abstracts! wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave!...

24
Abstracts Wave propagation in complex media and applications Heraklion, Greece May, 7 – 11, 2012

Upload: others

Post on 05-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

       

Abstracts          

Wave  propagation  in  complex  media  and  applications  

     

                   

Heraklion,  Greece      

May,  7  –  11,  2012

Page 2: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

   

Abstracts  Wave  propagation  in  complex  media  and  applications  Heraklion,  Greece  May,  7  –  11,  2012  

       

Copyrights  of  abstracts  retained  by  the  authors.    Printed  in  Greece.                Sponsors    

       

               

·    FP7-­‐REGPOT-­‐2009-­‐1,  ACMAC,  grant  agreement  n°  245749  ·    European  Research  Council  Starting  Grant  GA  239959    ·    Marie  Curie  International  Reintegration  Grant  MIRG-­‐CT-­‐2007-­‐203438

Page 3: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

   

 Preface    This   volume   contains   the   abstracts   of   the   talks   and   posters   presented   at   the  workshop  

Wave  propagation  in  complex  media  and  applications    held  at  Heraklion,  Greece,  on  May  7-­‐11,2012.  The  workshop  has  been  organized  under   the   auspices   of   the   Archimedes   Center   for   Modeling,   Analysis   and  Computation  (ACMAC),  the  Department  of  Applied  Mathematics  of  the  University  of  Crete,  and  the  Institute  of  Applied  and  Computational  Mathematics  (IACM)  at  the  Foundation  for  Research  and  Technology  Hellas  (FORTH).    The  aim  of  this  workshop  is  to  bring  together  scientists  working  on  forward  and  inverse   wave   propagation   problems   in   different   applications   ranging   from  underwater   acoustics,   geophysics   and   medical   imaging   to   metamaterials   and  nanotechnology   in   order   to   investigate   the   role   and   interconnectivity   of   the  mathematical   tools   employed   for   the   effective   modeling   of   complex  environments.      We   would   like   to   thank   all   contributors   for   submitting   their   abstracts   and  presenting  their  work  at  the  workshop.      

Chrysoula  Tsogka          

Organizing Committee Patrick  Joly       INRIA  –  Rocquencourt,  France  George  Papanicolaou     Stanford  University,  USA  Chrysoula  Tsogka         University  of  Crete  &  IACM/FORTH

Page 4: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

   

 

Page 5: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

  i  

Table  of  Contents      Monday,  May  7,  2012    9:30  –  12:15    Morning  Session    

Numerical  simulation  of  a  grand  piano   1  Patrick  Joly    Novel  Boundary  Element  Methods  for  Scattering  at  Composite  Objects   1  Ralf  Hiptmair      

14:15  –  17:00  Afternoon  Session    

Hybrid  numerical-­‐asymptotic  boundary  integral  methods  for  high  frequency  scattering   2  Simon  Chandler-­‐Wilde    

 Retarded  potentials  and  discontinuous  Galerkin  methods  with  upwind  fluxes  for      transient  wave  propagation  on  unbounded  domains   3  Jeronimo  Rodriguez  

 Convergence  results  of  iterative  solvers  for  scattering  problems.     4  Nabil  Gmati  

     Tuesday,  May  8,  2012  

 9:30  –  12:15    Morning  Session  

 The  imaging  of  anisotropic  media  using  electromagnetic  waves   4  Fioralba  Cakoni  

 A  Factorization  Method  for  a  Far-­‐Field  Inverse  Scattering  Problem  in  the  Time  Domain   5  Houssem  Haddar  

 Super–resolution  and  invisibility  in  wave  imaging   6  Habib  Ammari    

 14:15  –  17:00  Afternoon  Session  

 Can  trapped  modes  occur  in  open  waveguides?   6  Christophe  Hazard    Riesz  bases  of  Floquet  modes  in  semi-­‐infinite  periodic  waveguides  and  implications   7  Thorsten  Hohage    Helmholtz  Equation  with  Artificial  Nonlocal  Boundary  Conditions  in  a  Two-­‐Dimensional  Waveguide.   7  Dimitris  Mitsoudis    

Page 6: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

  ii  

Wednesday,  May  9,  2012      

14:00  –  16:45    Afternoon  Session    

Time  reversal  with  partial  information  for  wave  refocusing  and  scatterer  identification   8  Dan  Givoli      Time  Reversed  Absorbing  Condition  in  the  Partial  Aperture  Case   9  Frederic  Nataf      Multiple-­‐scattering  theory  and  its  applications   9  Ying  Wu  

   

17:00  -­‐  18:30  Poster  session    

Numerical  modeling  of  1D  poroelastic  waves  with  dissipative  terms  involving      fractional  derivatives   10  Emilie  Blanc  

 Recent  advances  in  numerical  study  of  wave  propagation  in  metamaterials   10  Jichun  Li  

 Propagation  of  acoustic  waves  in  infinite  and  fractal  trees   11  Adrien  Semin    Space-­‐time  focusing  on  unknown  scatterers   11  Cassier  Maxence  

   

   

Thursday,  May  10,  2012    

9:30  –  12:15    Morning  Session    

On  initial-­‐boundary-­‐value  problems  for  Boussinesq  systems   12  Vassilios  Dougalis    Finite  volume  schemes  for  dispersive  wave  propagation  and  runup   12  Theodoros  Katsaounis  

 Statistical  characterization  of  underwater  acoustic  signals  with  applications  in      inverse  problems  of  acoustical  oceanography.   13  Michalis  Taroudakis  

   

14:15  –  17:00  Afternoon  Session    

The  Ultra  Weak  Variational  Formulation  of  the  Time  Harmonic  Elastic  Wave  Equation   13  Peter  Monk  

Page 7: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

  iii  

 Optimal  high  order  elements  in  H(div)  and  H(curl)  for  hexahedra,  prisms  and  pyramids   14  Marc  Durufle  

 Signal  to  noise  ratio  estimation  in  passive  correlation  based  imaging   14  Adrien  Semin      

   

   

Friday,  May  11,  2012    

9:30  –  12:15    Morning  Session    

Finite  element  heterogeneous  multiscale  method  for  the  wave  equation   15  Marcus  Grote  

 Absorption  of  rigid  frame  porous  materials  with  periodic  resonant  inclusions  and      periodic  irregularities  of  the  rigid  backing   15  Jean  Philippe  Groby  

 Reconstruction  of  3D  images  from  Boundary  Measurements   16  Athanasios  Zacharopoulos      

Page 8: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

 

Page 9: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

http://www.acmac.uoc.gr   1  

Numerical  simulation  of  a  grand  piano    

Patrick  Joly  

INRIA  Domaine  de  Voluceau  BP  105  Rocquencourt  78153  Le  Chesnay  Cedex  FRANCE  

[email protected]    

This   presentation   will   deal   with   the   numerical   simulation   of   a   concert   piano  using   physical   models.   An   important   part   of   the   talk   will   be   devoted   to   the  derivation   of   the   retained  mathematical  model   as   a   system   of   coupled   partial  differential   equations   that   aims   at   reaching   simultaneously   several   goals:  physical  relevance,  acoustical  pertinence  and  numerical  tractability.  This  model  takes  into  account  all  the  vibration  and  propagation  phenomena  involved  in  the  production  of  a  piano  sound,  from  the  excitation  of  the  string  by  the  hammer  to  the  sound  radiation  in  3D,  via  the  transmission  of  the  string  displacement  to  the  soundboard  via  the  bridge.  A  particular  attention  will  be  given  to  the  nonlinear  string   model   that   takes   into   account   the   stiffness   of   the   string   as   well   as   its  longitudinal  movements,  which  is  necessary  to  well  represent  phenomena  such  as   precursors   or   partial   phantoms   observed   in   the   analysis   of   a   piano   sound.  The   couplings   between   the   various   subsystems   (hammer/string,  string/bridge/soundboard,  soundboard/air)  will  be  described   in  detail  as  well  as   the   various   dissipation   models.   The   retained   numerical   method   will   be  presented.  It  is  based  on  a  global  variational  formulation  for  space  discretization  and  conservative  time  stepping.  The  emphasis  will  be  put  on  the  stability  of  the  method   via   the   conservation   (or   decay)   of   a   relevant   discrete   energy.   Finally,  numerical   results   will   be   presented,   including   comparisons  with   experiments  and  synthetic  sound  examples.    

   

 Novel  Boundary  Element  Methods  for  Scattering  at  Composite  

Objects    

Ralf  Hiptmair    

ETH  Zurich  Raemistrasse  101,  CH-­‐8092  Zurich  

[email protected]    

A   task   frequently   encountered   in   nano-­‐optical   simulations   is   the   scattering   of  time   harmonic   electromagnetic   waves   at   a   penetrable   object   composed   of  different  linear  and  homogeneous  materials,  that  is,  the  material  coefficients  are  supposed   to  be  piecewise   constant   in   sub-­‐domains.  This   setting  permits  us   to  use  boundary  element  methods  for  the  approximate  computation  of  both  local  and  far  fields.  The  talk  surveys  several  boundary  element  methods  for  this  scattering  problem,  some  of  them  classical,  some  newly  developed  with  a  focus  on  the  conditioning  of  the  linear  systems  spawned  by  Ritz-­‐Galerkin  discretization  by  means  of  low-­‐order  boundary  elements  (BEM).    

Page 10: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

http://www.acmac.uoc.gr   2  

• The   classical   first-­‐kind   single-­‐trace   boundary   integral   formulation   also  known   as   PMCHWT   formulation   in   computational   electromagnetics.   It  directly  arises  from  Calderón  identities,  but  gives  rise  to  poorly  conditioned  linear  systems,  for  which  no  preconditioner  seems  to  be  available  so  far.  

• A  new  first-­‐kind  multi-­‐trace  formulation  based  on  local  coupling  across  sub-­‐domain  interfaces  [5],  which  is  amenable  to  block-­‐diagonal  preconditioning.  

• Another   first-­‐kind  multi-­‐trace   formulation   that   can  be  obtained  by   taking  a  “vanishing   gap   limit”   for   the   classical   single-­‐trace   equations   [2,3].   Calderón  preconditioning  can  be  shown  to  work  in  this  case.  

• A   second-­‐kind   single-­‐trace   approach   inspired   by   applying   “sign   flipping”   of  traces   in   the   variational   form   of   the   classical   single-­‐trace   formulation.   The  resulting  linear  systems  will  be  inherently  well  conditioned  [1,  4].  

References  [1]  X.  Claeys,  A  single  trace  integral  formulation  of  the  second  kind  for  acoustic  scattering,   Research   Report   2011-­‐15,   SAM,   ETH   Zürich,   Zürich,   Switzerland,  2011.  [2]  X.  Claeys  and  R.  Hiptmair,  Boundary  integral  formulation  of  the  first  kind  for  acoustic  scattering  by  composite  structures,  Report  2011-­‐45,  SAM,  ETH  Zürich,  Zurich,   Switzerland,   2011.   Submitted   to   Comm.   Pure   Applied   Math.  [3]   ____,   Electromagnetic   scattering   at   composite   objects:   A   novel   multi-­‐trace  boundary   integral   formulation,   Report   2011-­‐58,   SAM,   ETH   Zürich,   Zürich,  Switzerland,  2011.  Submitted  to  M2AN.  [4]  X.  Claeys,  R.  Hiptmair,  and  E.  Spindler,  2nd-­‐kind  galerkin  boundary  element  method   for   acoustic   scattering   at   composite   objects,   report,   SAM,  ETH  Zurich,  Switzerland,  2012.  In  preparation.  [5]   R.   Hiptmair   and   C.   Jerez-­‐Hanckes,   Multiple   traces   boundary   integral  formulation   for   Helmholtz   transmission   problems,   Adv.   Appl.   Math.,   (2011).  Published  electronically.          Hybrid  numerical-­‐asymptotic  boundary  integral  methods  for  

high  frequency  scattering    

Simon  Chandler-­‐Wilde    

University  of  Reading  Earley  Gate,  PO  Box  243,  Reading  RG6  6BB,  UK  

S.N.Chandler-­‐[email protected]    In  this  talk  we  review  recent  progress  in  our  research  group  and  internationally  in   constructing   and   analysing   effective   numerical  methods   for   time   harmonic  wave   scattering,   based   on   boundary   integral   equation   formulations,   that  incorporate  information  about  the  phase  structure  of  the  solution  derived  from  high  frequency  asymptotics  into  the  approximation  space  used.  The  algorithmic  challenges   are   to   construct   oscillatory   basis   functions  which   capture   solution  behaviour   efficiently   and   then   to   efficiently   evaluate   the   oscillatory   integrals  

Page 11: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

http://www.acmac.uoc.gr   3  

which   necessarily   arise   in   the   Galerkin   solution   process.   The   associated  theoretical   numerical   analysis   challenges   include   proving   best   approximation  results   with   these   new   approximation   spaces,   and   devising   new   methods   to  prove   stability   or   new   formulations   for   which   conventional   stability   analyses  can  be  made   to  apply.   In   these  analyses  a  novelty   is   that  we  need   results   and  bounds  which  are  explicit   in  their  dependence  on  the  wave  number  as  well  as  on  the  dimension  of  the  approximation  space.  We  present  classes  of  scattering  problems  for  which  all  these  aims  can  be  achieved,  indeed  with  a  computational  cost   which   depends   only   logarithmically   on   the   wave   number   as   the   wave  number  increases  [1].      References  [1]   S.   N.   Chandler-­‐Wilde,   I.   G.   Graham,   S.   Langdon,   &   E.   A.   Spence   (2012),  “Numerical-­‐asymptotic   boundary   integral  methods   in   high-­‐frequency   acoustic  scattering”,  Acta  Numerica  21,  89-­‐305.          

Retarded  potentials  and  discontinuous  Galerkin  methods  with  upwind  fluxes  for  transient  wave  propagation  on  unbounded  domains  

 

Jeronimo  Rodriguez  

Universidade  de  Santiago  de  Compostela  Campus  sur,  15782  Santiago  de  Compostela,  A  Coruna,  Spain  

[email protected]    This  work  deals  with  the  numerical  simulation  of  transient  wave  propagation  on  unbounded   domains   with   localized   heterogeneities.   In   this   situation   we   will  decompose   the   computational   domain   in   two   non-­‐overlapping   sub-­‐domains;  one   of   them   (the   interior   subdomain)   being   bounded   and   containing   all   the  defaults,   the  other  one   (the  exterior   subdomain)  assumed   to  be  homogeneous  and   unbounded.   In   previous   studies   [1],   in   the   frame   of   the   scalar   wave  equation,   the   authors   proposed   a   hybrid   method   based   on   the   retarded  potential   method   for   the   exterior   domain   and   a   discontinuous   Galerkin   (DG)  method   in   space   (using   centered   fluxes)   combined  with   explicit   second   order  finite   differences   in   time   (leap   frog   scheme)   in   the   interior.   The   coupling  was  specially  built   to   ensure  by   construction  a  discrete   energy   identity   yielding   to  the   stability   of   the   numerical   method   under   the   usual   CFL   condition   in   the  interior  domain.  Moreover,  the  coupling  technique  allowed  to  use  a  smaller  time  step   in   the   interior  domain   leading   to  quasi-­‐optimal  discretization  parameters  for  both  methods.  Since  the  DG  discretizations  based  on  centered  fluxes  provide  sub-­‐optimal   rates   of   convergence,   it   is   desirable   to   include   the   possibility   of  using   upwind   fluxes.   The   leap   frog   scheme   used   for   the   previous   study   being  unstable   in   presence   of   dissipative   terms,   the   authors   propose   a   time  discretization   of   the   interior   equations   being   explicit,   conditionally   stable   and  allowing   the   presence   of   dissipative   terms.   Following   similar   ideas   to   those  presented   in   [1]   we   propose   a   new   global   discretization   being   stable   by  

Page 12: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

http://www.acmac.uoc.gr   4  

construction  and  allowing  to  couple  the  novel   interior  approximation  with  the  retarded   potential   method.   The   efficiency   of   the   method   will   be   discussed  through  some  numerical  experiments  for  the  scalar  wave  equation.      References  [1]   T.   Abboud   et   al.   Coupling   discontinuous   Galerkin   methods   and   retarded  potentials   for   transient   wave   propagation   on   unbounded   domains.   JCP,   230  (2011).          Convergence  results  of  iterative  solvers  for  scattering  problems  

 

Nabil  Gmati  

ENIT  –  LAMSIN  B.P.  37,  1002,  Tunis  Le  Belvedere,  Tunisia  

[email protected]    

We   are   interested   with   the   numerical   resolution   of   a   problem   of   acoustic   or  electromagnetic   scattering   in   unbounded   domains.   We   use   the   method   of  coupling   finite   elements  with   integral   representation   [Jami   and   Lenoir,   1978]  which   consists   in   solving   an   equivalent   problem   by   imposing   on   a   fictitious  border   an   exact   non   local   condition.   We   study   the   convergence   of   several  algorithms  allowing  the  resolution  of  the  obtained  linear  system.  We  show  the  linear  convergence  of  an  algorithm  of  richardson,  revisited  as  Schwarz  method  with  total  overlapping  [J.Liu  and  J.M.  Jin,  2001],  [F.Ben  Belgacem,  L.Fournié,  N.G,  F.Jelassi,  2003,  2005].  This   first   algorithm   is   also  used  as  preconditioning  of   a  GMRES  method  [J.Liu  and  J.M.  Jin,  2002].  A  detailed  analysis  of  the  behavior  of  this   second   algorithm   proves   its   superlinear   convergence   [N.G,   B.Philippe,  2008].  For   the   continuous  problem   the  methodology  borrowed   from  works  of  [R.Winther,  on  1980],  based  on  spectral  theory  results  allows  to  give  the  rates  of  convergence  in  two  and  three  dimensions  [F.Ben  Belgacem,  N.G,  F.Jelassi,  2009,  2010].    

     

The  imaging  of  anisotropic  media  using  electromagnetic  waves    

Fioralba  Cakoni  

University  of  Delaware  Ewing  402,  Newark,  Delaware  19716,  USA  

[email protected]    

We   discuss   two   inverse   problems   related   to   anisotropic   media   for   Maxwell's  equations.   The   first   one   is   the   inverse   scattering   problem   of   determining   the  anisotropic   surface   impedance   of   a   bounded   obstacle   from   a   knowledge   of  electromagnetic  scattered  field  due  to  incident  plane  waves.  Such  an  anisotropic  

Page 13: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

http://www.acmac.uoc.gr   5  

boundary  condition  can  arise  from  surfaces  covered  with  patterns  of  conducting  and   insulating   patches.   We   show   that   the   anisotropic   impedance   is   uniquely  determined   if   sufficient   data   is   available,   and   characterize   the   non-­‐uniqueness  present  if  a  single  incoming  wave  is  used.  We  derive  an  integral  equation  for  the  surface   impedance   in   terms   of   solutions   of   a   certain   interior   impedance  boundary   value   problem.   These   solutions   can   be   reconstructed   from   far   field  data   using   the   Herglotz   theory   underlying   the   Linear   Sampling   Method.   The  second  problem  is   to  obtain   information  about  matrix   index  of  refraction  of  an  anisotropic  media  again  from  a  knowledge  of  electromagnetic  scattered  field  due  to   incident  plane  waves.  This  problem  plays  a  special  role   in   inverse  scattering  theory   due   to   the   fact   that   the   (matrix)   index   of   refraction   is   not   uniquely  determined   from   the   scattered   fields   even   if  multi-­‐frequency   data   is   available.  Our  imaging  tool  is  a  new  class  of  eigenvalues  associated  with  the  scattering  by  inhomogeneous  media,  known  as  transmission  eigenvalues.  In  this  presentation  we   describe   how   transmission   eigenvalues   can   be   determined   from   scattering  data  and  be  used  to  obtain  upper  and  lower  bounds  on  the  norm  of  the  index  of  refraction.  Preliminary  numerical  results  will  be  shown  for  both  problems.  

       A  Factorization  Method  for  a  Far-­‐Field  Inverse  Scattering  

Problem  in  the  Time  Domain    

Houssem  Haddar  

INRIA  and  Ecole  Polytechnique  Route  de  Saclay,  91128  Palaiseau,  France  

[email protected]    

We  consider  a   far-­‐field   inverse  obstacle  scattering  problem  for   the  scalar  wave  equation   in   the   time  domain.  We  prove   that  certain   test   functions  given  as   far-­‐fields   of   pulse   solutions   to   the   wave   equation   characterize   the   obstacle   by   a  range   criterion:   If   the   source  point  of   the  pulse   is   inside   the  obstacle,   then   the  test   function  belongs  to  the  range  of   the  “square  root”  of   the  time  derivative  of  the   far-­‐field   operator.   If   the   source   point   is   outside   the   obstacle,   then   the   test  function  does  not  belong  to  this  range.  This  is  hence  an  explicit  characterization  of   the   obstacle   by   far-­‐field  measurements   of   time-­‐dependent   scattered  waves.  The  proof  relies  on  an  operator  factorization  related  to  the  Factorization  method  for  inverse  scattering  in  the  frequency  domain,  and  on  the  positivity  of  the  time  derivative  of  the  inverse  of  the  retarded  single-­‐layer  operator.                  

 

Page 14: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

http://www.acmac.uoc.gr   6  

   

Super-­‐resolution  and  invisibility  in  wave  imaging    

Habib  Ammari    

Ecole  Normale  Superieure  DMA,  45  Rue  d'Ulm,  75005,  Paris,  France  

[email protected]    

The   aim   of   this   talk   is   to   show   how   to   achieve   on   one   hand   super-­‐resolved  imaging  and  on  the  other  hand  enhance  invisibility  based  on  the  new  concept  of  generalized   polarization   tensors.   Fast   and   efficient   procedures   for   (real-­‐time)  target   identification   in   imaging   based   on   matching   on   a   dictionary   of  precomputed   generalized   polarization   tensors   will   be   proposed.   Vanishing  generalized   polarization   tensor   structures   will   be   designed   to   achieve   near-­‐cloaking  enhancement  using  transformation  optics.                

Can  trapped  modes  occur  in  open  waveguides?    

Christophe  Hazard  

CNRS,  ENSTA  32  Boulevard  Victor,  75015  Paris,  France  

[email protected]    

Trapped   modes   in   acoustic,   elastic   or   electromagnetic   waveguides   consist   in  time-­‐harmonic  solutions  of  the  propagation  equations  which  have  a  finite  energy  localized   in   a   bounded   region.   For   a   closed  waveguide,   that   is,   a   duct  which   is  bounded   in   the   transverse   direction   by   a   non-­‐penetrable   wall,   it   is   now   well  understood   that   such  modes  can  occur  when  considering   local  perturbations  of  an   infinite   cylindrical   waveguide   (such   as   a   bulge   or   a   defect   inside   the  waveguide).   The   purpose   of   this   talk   is   to   investigate   the   case   of   open  waveguides,   that   is,   when   the   transverse   section   is   unbounded   (for   instance,  optical   fibers).   We   will   consider   the   case   of   the   3-­‐dimensional   scalar   wave  equation   (acoustic   waveguides)   and   we   will   show   that   trapped   modes   do   not  exist  in  the  case  of  local  perturbations  of  cylindrical  waveguides.  The  case  of  the  junction  of  two  semi-­‐infinite  cylindrical  waveguides  will  be  also  mentioned.  The  basic   tool  of  our  approach   is   the  generalized  Fourier   transform  associated  with  the   transverse  part  of   the  Helmholtz  operator.   Its  use   leads  us   to   represent   the  acoustic  field  in  a  uniform  semi-­‐infinite  part  of  the  waveguide  as  a  superposition  of   modes   which   are   either   propagative   or   evanescent   in   the   longitudinal  direction.  When  considering  trapped  modes,  such  a  representation  simplifies  to  a  continuous  superposition  of  evanescent  modes,  since  propagative  modes  do  not  

Page 15: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

http://www.acmac.uoc.gr   7  

allow   a   confinement   of   energy.   In   closed  waveguides,   the   existence   of   trapped  modes   is   precisely   due   to   the   presence   of   such   evanescent   components   of   the  field.  But  in  open  waveguides,  these  components  must  vanish,  which  follows  from  an   analyticity   property   with   respect   to   the   generalized   Fourier   variable.   This  property   means   that   in   an   open   waveguide,   propagative   and   evanescent  components  of   a  wave  are   connected   in  a   subtle  but   strong  way   (whereas   they  are  independent  in  a  closed  waveguide).          

Riesz  bases  of  Floquet  modes  in  semi-­‐infinite  periodic  waveguides  and  implications  

 Thorsten  Hohage  

University  of  Goettingen  Lotzestr.  16-­‐18,  D-­‐37083  Goettingen  [email protected]­‐goettingen.de  

 Wave   propagation   in   periodic   media   appears   in   a   number   of   important  applications   including   photonic   crystal   structures,   metamaterials,   and  semiconductor   nanostructures.   The   simulation   of   such   devices   requires   the  numerical  solution  of  differential  equations  in  locally  perturbed  periodic  media,  which  is  a  challenging  task.  A  basic  ingredient  for  the  analytical  and  numerical  study   of   such   problems   are   time   harmonic   wave   equations   in   periodic   half-­‐strips   with   quasiperiodic   boundary   conditions.   We   show   that   there   exists   a  Riesz   basis   of   the   space   of   solutions   to   the   time-­‐harmonic   wave   equation  consisting  of  Floquet  modes.  This  basis  can  be  chosen  such  that  the  translation  operator  shifting  a  function  by  one  periodicity  length  to  the  left   is  represented  by  an   infinite   Jordan  matrix  which   contains  at  most  a   finite  number  of   Jordan  blocks   of   size   greater   than   1.   Moreover,   traces   of   this   Riesz   basis   on   the   left  boundary  also  form  a  Riesz  basis  as  long  as  the  corresponding  boundary  value  problems   are   uniquely   solvable.   We   end   by   discussing   theoretical   and  algorithmic  implications  of  these  results.  

     

 Helmholtz  Equation  with  Artificial  Nonlocal  Boundary  

Conditions  in  a  Two-­‐Dimensional  Waveguide    

Dimitris  Mitsoudis    

ACMAC,  University  of  Crete  Voutes  campus,  71003,  Heraklion,  Greece  

[email protected]    We   consider   a   time-­‐harmonic   acoustic   wave   propagation   problem   in   a   two-­‐  dimensional   water   waveguide   confined   between   a   horizontal   surface   and   a  locally  varying  bottom.  We  formulate  a  model  based  on  the  Helmholtz  equation  

Page 16: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

http://www.acmac.uoc.gr   8  

coupled  with  nonlocal  Dirichlet-­‐to-­‐Neumann  boundary   conditions   imposed  on  two  artificial  boundaries  “near”  and  “far”  from  the  source.  We   establish   the  well-­‐posedness   of   the   associated   variational   problem,   under  the   assumption   of   a   downsloping   bottom,   by   showing   stability   estimates   in  appropriate   function   spaces.   Moreover,   a   priori   estimates   involving   explicit  dependence  on   the   frequency   and   the   geometrical   parameters   of   the  problem  are   derived.   The   analysis   is   based   on   utilizing   appropriate   test   functions  involving   the   first   order  weak   derivatives   of   the   solution   in   the   bilinear   form  and  the  careful  treatment  of  the  nonlocal  boundary  terms.  We   present   the   outcome   of   several   numerical   experiments   with   a   code  implementing   a   standard/Galerkin   finite   element   approximation   of   the  variational  formulation  of  the  model  and  in  some  cases  we  compare  our  results  with   those   of   standard   coupled   mode   codes.   This   is   joint   work   with   Ch.  Makridakis  and  M.  Plexousakis.          Time  reversal  with  partial  information  for  wave  refocusing  and  

scatterer  identification    

Dan  Givoli    

Technion  Dept.  of  Aerospace  Engineering,  Haifa  32000,  Israel  

[email protected]    

Time   reversal   is   a   well-­‐known   procedure   in   application   fields   involving   wave  propagation.   Among   other   uses,   it   can   be   applied   as   a   computational   tool   for  solving   certain   inverse   problems.   The   procedure   is   based   on   advancing   the  solution  of  the  relevant  wave  problem  "backward  in  time".  One  important  use  of  numerical  time-­‐reversal  is  that  of  refocusing,  where  a  reverse  run  is  performed  to  recover  the  location  of  a  source  applied  at  an  initial  time  based  on  measurements  at   a   later   time.   Usually,   only   partial,   noisy,   information   is   available,   at   certain  measurement  locations,  on  the  field  values  that  serve  as  data  for  the  reverse  run.  In   this   talk,   the   question   concerning   the   amount   and   characterization   of   the  available  data  needed   for   a   successful   refocusing   is   studied   for   the   scalar  wave  equation.   In  particular,   a   simple  procedure   is  proposed  which  exploits  multiple  measurement  times,  and  is  shown  to  be  very  beneficial  for  refocusing.  A  tradeoff  between  availability  of  spatial  and  temporal  information  is  discussed.  The  effect  of  measurement  noise  is  studied,  and  the  technique  is  shown  to  be  quite  robust,  sometimes   even   in   the   presence   of   very   high   noise   levels.   The   use   of   the  technique   as   a   basis   for   scatterer   identification   is   also   discussed.   A   numerical  study   of   these   effects   is   presented,   employing   finite   elements   in   space   and   a  standard  explicit  marching  scheme  in  time.  In  contrast  to  some  previous  studies,  the  propagation  medium  is  taken  to  be  homogeneous.  This  is  joint  work  with  Eli  Turkel,  Tel  Aviv  University.  

     

Page 17: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

http://www.acmac.uoc.gr   9  

 Time  Reversed  Absorbing  Condition  in  the  Partial  Aperture  Case  

 Frederic  Nataf    

Laboratoire  J.L.  Lions,  UPMC  et  CNRS  4  place  Jussieu,  75005  Paris  

[email protected]    

The   time-­‐reversed   absorbing   conditions   (TRAC)   method   enables   one   to  “recreate   the  past”  without  knowing   the   source  which  has  emitted   the   signals  that   are   back-­‐propagated.   It   has   been   applied   to   inverse   problems   for   the  reduction   of   the   computational   domain   size   and   for   the   determination,   from  boundary  measurements,  of  the  location  and  volume  of  an  unknown  inclusion.  The  method  does  not  rely  on  any  a  priori  knowledge  of  the  physical  properties  of   the   inclusion.  We   present   the   extension   of   the   TRAC  method   to   the   partial  aperture   configuration   and   to   discrete   receivers   with   various   spacing.   In  particular   the  TRAC  method   is   applied   to   the   differentiation   between   a   single  inclusion   and   a   two   close   inclusion   case.   Subwavelength   resolution   can   be  achieved  even  with  more  than  20%  noise  in  the  data.  

       

Multiple-­‐scattering  theory  and  its  applications    

Ying  Wu  

King  Abdullah  University  of  Science  and  Technology  Bldg  1,  Room  4104,  PO  BOX  2855,  KAUST,  Thuwal,  Saudi  Arabia  

[email protected]    

In  the  past,  several  methods  have  been  developed  to  solve  wave  equations,  such  as  finite-­‐difference  method,  finite-­‐element  method,  etc.  In  this  talk,  I  will  review  the   multiple-­‐scattering   method,   which   is   based   on   the   scattering   theory   and  takes  full  multiple  scatterings  between  any  two  scatterers  into  consideration.  It  solves   the  wave   equation   in   the   frequency   domain   and   is   capable   of   handling  systems   with   large   material   contrast   and   can   investigate   wave   scattering   and  propagating   in   both   periodic   and   random   systems.   For   a   periodic   system,   it  provides   a   numerical   tool   to   calculate   the   band   structures   and   also   can   be  utilized  to  derive  the  analytic   formula  of  effective  medium  parameters  that  can  be  served  as  a  guide  for  the  design  of  metamaterials.  For  a  random  system,  it  is  capable   of   calculating   the   wave   field   distributions   and   the   wave   transport  behavior  can  be  obtained.  I  will  show  the  result  of  time-­‐reversal  through  a  strong  scattering  media  by  using  the  multiple-­‐scattering  method.              

Page 18: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

http://www.acmac.uoc.gr   10  

Numerical  modeling  of  1D  poroelastic  waves  with  dissipative  terms  involving  fractional  derivatives  

 Emilie  Blanc  

LMA  31  chemin  Joseph-­‐Aiguier,  13402  Marseille  cedex  20  

[email protected]­‐mrs.fr    We   investigate   the   propagation   of   poroelastic   waves   described   by   the   Biot's  model  in  the  time-­‐domain.  Most  of  the  existing  methods  have  been  developed  in  the   low-­‐frequency   range.   The   aim   of   our   study   is   to   derive   some   numerical  methods  in  all   the  domain  of  validity  of  the  Biot's  model.   In  the  high-­‐frequency  range,   the  effects  of   the  viscous  boundary   layer   inside  the  pores  must  be  taken  into   account.   We   use   the   model   of   dynamic   permeability   of   Johnson-­‐Koplik-­‐Dashen   (JKD).   In   this   case,   some   coefficients   of   the   Biot-­‐JKD's   model   are  proportional  to  the  square  root  of  the  frequency.  In  the  time-­‐domain,  fractional  derivatives   are   therefore   introduced   into   the   evolution   partial   differential  equations.  Two  strategies  exist  to  calculate  these  fractional  derivatives.  The  first  strategy  is  to  compute  the  involved  convolution  integral.  However,  it  requires  to  store  the  past  of  the  solution,  which  is  too  penalizing  in  terms  of  computational  memory.   The   second   strategy,   which   we   implement,   is   based   on   a   diffusive  representation   of   the   convolution   kernel.   The   latter   is   replaced   by   a   finite  number   of   memory   variables   that   satisfy   local-­‐in-­‐time   ordinary   differential  equations.   The   coefficients   of   the   diffusive   representation   are   determined   by  optimization  on  the  frequency  range  of  interest.  We  analyze  the  properties  of  the  Biot-­‐JKD's   model   with   diffusive   representation:   decay   of   energy,   error   of   the  model.   We   propose   a   numerical   modeling,   based   on   a   splitting   strategy:   a  propagative   part   is   discretized   by   a   fourth-­‐order  ADER   scheme  on   a   Cartesian  grid,  whereas  a  diffusive  part  is  solved  exactly.  We  analyze  the  properties  of  this  algorithm.   Numerical   solutions   are   compared   to   analytical   ones,   with   physical  parameters  representative  of  real  media.          

Recent  advances  in  numerical  study  of  wave  propagation  in  metamaterials  

 Jichun  Li  

University  of  Nevada  Las  Vegas  Las  Vegas,  Nevada  89154-­‐4020,  USA  

[email protected]    

Since  the   first  successful  construction  of  negative   index  metamaterials   in  2000,  there   is  a  growing   interest   in   the  study  of  metamaterials  due   to   their  potential  applications   in   areas   such   as   design   of   invisibility   cloak   and   sub-­‐wavelength  imaging.   In   this   talk,   I'll   first   give   a   brief   introduction   to   the   short   history   of  metamaterials.   Then   I'll   focus  on   the  mathematical  modeling  of  metamaterials,  

Page 19: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

http://www.acmac.uoc.gr   11  

and  discuss   some   time-­‐domain   finite   element   schemes  we  developed   in   recent  years.   Finally,   I'll   conclude   the   talk   with   our   cloak   simulation   and   some   open  issues  for  further  exploration.  

   

   Propagation  of  acoustic  waves  in  infinite  and  fractal  trees    

Adrien  Semin  

University  of  Crete  and  IACM  FORTH  P.O.  Box  1385  GR-­‐711  10  Heraklion,  Crete  

[email protected]    

We   study   here   a  wave   propagation   problem   posed   on   a   network  with   a   great  number  of  branches.  After  having  replaced  “a  great  number  of  branches”  by  “an  infinity  of  branches”,  we  define  a  functional  framework  in  this  kind  of  geometry  and  we  introduce  Helmholtz  problem.  We  study  then  this  problem  and  we  give  theoretical  results  illustrated  by  numerical  results.  

       

Space-­‐time  focusing  on  unknown  scatterers    

Cassier  Maxence  

POEMS  laboratory  32  Boulevard  Victor,  75015  Paris,  France  maxence.cassier@ensta-­‐paristech.fr  

 We   are   motivated   by   the   following   challenging   question:   in   a   propagative  medium  which   contains   several   unknown   scatterers,   how   can   one   generate   a  wave   that   focuses   selectively   on   one   scatterer   not   only   in   space,   but   also   in  time?  In  other  words,  we  look  for  a  wave  that  “hits  hard  at  the  right  spot”.  Such  focusing  properties  have  been  studied  in  the  frequency  domain  in  the  context  of  the  DORT  method  (“Decomposition  of  the  Time  Reversal  Operator”).  In  short,  an  array   of   transducers   first   emits   an   incident   wave   which   propagates   in   the  medium.  This  wave   interacts  with   the  scatterers  and   the   transducers  measure  the   scattered   field.   The   DORT   method   consists   in   doing   a   Singular   Value  Decomposition   (SVD)   of   the   scattering   operator,   that   is,   the   operator   which  maps  the  input  signals  sent  to  the  transducers  to  the  measure  of  the  scattered  wave.   It   is   now  well   understood   that   for   small   and   distant   enough   scatterers,  each  singular  vector  associated  with  a  non  zero  singular  value  generates  a  wave  which   focuses   selectively   on   one   scatterer.   Can   we   take   advantage   of   these  spatial   focusing   properties   in   the   frequency   domain   to   find   the   input   signals  which  generate   a   time-­‐dependent  wave  which  would  be  also   focused   in   time?  Since   any   frequency   superposition   of   a   family   of   singular   vectors   associated  with   a   given   scatterer   leads   to   a   spatial   focusing,   the   main   question   is   to  synchronize  them  by  a  proper  choice  of  their  phases.  The  method  we  propose  is  

Page 20: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

http://www.acmac.uoc.gr   12  

based   on   a   particular   SVD   of   the   scattering   operator   related   to   its   symmetry.  The   signals   we   obtain   do   not   require   the   knowledge   of   the   locations   of   the  scatterers.   We   compare   it   with   some   “optimal”   signals,   which   require   this  knowledge.  Our  study  will  be   illustrated  by  a  simple  two-­‐dimensional  acoustic  model,  where  both  scatterers  and  transducers  are  assumed  pointlike.  Numerical  results  will  be  shown.          On  initial-­‐boundary-­‐value  problems  for  Boussinesq  systems    

Vassilios  Dougalis  

Institute  of  Applied  and  Computational  Mathematics  (IACM),  FORTH  100  N.  Plastira  Ave,  70110  Heraklion,  Greece  

[email protected]    

We  review  recent  theoretical  results  on  the  well-­‐posedness  of  initial-­‐boundary-­‐value  problems  for  various  Boussinesq-­‐type  systems  of  water  wave  theory,  and  solve  these  systems  numerically  paying  particular  attention  to  the  interaction  of  solitary-­‐wave  solutions  with  the  boundaries.  

       

Finite  volume  schemes  for  dispersive  wave  propagation  and  runup  

 Theodoros  Katsaounis  

University  of  Crete  Voutes  campus,  71003,  Heraklion,  Greece  

[email protected]    

Finite  volume  schemes  are  commonly  used  to  construct  approximate  solutions  to   conservation   laws.   In   this   study   we   extend   the   framework   of   the   finite  volume  methods  to  dispersive  water  wave  models,   in  particular   to  Boussinesq  type  systems.  We  focus  mainly  on  the  application  of  the  method  to  bidirectional  non-­‐linear,   dispersive   wave   propagation   in   one   space   dimension.   Special  emphasis   is   given   to   important   nonlinear   phenomena   such   as   solitary   waves  interactions,   dispersive   shock  wave   formation   and   the   runup   of   breaking   and  non-­‐breaking  long  waves.  

               

Page 21: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

http://www.acmac.uoc.gr   13  

Statistical  characterization  of  underwater  acoustic  signals  with  applications  in  inverse  problems  of  acoustical  oceanography.  

 Michalis  Taroudakis  

University  of  Crete,  Department  of  Mathematics  and  FORTH,  IACM  Knossou  Ave,  71409  Heraklion,  Crete,  Greece  

[email protected]    The   presentation   concerns   a   review   of   the   work   performed   so   far   for  establishing   a   method   for   the   statistical   characterization   of   an   underwater  acoustic   signal,   in   relation   with   specific   inverse   problems   in   underwater  acoustics.  The  acoustic  signal  is  characterized  using  the  statistics  of  the  wavelet  sub-­‐band   coefficients,   which,   as   it   has   been   shown,   obey   a   statistical   law  described   by   an   Alpha-­‐Stable   distribution.   Thus,   the   signal   observables   are  included   in   the   set   of   the   parameters   of   the   appropriate   distributions   at   the  various   levels   of   the   signal   decomposition.   Ocean   acoustic   tomography   and  bottom   classification  have  been   considered   as   test   cases   for   the   assessment   of  the   method   in   realistic   applications   of   acoustical   oceanography.   The   inverse  problem   is   formulated   as   an   optimization   problem   in   connection   with   an  appropriate   objective   function.   Various   techniques   have   been   applied   for  directing   the   inversion  process   to   the  most  probable   solution,   including  neural  networks   and   genetic   algorithms.   Recent   advances   in   this   study   include  applications   in   range   dependent   but   axially   symmetric   environments,   which  better   represent   realistic   test   sites   in   the   real  world.  To   this   end,   two   types  of  environments  have  been  considered:  Environments  with  flat  bottom  with  range-­‐dependent   sound   speed   profile   and   environments   with   irregular   bottom   but  range-­‐independent   sound   speed   profile.   In   the   first   case,   the   sound   speed  structure  is  to  be  recovered,  while  in  the  second  case  the  geometry  of  the  water-­‐bottom  interface  is  the  unknown  feature  of  the  inverse  problem.  It  is  shown  that  the  proposed  method   is  very  promising,  when  some  a-­‐priori  knowledge  on  the  range-­‐dependent  character  of  the  recoverable  parameters  is  available.        

 The  Ultra  Weak  Variational  Formulation  of  the  Time  Harmonic  

Elastic  Wave  Equation    

Peter  Monk  

University  of  Delaware  Department  of  Mathematical  Sciences,  Newark  DE  19716,  USA  

[email protected]    I  shall  describe  an  application  of  the  Ultra  Weak  Variational  Formulation  (UWVF)  to   the   time   harmonic   Navier   equation   in   3D   linear   elasticity.   In   particular  applying  techniques  from  the  theory  of  discontinuous  Galerkin  methods,   I  shall  prove   error   estimates   for   the   method.   Numerical   examples   will   also   be  presented,  as  well  as  comments  on  the  fluid-­‐solid  interaction  problem.  

Page 22: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

http://www.acmac.uoc.gr   14  

Optimal  high  order  elements  in  H(div)  and  H(curl)  for  hexahedra,  prisms  and  pyramids  

 Marc  Durufle  

INRIA  Bordeaux  Sud-­‐Ouest  351  cours  de  la  Liberation  [email protected]  

 The   discretisation   of   H(curl)   and   H(div)   spaces   is   usually   performed   by   using  Nédélec   and   Raviart-­‐Thomas   elements   respectively.   However   these   two   finite  elements   are   not   optimal   for   meshes   composed   of   non-­‐affine   hexahedra   and  prisms.   Indeed,   a   loss   of   one   order   in   the   convergence   of   the   associated  numerical  method  is  observed  for  H(curl),   two  orders  for  H(div).   In  this  talk,   it  will  be  explained  how  to  construct  optimal  finite  spaces  so  that  the  convergence  is   eventually   in   $O(h^r)$   in   H(curl)   (resp.   H(div))   norm.   Two   conditions   of  optimality  will  be  explored.  The  finite  element  spaces  found  will  be  detailed  for  the  hexahedron,  the  prism  and  the  pyramid.  For  this  last  case,  we  will  compare  our  spaces  with  other  finite  element  spaces  proposed  in  the  literature.  Nodal  and  hierarchical   basis   functions   will   be   detailed.   3-­‐D   Numerical   experiments   will  illustrate  the  good  properties  of  these  spaces.          Signal  to  noise  ratio  estimation  in  passive  correlation  based  

imaging    

Adrien  Semin      

University  of  Crete  and  IACM  FORTH  P.O.  Box  1385  GR-­‐711  10  Heraklion,  Crete  

[email protected]    We  consider  here  the  problem  of   imaging  using  passive   incoherent  recordings  due   to   ambient   noise   sources.   The   first   step   towards   imaging   in   this  configuration   is   the   computation   of   the   cross-­‐correlations   of   the   recorded  signals.   These   cross-­‐correlations   are   computed   between   pairs   of   sensors  (receivers)  and  they  contain  very  important  information  about  the  background  medium.   Indeed,   it  was   shown   both   experimentally   and   theoretically   that   the  Green’s   function   between   two   sensors   can   be   retrieved   from   the   cross-­‐correlation  of  passive  incoherent  recordings  at  these  sensors.  Here,  we  propose  to   employ   these   cross-­‐correlations   for   imaging   reflectors   using   a   travel   time  migration  method.  The  signal  to  noise  ratio  analysis  of  the  proposed  method  is  carried  out.            

Page 23: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

http://www.acmac.uoc.gr   15  

Finite  element  heterogeneous  multiscale  method  for  the  wave  equation  

 Marcus  Grote  

University  of  Basel  Rheinsprung  21,  CH-­‐4051  Basel,  Switzerland  

[email protected]    A  finite  element  heterogeneous  multiscale  method  (FE-­‐HMM)  is  proposed  for  the  time   dependent   wave   equation   with   highly   oscillatory,   albeit   not   necessarily  periodic,  coefficients.  It  is  based  on  a  finite  element  discretization  of  an  effective  wave  equation  at  the  macro  scale,  whose  a  priori  unknown  effective  coefficients  are  computed  “on  the  fly”  on  sampling  domains  within  each  macro  finite  element  at  the  micro  scale  ε  >  0.  Since  the  sampling  domains  scale   in  size  with  ε,  which  corresponds   to   the  finest   scales   in   the  possibly   highly   heterogeneous  medium,  the  computational  work  is  independent  of  ε.  We  prove  optimal  error  estimates  in  the   energy   norm   and   the   L2   norm  with   respect   to   the  micro   and  macro   scale  mesh  parameters,  h  and  H,  and  also  convergence  to  the  homogenized  solution  as  ε  →  0.          Absorption  of  rigid  frame  porous  materials  with  periodic  resonant  

inclusions  and  periodic  irregularities  of  the  rigid  backing    

Jean  Philippe  Groby  

Laboratoire  d'Acoustique  de  l'Universite  du  Maine  LAUM,  UMR6613  CNRS,  Av.  Olivier  Messiaen,  F-­‐72085  LE  MANS  Cedex  9,  France  

Jean-­‐Philippe.Groby@univ-­‐lemans.fr    Air  saturated  porous  materials,  which  are  mainly  dedicated  to  sound  absorption,  suffer   from   a   lack   of   efficiency   at   low   frequency,   when   compared   to   their  absorption  properties  at  higher  frequency.  The  usual  way  to  avoid  this  problem  is  by  multi-­‐layering  optimized  panels.  Other  ways  consist  in  taking  advantages  of  additional  geometric  or  material  heterogeneities,  to  combine  the  high  frequency  efficiency  of  porous  material  with  lower  frequency  phenomena  related  to  these  heterogeneities.   The   basic   idea   to   increase   the   absorption   properties   of   a  complex  structure  is  to  excite  some  mode  of  this  structure.  This  excitation  leads  to  local  field  amplification  inside  the  structure  and  also  to  an  energy  entrapment,  whose   translation   in   terms   of   absorption   coefficient   is   a   large   increase   of  amplitude.  Here,   the  acoustic  properties  of  a  rigidly  backed  homogeneous  rigid  frame   porous   layer   in   which   possibly   resonant   macroscopic   inclusions   are  periodically   embedded   is   investigated   theoretically,   numerically,   and  experimentally.   Developments   are   carried   out   via   either   the  multipole  method  together  with  a  mode  matching  technique  or  a  Finite-­‐Element  method.  The  rigid  backing   could   also   present   some   periodic   irregularities.   The   results   show   that  this  type  of  structure  exhibits  quite  large  absorption  at  very  low  frequency,   i.e.,  

Page 24: Abstracts! Wave!propagation!in!complex!media!and! applications! · 2012-05-03 · inverse! wave! propagation! problems! in!different! applicationsranging! from underwater! acoustics,!

http://www.acmac.uoc.gr   16  

below   the   so-­‐called   quarter-­‐wavelength   resonance   of   the   initial   rigidly   backed  homogeneous  rigid  frame  porous  layer.  In  particular,  the  combined  excitation  of  mode   of   the   resonant   inclusions   together   with   some   peculiar   trapped   modes  enable  quasi-­‐total  absorption  of  incident  wavelength  more  than  10  times  larger  than  the  structure  thickness.          

Reconstruction  of  3D  images  from  Boundary  Measurements    

Athanasios  Zacharopoulos  

Foundation  for  Research  and  Technology-­‐Hellas  100  Nikolaou  Plastira  str.  [email protected]  

 We   will   discuss   some   recent   work   done   on   model   based   tomographic  techniques   and   more   specifically   on   reconstructions   for   Optical   Tomography  and  Fluorescence  Multiwavelength  Tomography.  Starting  with  the  formation  of  the   forward  model   for   the  Diffusion  equation  using  either  Boundary  Elements  or  Finite  Elements  Method  and  the  solution  of  the  Inverse  problem  on  a  shape  based   approach   using   parametric   description   for   closed   surfaces,   such   as  Spherical  Harmonics,   for  Optical   Tomography   and   the  Matrix   free  method   for  Multiwavelength  Fluorescence  Tomography.