acceleration mechanisms - inafddallaca/p-rad_5.pdf · fermi's acceleration: basic process...

26
 Acceleration mechanisms Stochastic:    - collisions among particles/clouds  Systematic:   - H field compression + scattering/diffusion                       - shocks                      - e-m processes (e.g. Low frequency-large amplitude                        waves in pulsar magnetosphere) Daniele Dallacasa – Radiative Processes and MHD                                                                                         Section -5 : Acceleration Mechanisms

Upload: others

Post on 01-Nov-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

            Acceleration mechanisms

Stochastic:    ­ collisions among particles/clouds

                     

Systematic:   ­ H field compression + scattering/diffusion                          ­ shocks

                     ­ e­m processes (e.g. Low frequency­large amplitude                        waves in pulsar magnetosphere) 

Daniele Dallacasa – Radiative Processes and MHD                                                                                         Section ­5 : Acceleration Mechanisms

Page 2: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

Fermi's Acceleration:                                                              basic process

Proposed by E. Fermi in 1954.Let's consider a charged particle, given that electrons are known to achieve very high energies (e.g. cosmic rays, synchrotron radiation).

Electrostatic fields cannot survive given the enormous conducibility. There is a magnetic field in the cloud only. However, when the charge moves into the moving cloud (seen from the observer's frame) it ''feels'' an electric field as well

is the field produced by the moving cloud, which ismoving at a speed u  while the electron moves at v

   v u

Page 3: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

After a scalar product with the charge velocity we get

(in fact the second term is zero!)

This means that the energy of the electron change in casethe Lorentz force is active, and this requires that the magnetizedcloud is in motion

Page 4: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

Type  I collision

Type  II collision

v uu

(Type II)

(Type I)

Fermi's Acceleration:                                                            basic process ­3­

Elastic collision between  a cloud and a particle with |v | ≫ | u |: conservation of E and p

In terms of particle energy (')

Page 5: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

f I =vul

f II =v−ul

t⟩F

= f I I f IIII = 4uv

2ul

=8vl uv

2

=F

t = o etF F ≈

lv2u2

F ≈ 1011 yr

Fermi's Acceleration:                                                            basic process ­4­

Type I interactions happen more often than Type II

A factor 2 is more appropriate than 8 (valid for head on collisions only)If we integrate in time we obtain:

once the particle is accelerated at the required velocity, then should be able to leave the region where acceleration takes place. Namely the confining time c  should be of the order of (or slightly larger than) the acceleration time F 

For initial velocities of ~ 10 km/s and the cloud size and number density (distance 10­100 pc) relativistic velocities are achieved at

Page 6: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

 F ≈ 105 yr

k = o k

Nk = No pk

ln Nk/No

ln k/o=

ln p

ln = m

Nk= N

ok

o m

N d = cost −1md

Fermi's Acceleration:                                                               spectral shape

In SNR, “clouds” have higher velocities (thousands km/s) and l is small (0.1 pc) and

Spectrum of Fermi's acceleration processes:

k = # of collisions = energy in(de)crease per collisionp = probability to remain within the acceleration region

i.e.  power – law energy distribution

Crab nebula (1054)

Page 7: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

Observations of radio supernovae

The observations shown aside (images on thesame scale!) require that efficient particleacceleration takes place on time scales as shortas a few weeks

Page 8: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

unperturbedv=0

v2

v1accelerating particle 

(v)

Shock waves and Fermi's collisions(1) 

if a perturbation moves at a speed exceeding cs , a discontinuity is created 

region of particles to be accelerated is moving at strong shock is moving at

if                            particles cross several times the shock front before they gain enough energy to leave the acceleration region

cs=kTmH

sound speed for anidealgas noH field

v2=3/4v1

v2v1

Page 9: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

Shock waves and Fermi's collisions (2)

the combination of the two velocities allow a particle to have Fermi – Itype collisions in a row (and rebounds with unperturbed clouds at rest).

the occurrence between collisions is 

and the energy gain in time is

v2=3 /4v1

unperturbedv=0

v2

v1accelerating particle 

(v)

1=0

2≈2v2v=32v1v

f≈ v2l

ddt

≈ 32v1vv2l

≈ 34v1l =

F

c ≈l

v1confining time

=1F

c

Page 10: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

Shock waves and Fermi's collisions (3): an example. Cas A

2720 Jy at 1 GHz. The SN occurred at a distance of approximately 11,000 ly away. The expanding cloud ofmaterial left over from the supernova is now approximately 10 ly across. Despite its radio brilliance, however, it is extremely faint optically, and is only visible on long­exposure photographs. It is believed that first light from the stellar explosion reached Earth approximately 300 years ago but there are no historical records of any sightings of the progenitor supernova, probably due to interstellar dust absorbing optical wavelength radiation before it reached Earth (although it is possible that it was recorded as a sixthmagnitude star by John Flamsteed on August 16, 1680

It is known that the expansion shell has a temperature of around 50 million degrees Fahrenheit (30 megakelvins), and is travelling at more than ten million miles per hour (4 Mm/s).

A false color image composited of data from three sources. Red is infrared data from the Spitzer Space Telescope,orange is visible data from the Hubble SpaceT, and blue and green are data from the Chandra X­ray Observatory

Page 11: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

Accelerazione di Betatrone:Sites like “magnetic traps” there is transfer of energy      ||H is compressed  ||  H expands             ||

no net energy change, 

unless..... random interactions redistribute the energy increase at (H+H) to other particles

HH

Ht

1                2                  3

Page 12: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

HH

Ht

1                2                  3

{P ∥

2 =13P1

2

P ⊥

2=23P1

2}At location (2­){

P ∥2 =

13P1

2

P ⊥2 =

23P1

2HHH

Ptot2 =P2

2=13P1212 HH

H }At location (1+)

Page 13: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

HH

Ht

1                2                  3

At location (2+){P ∥

2=

13P2

2=

19P1

212 HHH

P ⊥

2=

23P2

2=

29P1

212 HHH

Ptot2=P2

2=13P1

212 HHH }

{P ∥

2=

13P22=

19P1212 HH

H P ⊥

2=

23P22=

29P1

212 HHH H

HH

Ptot2=P3

2=19P1

212 HHH 12 H

HH }At location (3­ )

Page 14: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

In 3 again the particle is at the same initial H field (as in 1)and the total momentum change is

and in  terms of energy: 

p2 = p32 − p1

2 =29p12 HH H H

H 2

≈29p12 H

H 2

= p2/2m

≈29HH

ddt

tH≈

29

dln H

dt

Page 15: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

time for CRs

Page 16: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

E­m wave propagation in a plasma

Let's consider an astrophysical plasma, composed by ionized gas which is, however, neutral as a whole.Maxwell equations are defined for vacuum, but can be adapted toa plasma if we consider charge and current densities 

e and j

Let's consider the dielectric constant:

Pulsation of incoming radiation

Pulsation of bound electrons

Free electron number densityBound electron number density

Pulsation of free electrons (=0)

In the radio domain, ω < ω

i and

can be neglected

Page 17: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

plasma frequency 

We define the refraction index: 

where the plasma frequency  vp has been defined

only waves with  v  > vp can travel across the region, whilethose with v  < vp are reflected  (nr becomes imaginary)

Below the plasma cutoff frequency there is no propagation

In the ionosphere: ne ~ 106 cm­3  implies  vp  ~ 107 Hz

In the interstellar medium: ne ~ 10 ­3 10   cm ­3                                 implies  v

p  ~ 3 ∙ 102   3 ∙103  Hz

nr≡ r ≃ 1−4e2

me

ne

2=1− p

2

p= e2ne

me

= 9.1⋅103 ne Hz

Page 18: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

Wave propagation

                               the e­m wave travels with group velocity

The time necessary to travel from A to B at a given frequency is

A                      L                    B

(for v  >> vp )

Page 19: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

In case it is possible to detect this effect in a given particular case, then

it becomes feasible to directly measure  ne along the LOS

Dispersion Measure

Observing at two different frequencies, the arrival time will be different!

Page 20: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

Dispersion Measure                                                      a direct measurement

The slope of the pulse arrivaltime .vs. frequency provides a measure of

Distances, however, are difficultto determine, except in a few lucky cases, like globular clusters

D.M. = ∫0

Lne dl

Page 21: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

Faraday Rotation

Propagation effect arising from an “external” magneticfield H which causes an anisotropic transmission.Let's consider what happens along the field direction:

Let's us assume that the propagating e­m wave is polarized and sinusoidalas a superposition between a LCP and a RCP components.

where + is for RCP and – is for LCP. The dielectric constant is no longer a scalar and becomes a tensor: the “two” modes have different refraction index

nr R ,L = 1−p

2

11±p /cos

where  is the angle between the direction of e­m wave propagation and  H

Michael Faraday (1791­1867)

E t = E o e−i t 1±2

Page 22: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

       Faraday Rotation

      Along the field direction

and then in equation ** we get as a solution

which provides a dielectric constant

and therefore the propagation speed of the two orthogonal modes are different, originating a shift in their relative phase, which implies a rotation of the polarization vector

Bo = Bo 3

v t = −ie

me ±H E t

R ,L = 1−p

2

±H

Page 23: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

How to measure RM:

Polarization sensitive observations provide the measurement of m and  at various discrete frequencies (wavelengths). 

●Plot 2 and   ( n)       ●get the slope of the best fit line●obtain RM

blue points represents the observations, while red points are for the  nambiguities

slope provides RM

Page 24: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

In case the “Faraday screen” is spatially resolved, the net effect is justa rotation of the linear polarization vector in a given direction

The rotation measure determines the magnetic field along the LOS weighted on the electron density ne  and if also the D.M. is available

(radians)

⟨H ∥ ⟩ ∝R.M.D.M.

∝∫neH ∥ dl

∫nedl

Page 25: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

Examples of RM and FR

RM needs various frequencies to be measured

Depolarization may take place

RM may be very different in various locations ofthe same radio source ­> local to the r­source

Page 26: Acceleration mechanisms - INAFddallaca/P-Rad_5.pdf · Fermi's Acceleration: basic process Proposed by E. Fermi in 1954. Let's consider a charged particle, given that electrons are

Examples of RM and FR (2)

Stratified RM structure (implications on H and ne)