-IMAGINARY OUTPUT 28

    $SUBCASE ID = 1 29

    $FREQUENCY = 3.0000000E+01 30

  • 8/10/2019 Acoustic Simulation With FEM

    25/47

    Industrial Case Studies, Verification and Validation of FEM

    alternative models or methods of

    compuation.

    comparison to physical experiment

    Do we solve the problem right Do we solve the right problem

    J. Tinsley Oden

    = check computational results by

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 25

    Verification

    Fluid Modes (with A. Mller, Audi AG)

    Validation

    Fluid Modes (with S. Wegner, A. Kropp, R.

    Stryczek, BMW)

    Radiation of Sound (cooperation with BMW,Dept. EA)

  • 8/10/2019 Acoustic Simulation With FEM

    26/47

    Influence of mesh quality on eigenfrequencies of fluid cavity

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 26

    Manually generated mesh

  • 8/10/2019 Acoustic Simulation With FEM

    27/47

    Manual Mesh, high quality

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 27

    !"ID #$%&'

    C(E)* $+&-

    C.E."* -#&

  • 8/10/2019 Acoustic Simulation With FEM

    28/47

    Automatic mesh generator, fine mesh

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 28

    !"ID #/-

    C(E)* %'$0&

    C.E."* %%#+/

    1uerschnitt

  • 8/10/2019 Acoustic Simulation With FEM

    29/47

    Automatic mesh generator, coarse mesh

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 29

    !"ID -&%'

    C(E)* '&-

    C.E."* '&'%1uerschnitt

  • 8/10/2019 Acoustic Simulation With FEM

    30/47

    Results of modal analysis

    Mode

    Manual Automatic

    Division 13

    Automatic,

    Division 20

    1 79.088 79.441 79.130

    2 111.468 112.310 111.553

    3 126.683 127.626 126.838

    4 138.213 139.105 138.828

    Fluid Mesh

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 30

    5 146.984 147.717 147.287

    6 174.515 175.425 174.774

    7 179.815 180.877 180.150

    8 189.041 189.921 189.218

    9 195.605 196.792 196.107

    10 223.470 224.691 224.293

  • 8/10/2019 Acoustic Simulation With FEM

    31/47

    Validation

    Fluid Modes

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 31

    Coupled Response of an automotive body to harmonicexcitation of hatch cover (constant pressure on whole area)

  • 8/10/2019 Acoustic Simulation With FEM

    32/47

    Excitation

    Setup

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 32

    Experiment:loudspeaker, pink noiseFEM:harmonic excitation of hatch door

    Microphone Positions

  • 8/10/2019 Acoustic Simulation With FEM

    33/47

    Methodical question

    Which interior parts should be in themodel?

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 33

  • 8/10/2019 Acoustic Simulation With FEM

    34/47

    Pipe Eigenmodes

    Compare: First three Eigenmodes of Car

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 34

  • 8/10/2019 Acoustic Simulation With FEM

    35/47

    Var 1: Vollausstattung( mit / ohne Luftspalt bei Hutablage)

    Var 2: ohne Hutablage

    f1=38.4 / 76 Hz f1=52.0 Hz

    Variants

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 35

    Var 3: ohne Hutablage, ohne Rcksitz Var 4: ohne Hutablage, ohne Sitze

    f1=64.4 Hz f1=70.1 Hz

    Eff t

  • 8/10/2019 Acoustic Simulation With FEM

    36/47

    Effects

    pipe

    Helmholtz

    resonator

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 36

  • 8/10/2019 Acoustic Simulation With FEM

    37/47

    Modes for model with four seats, no trunk cover

    52Hzf =

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 37

    96Hzf =

    Details

  • 8/10/2019 Acoustic Simulation With FEM

    38/47

    Details

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 38

    Variant: four seats no hatrack

  • 8/10/2019 Acoustic Simulation With FEM

    39/47

    Rechnung

    ung

    Variant: four seats, no hatrack

    Pressure level at microphone positions

    Computation

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 39

    Messung

    gute

    berseinstimm

    Measurement

    Variant: hatrack as sound barrier in cabin model

  • 8/10/2019 Acoustic Simulation With FEM

    40/47

    Rechnung

    Variant: hatrack as sound barrier in cabin model

    e ung

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 40

    Messung

    schlechter

    berseins

    tim

    Validation

  • 8/10/2019 Acoustic Simulation With FEM

    41/47

    Validation

    Radiation of engine vibrations

    Setup

    Microphone positions

    open top

    microphones

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 41

    Concrete socket

    Reflecting walls

    Engine block

    35cm

    FE Model

  • 8/10/2019 Acoustic Simulation With FEM

    42/47

    FE Model

    Fluid Cavity with absorbingBC above reflecting walls

    Structural Model

    Fluid model: detail

    Simulation: excitation ofstructure, full structure-fluid

    compling, evaluation atmicrophone positions in fluid

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 42

    Adaptive Approach

  • 8/10/2019 Acoustic Simulation With FEM

    43/47

    Parameter 1: Size of fluid domain

    a = 57.5cm

    Adaptive Approach

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 43

    .

    cm

    Parameter 2: Order of radiation condition (1,2)

    Adaptive Approach: fluid domains

  • 8/10/2019 Acoustic Simulation With FEM

    44/47

    h = 39.1 cm

    h = 57.5 cm

    h = 77.9cm

    dapt e pp oac u d do a s

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 44

    Computational Result: Frequency Response at Fluid

  • 8/10/2019 Acoustic Simulation With FEM

    45/47

    Computational Result: Frequency Response at FluidMP

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 4545F. Ihlenburg/

    La CoruniaVerification and Validation

    Structural modes

    Computational Result: Fluid Operational Shape @ 724Hz

  • 8/10/2019 Acoustic Simulation With FEM

    46/47

    p p p

    HAW/M+P, Ihlenburg, CompA Acoustics with FEM 4646F. Ihlenburg/

    La CoruniaVerification and Validation

  • 8/10/2019 Acoustic Simulation With FEM

    47/47