about the authors - springer978-81-322-1026-9/1.pdfabout the authors dr. bhojwani has ... b b 5...

10
About the Authors Dr. Bhojwani has over 40 years of experience of research and teaching Plant Biotechnology to undergraduate and postgraduate students. After 33 years of service at the Department of Botany, University of Delhi, in 2002 Professor Bhojwani moved to Agra as the Director of the Dayalbagh Educational Institute (Deemed University). He continues as Emeritus Professor of Botany with the DEI. Prof. Bhojwani has published over 90 original research papers in reputed international journals and guided 17 doctoral and 11 M.Phil. thesis and authored/edited seven books on Plant Tissue Culture and the Embryology of Angio- sperms, some of which have been translated into Japanese and Korean languages. Prof. Bhojwani has been a Member of Organizing Committee, Session Chairman, Organizer of Workshop, and Invited Speaker for several National and Inter- national Conferences held in India and overseas. He has been the recipient of many international Fellowships for advanced research in Canada, Japan, New Zealand, Germany, South Korea, and U.K. He has been on the editorial boards of the journals Scientia Horticulurae, Plant Bio- technology Reports and Plant Tissue Culture. Dr. Dantu has 20 years of research and teaching experience in the field of Plant Bio- technology. After completing Ph.D. in 1992, he joined IARI and worked on genetic modification of Lathyrus sativus to produce OX-DAPRO-free lines. He was instrumental in setting up a com- mercial plant tissue culture laboratory with a production capacity of half-a-million horticul- tural species. In 1997, Dr. Dantu returned to academics and after a brief stint at University of Delhi, in 2004 he joined the Department of Botany, DEI as Associate Professor and was promoted to Professor in 2012. Prof. Dantu is currently working on various biotechnological aspects of medicinal plants. He has guided five doctoral and four M.Phil. theses and 10 M.Sc. dissertations. He has published 20 research papers and contributed six book chapters. He participated in several national and international conferences and was invited as Resource person to the International conference on ‘‘Biodiversity Conservation and Education for Sustainable Development: Learning to Conserve Biodiver- sity in a Rapidly Developing World’’ held dur- ing CBD COP-11 in Hyderabad. S. S. Bhojwani and P. K. Dantu, Plant Tissue Culture: An Introductory Text, DOI: 10.1007/978-81-322-1026-9, Ó Springer India 2013 299

Upload: trinhkhanh

Post on 18-Apr-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

About the Authors

Dr. Bhojwani has over 40 years of experience ofresearch and teaching Plant Biotechnology toundergraduate and postgraduate students. After33 years of service at the Department of Botany,University of Delhi, in 2002 Professor Bhojwanimoved to Agra as the Director of the DayalbaghEducational Institute (Deemed University). Hecontinues as Emeritus Professor of Botany withthe DEI. Prof. Bhojwani has published over 90original research papers in reputed internationaljournals and guided 17 doctoral and 11 M.Phil.thesis and authored/edited seven books on PlantTissue Culture and the Embryology of Angio-sperms, some of which have been translated intoJapanese and Korean languages. Prof. Bhojwanihas been a Member of Organizing Committee,Session Chairman, Organizer of Workshop, andInvited Speaker for several National and Inter-national Conferences held in India and overseas.He has been the recipient of many internationalFellowships for advanced research in Canada,Japan, New Zealand, Germany, South Korea,and U.K. He has been on the editorial boards ofthe journals Scientia Horticulurae, Plant Bio-technology Reports and Plant Tissue Culture.

Dr. Dantu has 20 years of research andteaching experience in the field of Plant Bio-technology. After completing Ph.D. in 1992, hejoined IARI and worked on genetic modificationof Lathyrus sativus to produce OX-DAPRO-freelines. He was instrumental in setting up a com-mercial plant tissue culture laboratory with aproduction capacity of half-a-million horticul-tural species. In 1997, Dr. Dantu returned toacademics and after a brief stint at University ofDelhi, in 2004 he joined the Department ofBotany, DEI as Associate Professor and waspromoted to Professor in 2012. Prof. Dantu iscurrently working on various biotechnologicalaspects of medicinal plants. He has guided fivedoctoral and four M.Phil. theses and 10 M.Sc.dissertations. He has published 20 researchpapers and contributed six book chapters. Heparticipated in several national and internationalconferences and was invited as Resource personto the International conference on ‘‘BiodiversityConservation and Education for SustainableDevelopment: Learning to Conserve Biodiver-sity in a Rapidly Developing World’’ held dur-ing CBD COP-11 in Hyderabad.

S. S. Bhojwani and P. K. Dantu, Plant Tissue Culture: An Introductory Text,DOI: 10.1007/978-81-322-1026-9, � Springer India 2013

299

Subject and Plant Index

AAbscisic acid, 32, 54, 55, 137Acacia nilotica, 124, 125Acer pseudoplatanus, 41Acetosyringone, 204Actinidia arguta, 262Actinidia chinensis, 125Actinidia deliciosa, 124, 125Activated charcoal, 33, 80, 107, 108, 175, 242, 248, 249,

262, 269, 270, 281Aegilops, 139Agrobacterium mediated transformation, 201, 204, 205

method for, 204protocol for, 224

Agrobacterium rhizogenes, 281Agrobacterium tumefaciens, 7, 8, 9, 69, 201, 202,

224, 281Albino plants, 107Aloe polyphylla, 259Alstromeria, 160Amaranthus hypochondriacus, 215Analysis of putative transformants, 208Androgenesis

applications of, 105–106early segmentation of microspores, 100effect of culture medium, 100effect of physiology of the donor

plants, 98effect of pollen stage, 98, 100, 107, 110effect of pretreatments, 98factors effecting, 95genetic potential for, 95–98in Brassica, 97, 100, 103in Brassica juncea, 94, 95, 98, 103, 108in Brassica napus, 95, 98, 101induction of, 101–102in rice, 94, 97, 98, 106, 110in tobacco, 99media for, 100regeneration of plants, 103–104techniques, 95

Androgenic plantsadvantages of, 105albino plants, 106in Brassica napus, 101origin of, 100protocol for, 107–110

Aneusomaty, 144, 146Anther culture

of Nicotiana tabacum, 107of Oryza sativa, 109

Anthurium scherzerianum, 145Antirrhinum majus, 155, 216Apparatus required, 22Applications of embryo culture

haploid production, 97, 100, 137in basic studies, 135production of rare hybrids, 138–140propagation of rare plants, 137rapid seed viability, 137shortening of breeding cycle, 137transformation, 138, 168

Arabidopsis thaliana, 70, 71–74, 77, 85, 136, 180, 181,187, 188, 204

Arabinogalactan, 59, 60, 81, 84Arachis hypogaea, 46, 79, 281Artemesia annua, 278Artemesia sieversiana, 187Asclepias rotundifolia, 252Aseptic manipulation, 11, 12, 15, 21, 23Asparagus, 2, 49, 58, 105, 268, 292, 295Asparagus officinalis, 105, 106, 253, 268Asymmetric hybridization, 187–189Atropa baetica, 281Atropa belladonna, 98, 189, 217, 278, 281Autoclave

horizontal, 18, 19vertical, 18, 19

Autoclaving, 11, 17, 19, 36, 88, 262, 265Auxins, 3, 31, 32, 65, 79, 181, 259, 260, 277Avena sativa, 185Azadirachta indica, 125, 127, 254

S. S. Bhojwani and P. K. Dantu, Plant Tissue Culture: An Introductory Text,DOI: 10.1007/978-81-322-1026-9, � Springer India 2013

301

BB5 basal medium, 43, 96, 109, 181, 294Bacillus, 19Bacillus amyloliquefaciens, 215Bacillus circulans, 20Bacillus thuringiensis, 199, 211Baleria greenii, 259Banana micropropagation, 254, 270Barringtonia racemosa, 43Begonia, 66, 69, 252, 264Begonia x heimalis, 252Beta vulgaris, 114, 116, 117, 182, 281, 283, 290Biolistic gun, 7, 207–209Bioreactors

air-lift bioreactor, 42bioWave, 42, 45bubble column, 42, 45, 86, 264, 283for cell culture, 282–283for hairy root culture, 283for micropropagation, 263–264for plant cell culture, 42, 45for somatic embryogenesis, 86–90stirred tank, 42, 45

Biotechnology, 8, 288Biotransformation, 279Brachiara setigera, 121Brassica campestris, 66, 67, 191Brassica carinata, 67, 151, 184Brassica juncea, 2, 65–68, 70, 94, 95, 98, 103Brassica napus, 95, 98, 99, 102, 104–106, 151, 160,

188, 194Brassica nigra, 67Brassica oleracea, 66–68, 114, 157, 184, 191, 266Brassica rapa, 98, 151Brassinosteroids, 58, 59, 97, 99Bupleurum falcatum, 285

CCalliclones, 141Callus, 121–124

habituated, 40, 54, 256induction, 70–72of mulberry, 40of wheat, 40, 41, 66, 94

Callus cultureapplications of, 40

Calystegia sepium, 41, 46, 49Capsella bursapastoris, 129

embryo culture, 128embryo development, 134embryogenesis, 133embryo nutrition, 131isolation of embryo, 129, 130

Capsicum, 99Capsicum annuum, 102Camptotheca acuminata, 281Capsicum frutescens, 280Carica papaya, 125, 127

Catharanthus, 69, 276Catharanthus roseus, 276–279, 281, 285, 291, 295Cattleya, 259Caulogenesis, 64, 66Cell culture

large scale, 45–46Cell viability tests

Evan’s blue staining, 45fluorescein diacetate, 44, 53, 176, 195phase contrast microscopy, 44tetrazolium test, 44

Cellular totipotency, 1, 63, 79, 123Centaurea cyanus, 56Chemotherapy, 4, 228, 232, 234, 236, 238, 285Cichorium, 69, 84Cinchona ledgeriana, 281Citrus sp., 75, 91, 124, 126, 173, 191–193, 236Citrus clementina, 192Citrus deliciosa, 192C. grandis, 125, 127C. nobilis, 192Citrus sinensis, 125, 126, 192, 236Citrus unshiu, 192Clonal propagation, 4, 69, 89, 145, 245, 246, 249, 252,

258, 268, 269Coccinia grandis, 127Cochlearia danica, 129Codiaeum variegatum, 125Codonopsis ovata, 155Coffea arabica

medium-term storage, 289Coffea arabusta, 267Coffea canephora, 87, 90

initiation of embryogenic callus, 87production of green cotyledonary stage embryos, 87production of torpedo stage embryos, 87

Coffea sp., 75Cointegration binary vector

salient features of, 205Coix, 164, 168Coleus, 53, 55, 56Coleus blumeii, 276Colocasia esculenta, 291Conservation of germplasm, 6, 239, 267, 292Conservation of phytodiversity

in situ, 287–288ex situ, 288

Convolvulus arvensis, 70, 71Cordyline, 249Corynebacterium glutamicum, 215Crambe abyssinica, 188, 192Crepis capillaris, 144, 145Crotolaria juncea, 67Croton, 122, 123, 125Croton bonplandianum, 122, 123Cryopreservation

reculture, 297slow freezing, 293, 294stability assessment, 297

302 Subject and Plant Index

storage of cells, 296thawing, 296–297ultra-rapid freezing, 292, 295, 298

Cryopreservation pre-treatmentsdehydration, 293–296, 298droplet vitrification, 296encapsulation and dehydration, 296encapsulation and vitrification, 296pregrowth dehydration, 295pregrowth, 295vitrification, 296

Cryoprotectants, 294–296Cryotherapy, 233–235, 240, 242Cucumis, 123Cucumis sativus, 138Cucurbita pepo, 68, 114Cucurbita sp., 199Culture media, 3, 17, 27, 123

constituents, 27–34for androgenesis, 94, 97for banana micropropagation, 271for Capsella bursapastoris embryo, 128, 134for cell cultures of Calystegia sepium, 44for Ficus lyrata micropropagation, 272, 273for Gladiolus micropropagation, 269for mesophyll cells culture, 44, 60for orchid tissue culture, 250for proembryo culture, 128, 132–133for suspension cultures of tobacco, 43inorganic nutrients, 29, 129Kao90 medium, 129, 132, 134pH, 34–35preparation, 13, 35

sterilization, 17Culture media constituents

amino acids, 29–30carbon source, 31gelling agents, 34macronutrients, 28, 29micronutrients, 28, 29plant growth regulators, 31–33undefined supplements, 33vitamins, 29–30

Culture media preparation, 13, 35Culture of in vitro zygotes, 162, 163Culture room, 11, 16, 108, 158, 261, 265, 268, 291Culture trolley, 16Culture vials, 12, 14–17, 21, 22, 36, 67, 256, 260Cunninghamia lanceolata, 68, 266Curdania tricuspidata, 283Cuscuta, 2Cybridization, 5, 189, 190, 193Cybrids, 5, 173, 184, 189, 190Cymbidium

clonal multiplication, 141, 248, 263, 268, 269Cymbidium hybrids, 69, 248Cymbopogon, 144Cypripedium calculus, 288

Cytodifferentiation, 51, 54–57, 276Cytokinins, 3, 32, 79, 231, 255

DDahlia, 4, 8, 228–231, 233, 279Datura, 2, 8, 9, 133Datura innoxia, 6, 93, 98, 103Datura metel, 278Datura stramonium, 93, 113, 131, 132Datura tatula, 132Daucus carota, 75, 84, 91Davallia, 252Dedifferentiation, 60, 63, 80, 81, 143Dendranthema x grandiflorum, 187Dendrophthoe falcata, 123–125Dianthus, 260Dierama luteoalbidum, 254, 258Digitalis lanata, 279, 280, 282Digitalis purpurea, 279, 280Dioscorea, 257Diploidization, 97, 105, 195Direct gene transfer, 205–207

EEichhornia crassipe, 1Elaeis guineensis, 145Electrofusion, 5, 160–162, 167, 178, 179, 192, 195Electroporation, 182, 200, 202, 207Electrotherapy, 235, 240Endoreduplication, 144Embryo culture

applications of, 135–140culture medium for, 116, 131culture requirements, 131of Capsella bursapastoris, 128, 131, 133–135precocious germination, 78, 80, 135technique of, 129–130

Embryo developmentapplications of, 135autotrophic phase, 133heterotrophic phase, 133role of suspensor in embryo development, 134–135

Embryo culture applicationshaploid production, 98, 101, 138in basic studies, 135production of rare hybrids, 138–140propagation of rare plants, 138rapid seed viability, 138shortening of breeding cycle, 138transformation, 138, 167

Endosperm culture, 121, 123, 124applications of, 127callusing, 121–123culture medium for, 123effect of stage of endosperm, 121–123of Croton bonplandianum, 122, 123

Subject and Plant Index 303

of Exocarpus cupressiformis, 6, 123–125of maize endosperm, 121, 123, 160of Ricinus communis, 122plant regeneration, 123–124

Equipment suppliers, 23Eruca sativa, 134Ethylene, 33, 54, 55, 66, 67, 80, 220, 221, 264Euphorbia millii, 278Exocarpus cupressiformis, 6, 123–125

FFeijoa, 253Ficus benjamina, 259Ficus lyrata, 252, 272, 273, 274, 275Filter assembly, 19, 20Filter sterilization, 13, 19, 23Freesia, 257Fusion of gametes, 162Fusogen, 176, 178, 192

GGametoclonal variation, 105, 141Gametoclones, 7Gardenia, 259Gelling agents

agar, 34, 35, 224, 231, 292, 296agarose, 34, 180gellan gum, 34gelrite, 34, 171, 242, 248, 260, 270isubgol, 34phytagel, 34, 281

Gene bankssome examples, 290

General requirements, 11General techniques, 11, 245Genetically engineered plants, 7, 141, 199Genetically modified crops, 149, 199, 218, 222, 223

for abiotic stress tolerance, 215for biofuel, 222for delayed fruit ripening, 223for disease resistance, 212for flower colour, 239for herbicide resistance, 209, 210for improvement of cotton oil, 221for insect resistance, 209–211for male fertility, 215, 216for nutritive quality of food, 214for parthenocarpy, 216for plants as bioreactors, 216for virus resistance, 213, 214, 218, 222, 239golden rice, 200, 214, 215, 217, 278, 282some examples of, 223

Genetic engineering, 73, 94, 119, 173, 200, 203, 209,212, 222, 223, 239, 278

applications of, 73, 149, 191, 209, 211Genetic transformation

Agrobacterium mediated, 202, 203, 203–205, 200,201, 224

applications of, 119, 202biolistic method, 205, 207biosafety, 193, 222, 223, 214direct gene transfer, 205–207RNA interference based, 214, 218

Gene transfer, 7, 200, 201, 204–207, 209, 278Gerbera, 114, 116–118, 256Gibberellins, 19, 33, 53–55, 79, 83, 123, 135, 231Gladiolus, 255, 257–259, 265, 272Gladiolus tristis, 258Glassware

washing, 1, 11–13, 17Glehnia littoralis, 295Glycine, 28–30, 44, 60, 66, 67, 133, 181, 241, 270Glycyrrhiza uralensis, 281GM crops. See Genetically modified cropsGolden rice, 200, 214, 215, 278Gossypium arboreum, 139, 279Gossypium hirsutum, 139Greenhouse, 16, 180, 216, 224, 228, 230, 237, 238, 240,

242, 249–251, 267Growth room, 11, 12, 14, 15, 21, 22Gynogenic haploids, 6, 113, 114, 119

HHabituated callus, 40, 54, 254Hairy root culture, 217, 264, 278, 281–282, 284,

285–286, 288Haplopappus gracilis, 41Helianthus, 53, 55, 187Helianthus annuus, 14, 16, 140, 144, 188, 189Helianthus giganteus, 189Helianthus maximiliani, 140, 188, 189Helianthus tuberosus, 144Helminthosporium maydis, 215Heterokaryon, 173, 176, 177, 184, 197High Efficiency Particulate Air (HEPA) filter, 21History, 7, 193, 245Holarrhena antidysenterica, 280Hordeum, 131, 168Hordeum vulgare, 102, 104, 113, 114, 116, 160Hybrid embryo culture, 129, 140Hyoscyamus niger, 104, 189, 217, 278Hyperhydration, 88, 117, 259–261

IIAPTC Newsletter, 9Identification of transformed cells/plants, 207Inorganic nutrients, 17, 29, 129, 254Instruments, 12, 17, 20, 209, 239International Association of Plant Biotechnology, 10International Association of Plant Tissue Culture, 8, 9

International Association of Plant Tissue Culture andBiotechnology, 8

304 Subject and Plant Index

In vitro conservation of germplasmadvantages of, 292long-term storage, 289medium-term storage, 289

In vitro fertilizationapplications of, 158diagrammatic summary of, 160embryo development, 78, 82, 115, 116endosperm development, 159, 165, 167, 168factors affecting, 49, 64, 113, 158, 183, 258in maize, 33, 84, 105, 132, 138, 156–159, 160–163,

167, 217in rice, 77, 99, 116, 117, 161, 167preparation of explant, 68protocols of, 267, 295technique, 155, 156, 167, 168

In vitro formation of storage organs, 236, 257In vitro ovular pollination, 156, 157In vitro placental pollination, 156, 157In vitro pollination, 155, 156In vitro shoot-tip grafting, 234In vitro stigmatic pollination, 155–157In vitro therapy, 228, 229In vivo thermotherapy, 232, 240In vitro tuberization, 257In vitro zygote culture, 135

medium for, 130, 131, 133, 136, 164Isolation of protoplasts

enzyme treatment, 163, 175osmoticum, 175purification of, 175viability of the protoplasts, 176

Intraovarian pollination, 157Isolation of cells, 46

enzymatic method, 46, 50mechanical method, 46

Isolation of central cell, 159, 163Isolation of egg, 159, 163Isolation of sperm cells, 161, 169Isubgol, 34

JJatropha, 122, 123Jatropha panduraefolia, 125Journal of Plant Tissue Culture & Biotechnology, 8, 9Juglans regia, 124, 125

KKalanchoe laciniata, 204Kalopanax septemlobus, 86, 88Kinetin, 64, 66, 123

discovery of, 3

LLactuca sativa, 65, 67Laminar air flow cabinet, 107, 292

Larix eurolepsis, 34Leptomeria acida, 124Leucaena, 253Lilium auratum, 139Lilium longiflorum, 144Lilium regale, 139Lilium speciosum-album, 139Lithospermum erythrorhizon, 6, 9, 276, 284

cell culture, 9media for cell culture, 281

Linum austriacum, 1, 8, 127Lolium perenne, 1, 8, 101, 127Longterm storage of germplasm, 289

cryopreservation, 289Lupinus, 2, 8, 184, 281Ixia flexuosa, 252Lycopersicon chilense, 139Lycopersicon esculentum, 139, 183, 185, 266Lycopersicon peruvianum, 139, 183, 187

MMacadamia tetraphylla, 260Macleaya cordata, 3, 9, 46, 75, 76, 82

single cell culture, 46, 49single cell isolation, 46somatic embryogenesis in, 3, 9, 75, 76, 82, 83

Magnolia, 259Maintenance of virus-free stocks, 238Mangifera indica, 76Marker genes, 184Matthiola incana, 184Mature endosperm culture, 6, 124

importance of embryo association, 78Mechanisms underlying somaclonal variation, 85

activation of transposable elements, 148amplification of DNA, 147changes in chromosome number and structure,

146, 187gene mutations, 146, 147, 152hypomethylation of DNA, 147

Media preparation, 11Media room, 11–13, 19Medicago sativa, 75Medicago truncatula, 77, 84Medium-term storage of germplasm, 289–292

by desiccation, 292by modification of medium, 291cold storage, 291storage under low oxygen environment, 291

Melandrium album, 96, 115, 117Mentha arvensis, 278Meristem culture, 4, 8, 231, 233, 236, 243Meristemoids, 66, 69, 70Meristem-tip Culture, 228, 229, 231, 232, 234, 236, 237,

240, 241chemotherapy, 236culture medium for, 228, 229, 231effect of genotype on, 67, 232

Subject and Plant Index 305

effect of physiological condition of explants, 231effect of thermotherapy, 231, 232meristem-tip isolation, 230, 231storage conditions for, 231

Mesophyll protoplasts, 180of Trifolium repens, 139, 156, 158, 174

Microelectrofusion, 178, 179, 197Micropropagation, 56, 63, 81, 123, 181, 183, 184, 188

adventitious bud formation, 251, 252, 254applications of, 268factors affecting, 259forced axillary branching, 253–255, 263Indian scenario, 267of banana, 254of Ficus lyrata, 252, 272, 273of gladiolus, 255, 271of Musa accuminata, 269of orchids, 246, 249, 251of Phalaenopsis, 246of potato, 257of Pyrus serotina, 254photoautotrophic, 266Problems in see Problems in micropropagationprotocols for, 250, 251, 270, 272regeneration from callus, 251

Micropropagation stages, 249, 258acclimatization, 33, 253, 254, 259, 260adventitious bud formation, 251, 252, 255, 263forced axillary branching, 253–255, 263initiation of cultures, 247, 250, 259, 260, 262multiplication, 251preparatory stage, 249regeneration from callus, 146, 251, 252, 255rooting, 255shoot elongation, 255transplantation, 255

Microprotoplasts, 188, 189preparation of, 188

Microspore culture, 6, 94, 98, 100Microspore embryogenesis, 112

in Brassica napus, 97Microtubers of potato, 266Molecular breeding, 199, 223Morinda citrifolia, 277Morus alba, 114, 116, 117, 125Mosaicism, 146, 148MS basal medium, 66, 109, 124, 259

composition of, 182stock solutions, 13, 29, 35

Musa accuminata, 270Myrothecium verrucaria, 5

NNarcissus, 260Nautilocalyx, 69Neoplastic growth, 69Nepenthes khasiana, 290Nicotiana, 2, 41, 53, 94, 99, 104, 237

Nicotiana amplexicaulis, 171Nicotiana glauca, 2, 5, 183, 184Nicotiana glauca x Nicotiana langsdorffii, 9Nicotiana langsdorffii, 2, 5, 9, 178Nicotiana rustica, 155Nicotiana tabacum, 41, 101, 102, 116, 118, 160, 168,

176, 192Nitsch’s medium, 248Nothapodytes foetida, 281Nymphaea gigantea, 288

OOntogeny of shoots, 69Ophiorrhiza mungos, 281Ophiorrhiza pumila, 281Orchid micropropagation, 245Organic nutrients, 29, 31, 131, 184, 257, 274

amino acids, 29, 30, 31vitamins, 29, 30

Organogenesis, 3, 8, 33, 63, 64, 66–68, 70, 71, 82, 101,185, 253, 285

in cotyledon cultures, 66, 65, 68, 70Organogenic differentiation, 123

induction of, 70Ornithogalum, 236Oryza longistamminata, 212Oryza meyeriana, 188, 192Oryza sativa, 114, 117, 125, 170, 188Osyris, 122

PPaclitaxel production, 281, 285Panax ginseng, 281, 282, 291Panax notoginseng, 282Papaver somniferum, 279Paphiopedilum, 249

Parasexual hybridization, 173applications of, 250

Petroselinum hortense, 125, 187Petunia, 99, 191, 218, 250, 259Petunia axillaris, 127, 157Petunia hybrida, 177, 191Petunia parodii, 177Petunia violacea, 155Phalaenopsis, 246, 249, 253

a protocol for clonal propagation, 249Phaseolus acutifolium, 139Phaseolus coccineus, 134–136Phaseolus lunatus, 139Phaseolus vulgaris, 55, 114, 139Phloem differentiation, 5, 53Phloroglucinol, 32, 33, 260Photoautotrophic micropropagation, 266, 267Phytosulfokine-a, 49, 58Pinus gerardiana, 68Pinus radiata, 65, 67–69, 70Plant growth regulators, 31, 39, 59, 81, 277

306 Subject and Plant Index

abscisic acid, 32, 33, 54, 55, 135auxins, 3, 30–32, 59, 65, 79, 184, 261, 262cytokinins, 3, 30, 32, 33, 65, 68, 69, 79, 181, 231, 255ethylene, 80, 295gibberellins, 33polyamines, 33, 83, 84, 116TIBA, 32, 33, 66, 71, 132topolins, 32, 259

Plantago ovata, 34Plant material, 11, 14, 20, 21, 180, 239, 241, 266,

287–289, 292Plant regeneration from endosperm

list of species showing, 90, 125of Exocarpus cupressiformis, 123–125of mulberry, 40, 126, 127protocol for, 46, 50

Plasticware, 11, 14, 17washing, 17

Platycerium, 253Plumbago indica, 66Plumbago zeylanica, 160Pluripotent, 70, 71Podophyllum hexandrum, 79Polarity, 79, 81, 82, 176Pollen culture

advantages of, 94in Brassica napus, 95, 98of Brassica juncea, 108of Nicotiana tabacum, 107of rice, 110

Pollen embryogenesisnuclear fusion during, 104

Polyamines, 33, 83, 84, 116Polyanthes tuberose, 285Polysomaty, 144Populus, 80, 295Precision breeding, 223Precocious germination, 78, 80, 127, 135Problems with micropropagation

browning, 251, 261high cost, 263hyperhydration, 259–260off-types, 262recalcitrant plants, 267

Proembryo culture, 128, 132–133Proembryogenic masses, 77, 78, 81Protoclone, 141, 150Protocorms, 69, 246, 247, 249, 269Protoplast culture

8p medium, 181agarose droplets or beads, 162, 180agarose embedded cultures, 180cell division and callus formation, 180–183cell wall formation, 167, 180culture medium for, 181–183double layer method-protocol for, 180in liquid medium, 180microdroplet method, 181nurse cell technique for the culture, 184

plant regeneration, 183–184Protoplast fusion

by electrofusion, 178by pH-high Ca2+, 5, 176by polyethylene glycol, 5, 159, 196

Protoplast isolationenzyme treatment, 175, 178, 188osmoticum, 175, 178, 182, 206, 295, 296purification of, 175–176viability of protoplasts, 176

Prunus persica, 125Pseudomonas elodea, 34Pulmonaria mollissima, 1Putranjiva, 122, 125Putranjiva roxburghii, 125Pyrus malus, 125Pyrus serotina, 254

RRanunculus sceleratus, 75–77Raphanus caudatus, 127Raphanus landra, 127Raphanus sativus, 127, 191Rauwolfia serpentine, 278, 279, 281Recombinant DNA technology, 223, 285Re-differentiation, 63Regeneration of protocorms, 247Regeneraion of transformed plants, 209Requirements, 11–16Rice spikelet

structure of, 130Ricinus, 122Ricinus communis, 122Rhododendron, 259, 260RNA interference (RNAi), 214–216, 218–221, 223Root cultures, 2, 218, 278, 280, 281, 284, 289Root specific genes, 72Rosa sp., 41Rubia tinctorum, 279

SSaccharum, 6Saccharum officinarum, 148Saintpaulia, 252Salvia officinalis, 280Sambucus, 53Santalum album, 124, 125Sclerotinia sclerotorum, 106, 112Scurrula pulverulenta, 65, 124, 125secondary metabolite production

biotransformation, 279–280commercialization, 209, 224, 267, 280, 284–285elicitation, 278–279genetic enhancement, 217, 277–278immobilization of cells, 280permeabilization, 280strategies to optimize production, 276–280

Subject and Plant Index 307

Selection of transformed cells/plants, 211–212Selective subculture, 79Serratia marcescens, 215Shoot apical meristem specific genes, 73, 103Shoot bud differentiation, 64–68, 70, 71, 124Shoot induction medium, 70–72Shoot meristem, 71–73, 234, 237, 242Shoot regeneration, 66, 71–73, 124

differentiation, 68effect of culture medium, 64effect of electrical stimulation, 68effect of explant, 67effect of genotype, 67effect of sonication treatment, 68effect of ultrasound, 68factors affecting, 64–68the process of, 71

Shoot tip culture, 4, 146, 147, 238, 252, 294Short interfering RNA (siRNA), 214, 219, 220Sinapsis arvensis, 193Single cell culture

Bergmann’s cell plating technique, 47factors affecting, 49filter paper raft-nurse technique, 46–47microchamber technique, 47microdrop method, 47

Single cell isolation, 46Solanum, 69Solanum lycopersicoides, 141Solanum melongena, 80, 84, 189Somaclonal variation

advantages of, 155applications of, 150disadvantages of, 155mechanisms underlying, 148–150methods to assess, 143origin of, 144some examples of, 150

Somaclones, 143, 146–149, 151–153, 278Somatic embryos

large scale production, 86–89mass production, 88maturation and conversion of, 85–86single cell origin of, 82storage of dicot embryos, 87vs zygotic embryos, 86

Somatic embryogenesisdevelopment of, 81–82effect of auxin, 78effect of electrical stimulation, 79effect of explants, 77effect of genotype, 77effect of growth regulators, 78effect of medium, 78effect of Nostoc and Anabaena, 80effect of Pseudomonas maltophilia, 80factors affecting, 76–80in Macleaya cordata, 83

in Mangifera indica, 76in Ranunculus sceleratus, 76induction and development of, 80induction of, 81molecular markers of, 84–85physiological and biochemical aspects of, 83–84synchronization of, 82

Somatic hybridizationasymmetric hybridization, 190–194landmarks in the history of, 195–196symmetric hybridization, 189–192

Somatic hybridscharacterization of, 189selection of, 188–189some examples of, 195

Sorghum bicolor, 282Spathiphylum spp., 261Stages in micropropagation. See Micropropagation stagesSterile area, 11, 263Sterilization, 11–13, 17–22Sterilizing agents, 20Steripot, 20Stevia rebaudiana, 267, 268Stigmatic pollination, 158, 159Supermales, 107Suspension cultures

batch cultures, 41chemostat, 42close continuous cultures, 42continuous cultures, 41growth measurements, 41growth phases of, 43medium for, 43open continuous cultures, 42synchronous cultures, 43turbidostat, 42types of, 40–42

Symmetric hybridization, 188, 190–192Syngamy, 121, 130, 157Synthetic seeds, 4, 89, 90, 253

TTaxillus cuneatus, 123, 125Taxillus vestitus, 123, 125Taxus, 279, 282Taxus baccata, 276, 282Taxus chinensis, 284Taxus cuspidate, 280, 283T-DNA binary vector, 202, 203T-DNA vectors, 201–204Teratoma, 69Test tube fertilization, 5, 156Thalictrum minor, 276Theobroma cocoa, 250Thermolabile compounds, 13, 19Thermotherapy, 228, 229, 232, 234–236, 238, 241, 242Thin cell layer culture, 68–69

308 Subject and Plant Index

TIBA, 32, 33, 71Ti plasmid, 201, 202, 205Topolins, 32, 259Totipotency

of crown gall tumour cells, 69Tracheary element, 51–59Tracheary element differentiation

biochemical changes, 57cytological changes, 56effect of abscisic acid, 54–55effect of auxin, 53–55effect of calcium, 55effect of cAMP, 54, 55effect of cytokinin, 54effect of ethylene, 54–55effect of gibberellic acid, 54–55effect of physical and physiological factors, 55effect of sucrose, 55factors effecting, 53–55in Helianthus tuberosus, 146

in Syringa, 54, 55in Zinnia elegans, 52, 53, 56, 57, 59medium for, 52, 53, 56molecular changes, 57process of, 57stages in, 57

Tradescantia, 1Transdifferentiation, 52, 59, 60, 63Transfer room, 14–15, 22Transformation

Agrobacterium mediated, 200–205biolistic method, 205, 207biosafety, 222–223direct gene transfer, 205–207RNA interference based, 214, 218–219

Transgene, 141, 199, 200, 203, 208, 209, 212, 213, 214,215, 217, 218, 222

Transgenic crops. See Genetically modified cropsTransgenic plants, 199, 201, 210, 211, 212, 216, 218,

222, 223Trifolium, 157Trifolium hybridum, 139Trifolium repens, 139, 174, 296Trigonella foenumgraecum, 281Triple fusion, 121, 155, 166, 164Triticum, 139, 168Triticum aestivum, 101, 103, 114, 187Tropaeolum, 2, 8Tumour inducing principal (TiP), 8

VValeriana officinalis, 281Vanda, 246Vascular tissue differentiation

factors effecting, 53–55Vectors, 201–204, 221, 223Verticillium dahliae, 279Victoria amazonica, 288Virus elimination

by chemotherapy, 232–233by cryotherapy, 234–235by electrotherapy, 235by meristem-tip culture, 230by other in vitro methods, 235–236by thermotherapy, 232by thermotherapy and cryotherapy, 232, 233importance of, 240in vitro shoot-tip grafting, 234–235practical method of, 241protocol for, 238, 241

Virus indexing and certificationbiological indexing, 238–239DNA microarray technology, 239electron microscopy, 239molecular assays, 238–239nucleic acid-based assay, 239nucleic acid hybridization, 239serology, 238

Vitis vinifera, 236, 266, 278, 279Vivipary, 137

WWashing room, 12–13White’s medium, 65, 78, 91, 277

XXanthomonas oryzae, 212Xylogen, 58–60Xylogenesis

in Zinnia elegans, 52, 53, 55, 60

ZZea latifolia, 185Zea mays, 75, 102, 114, 168Zea mexicana, 168Zinnia elegans

tracheary element differentiation, 56–58Zygote culture, 123

of maize, 121of rice, 130, 132of wheat, 138, 141, 144technique for, 129–130

Zygotic embryo culture, 123, 124applications of, 135–140Capsella bursa-pastoris, 128, 131, 133–135culture medium, 130–132

Subject and Plant Index 309