abolhassan)vaezi) cornell)university) · e e e e ⌫ = n e n = 1 3 n = 0(e) ba 2⇡ e ~c gsd n.i. =...

74
Universal quantum computa2on with topological phases (Part II) Abolhassan Vaezi Cornell University Cornell University, August 2015

Upload: others

Post on 02-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Universal  quantum  computa2on  with  topological  phases  (Part  II)  

Abolhassan  Vaezi  Cornell  University  

Cornell  University,  August  2015    

Page 2: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Outline  of  part  II  

•  Ex.  4:  Laughlin  fracAonal  quantum  Hall  states  

•  Ex.  5:  FracAonal  Topological  Superconductors  &  parafermion  zero  modes  

•  Ex.  6:  Bilayer  Fibonacci  state  at  v=2/3  filling    

Page 3: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

   

FracAonal  Quantum  Hall  Effect  (Abelian  v=1/3  Laughlin  state)  

Example  4  

Page 4: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

�e

�e�e

�e⌫ =

Ne

N�=

1

3

N� =�

�0(e)=

BA2⇡e ~c

GSDn.I. =

✓Ne

gLL

◆=

✓3N�

N�

◆Non-­‐InteracAng  picture:  

InteracAng  picture:   GSDn.I. = finite

GSD  depends  on  the  topology  of  space,  e.g.  on  sphere=1,  and  on  torus=3  

FracAonal  Quantum  Hall  Effect  

Page 5: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

FracAonal  Quantum  Hall  Effect  

•  QuanAzed  Hall  conductance  •  Protected  gapless  edge  state  •  Ground-­‐state  degeneracy  (on  torus)  •  FracAonal  charge  •  Anyon  staAsAcs  

⌫ =Ne

N�

⌫ = 1/3

Filling  fracAon  

E

�e

�e�e

�e

Page 6: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

FracAonal  Quantum  Hall  Effect  e/3  

e/3   e/3  e   ==

N�(q) =�

�0(q)=

BA2⇡q ~c

N�(e/3) = 1/3N�(e) Nfi = Ne

⌫q =Nq

N�(q)

⌫fi = 3⌫e = 1

fi  fully  occupies  its  LLL  à  w.f.  =  Slater  determinant  

ci = f1,if2,if3,i

fi =Y

i<j

(zi � zj)e� e

3B|zi|

2

4

e = f1 f2 f3 =Y

i<j

(zi � zj)3e�e

B|zi|2

4

⌫fi = 1 :z = x+ iy

Laughlin  w.f.  (On  infinite  plane)  

Page 7: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

FracAonal  Hall  conductance  

IQH : �xy

(q) = nq2

h

�xy

(e) = �xy

(f1) + �xy

(f2) + �xy

(f3) =1

3

e2

h

�xy

(fi

) =(e/3)2

h

Page 8: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Ax

= �By, Ay

= 0

FQH  states  on  Torus  

lB = 1

2⇡

Lx

l2B

y

| |2

B = r⇥A

n=0m

(x, y) = e

�i( 2⇡L

x

m)xe

�(y� 2⇡m

L

x

)2/2

En,m = ~!c (n+ 1/2)

m = 0 m = 1 m = 2m = �1m = �2

Page 9: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Ur,s = (r2 � s2)e�2⇡2(r2+s2)/L2x

1/3  Laughlin  state  

Ideal  Hamiltonian  for  1/3  Laughlin  state  

V1 =X

i

X

r>s

Ur,sc†i+sc

†i+rci+r+sci

V1 Laughlin1/3 = 0

Thin  torus  limit:   Lx

⌧ lB

: V1 'X

i

(U1,0ni

ni+1 + U2,0ni

ni+2)

Haldane,  1983  

Bergholtz  and  Karlhede,  JSM  (2006);  

Page 10: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

|gi1 = |100100100100100100100...i ⌘ [100]

|gi2 = |010010010010010010010...i ⌘ [010]

|gi3 = |001001001001001001001...i ⌘ [001]

1/3  FQH:  Thin  torus  limit  

Effec2ve  Hamiltonian:  

Degenerate  ground-­‐states  (CDW  pa]erns)  

lB = 1

2⇡

Lx

l2B

y

| |2

Seidel  et  al,  PRL  (2005);    Bergholtz  and  Karlhede,  JSM  (2006);  Bergholtz  and  Karlhede,  PRB  (2008);  Seidel  and  Yang,  PRL  (2008);  Ardonne,  PRL  (2009),  Bernevig  &  Haldan,  PRLe  (2008)  

 

Lx

⌧ Ly

: V1 'X

i

(U1,0nini+1 + U2,0nini+2)

Page 11: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

!

[100100100100010010010010010100100100]

[100100100100|100100100100100|100100100]

ExcitaAons:  domain-­‐walls  

Seidel  et  al,  PRL  (2005);    Bergholtz  and  Karlhede,  JSM  (2006);  Bergholtz  and  Karlhede,  PRB  (2008);  Seidel  and  Yang,  PRL  (2008);  Ardonne,  PRL  (2009),  Bernevig  &  Haldan,  PRLe  (2008)  

 

Page 12: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

![100100100100|100100100100100|100100100]

[100100100100010010010010010100100100]{ExcitaAons:  domain-­‐walls  

Seidel  et  al,  PRL  (2005);    Bergholtz  and  Karlhede,  JSM  (2006);  Bergholtz  and  Karlhede,  PRB  (2008);  Seidel  and  Yang,  PRL  (2008);  Ardonne,  PRL  (2009),  Bernevig  &  Haldan,  PRLe  (2008)  

 

Page 13: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

![100100100100|100100100100100|100100100]

[100100100100010010010010010100100100]{ExcitaAons:  domain-­‐walls  

Seidel  et  al,  PRL  (2005);    Bergholtz  and  Karlhede,  JSM  (2006);  Bergholtz  and  Karlhede,  PRB  (2008);  Seidel  and  Yang,  PRL  (2008);  Ardonne,  PRL  (2009),  Bernevig  &  Haldan,  PRLe  (2008)  

 

Page 14: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

![100100100100|100100100100100|100100100]

[100100100100010010010010010100100100]{

ExcitaAons:  domain-­‐walls  

Seidel  et  al,  PRL  (2005);    Bergholtz  and  Karlhede,  JSM  (2006);  Bergholtz  and  Karlhede,  PRB  (2008);  Seidel  and  Yang,  PRL  (2008);  Ardonne,  PRL  (2009),  Bernevig  &  Haldan,  PRLe  (2008)  

 

Page 15: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

![100100100100|100100100100100|100100100]

[100100100100010010010010010100100100]{q⇤ = e/3

ExcitaAons:  domain-­‐walls  

Seidel  et  al,  PRL  (2005);    Bergholtz  and  Karlhede,  JSM  (2006);  Bergholtz  and  Karlhede,  PRB  (2008);  Seidel  and  Yang,  PRL  (2008);  Ardonne,  PRL  (2009),  Bernevig  &  Haldan,  PRLe  (2008)  

 

Page 16: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

![100100100100|100100100100100|100100100]

[100100100100010010010010010100100100]{

q⇤ = �e/3

ExcitaAons:  domain-­‐walls  

Energy  cost  =  U2à  bulk  gap  =  U2    

Seidel  et  al,  PRL  (2005);    Bergholtz  and  Karlhede,  JSM  (2006);  Bergholtz  and  Karlhede,  PRB  (2008);  Seidel  and  Yang,  PRL  (2008);  Ardonne,  PRL  (2009),  Bernevig  &  Haldan,  PRLe  (2008)  

 

Page 17: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

! !

i j

[100100100010010...010100100...] = V †1 (j)V1(i) |gi1

[100...100100001001001...] = V2(i)... |gi1!

q⇤ = ke/3 : |gia ! |gia+k%3

ExcitaAons:  domain-­‐walls  

q⇤ = 2e/3

Seidel  et  al,  PRL  (2005);    Bergholtz  and  Karlhede,  JSM  (2006);  Bergholtz  and  Karlhede,  PRB  (2008);  Seidel  and  Yang,  PRL  (2008);  Ardonne,  PRL  (2009),  Bernevig  &  Haldan,  PRLe  (2008)  

 

Page 18: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

FracAonalizaAon  

r

t = 0

r

t � 1

Eg

d � lB

e/3  e  e/3  

e/3  

e/3   e/3   e/3  

e  

⇢(r)

⇢(r)

Charge  distribuAon  

Page 19: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

�e

�e�e

�e

FracAonal  charge  and  staAsAcs  

3  flux    à    1  electron    (q=e)    1  flux  à    anyon  with  q=e/3    2  flux  à  anyon  with  q=2e/3  

�e/3

�2e/3

Aharanov-­‐Bohom  Effect:      taking  charge                  around  flux                  (full  braid):    

! ei✓AB ✓AB = q��q

Page 20: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Topological  spin  

Similarly:    

Rota2ng  an  anyons  of                                      charge  &                                              flux  one  around      

itself  amounts  to      

q =ne

m � =2⇡n

e

sn =✓n2⇡

=n2

2m

✓n = n2 ⇡

m

Topological  spin  

Exchanging  2  anyons  of                                    charge    &                                                    flux  (half  braid)  :  

q =ne

m

� =2⇡n

e✓n = 2

q�

2= n2 ⇡

m q�

q�

Page 21: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

 FracAonal  Topological  Superconductors  

with    fracAonalized  Majorana  (parafermion)  zero  modes    

Example  5  

Page 22: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Frac2onal  Topological  Superconductor  (FTSC)  

v=1/m        FQH  

Superconductor  

hc

2ehc

2eFTSC=  FQH  +  SC  

a.        Associated  to  every  TWO  vorAces  à  Zero  energy  level  (E=0)  b.        2  electrons  =  2m  anyons  of  charge  e/m  c.        Pauli  exclusion:    E=0  level  can  be  occupied  by  0,1,2,  …,  (2m-­‐1)  anyons  d.        E=0  level  defines  a  2m-­‐dimensional  Hilbert  space    e.        GSD  increases  by  2m  with  inserAon  of  two  vorAces  f.  Each  vortex  contributes                            to  GSD.  g.  Quantum  dimension  of  vortex:              dv =

p2m

p2m

Vaezi,  2012  

Page 23: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Frac2onal  Topological  Superconductor  (FTSC)  

v=1/m        FQH  

Superconductor  

hc

2ehc

2e

FTSC=  FQH  +  SC  

   Vortex    carries                                  Parafermion  (a.k.a  fracAonalized  Majorana)  zero      mode  with                                                              quantum  dimension    dv =

p2m

v = 1/m

Z2m

m=1  case  can  be  solved  exactly  and  it  is  known  that  IQH+SC  à  TSC    (p+ip)  

Vaezi,  2012  

Qi,  Hughes,  Zhang,  2010  

Page 24: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

v=1/m  FQH  

⇤⇤ SC  SC   FM  

=          parafermion  zero  mode  (a.k.a  frac2onalized  Majorana  zero  mode)  

Domain  walls:  Parafermion  zero  modes  

Linder  et  al,  (2012);  Clark  et  al  (2012),  Cheng  (2012)    Barkeshli,  Qi  (2012);  Barkeshli  et  al  (2012)  

 

v=1/m  FQH  

Page 25: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

�2m1 = �2m

2 = 1 �†i = �2m�1

i

�1�2 = ei⇡/m�2�1

ei⇡

2m �†1�2 |qi = ei

⇡qm |qi |qi = �†

1

q|0i

Vaezi,  PRB,  2013  

Parafermions    (fracAonalized  Majorana  fermions)  

Page 26: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Braid  staAsAcs  

� ⇥ � = 1 + V1 + V2 + · · ·+ V2m�1

RotaAng  V1  around  itself  CCW  one  round  à                                                          phase  change    RotaAng  V2  around  itself  CCW  one  round  à                                                          phase  change    RotaAng  Vn  around  itself  CCW  one  round  à                                                          phase  change        

ei⇡/m

ei4⇡/m

ein2⇡/m

Contains      n    anyons    (Vn)  |ni :

Exchanging  vorAces  CCW  =  rotaAng  zero  mode  by   2⇡

B12 |ni = ein2⇡/m |ni

sn =n2

2m

Vaezi,  PRB,  2013  

Page 27: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Type I!Exchange!

time!

n12 n34

B1,2 |n12, n34i = ei⇡n2

12m |n12, n34i

B3,4 |n12, n34i = ei⇡n2

34m |n12, n34i

Braid  StaAsAcs  

Page 28: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Type II!Exchange!

time!

n12 n34

(1)  Basis  transformaAon  to  diagonalize                      (equivalently                            )                            

(2)  transform  back  to  the  original  basis    

B2,3 |n12, n34i =?

Braid  StaAsAcs  

n23 �†3�2

Page 29: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Maximally  entangled  state  

Spq =

eiqp/mp2m

Upq = �p,qe

i⇡q2

mB2,3 = S†US

B2,3 |n12, n34i =

time!

n12 n34

Type II!Exchange!

Braid  StaAsAcs  

Page 30: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

 v=2/3  Bilayer  Fibonacci  FQH  state  

 Emergence  of  Fibonacci  anyons  

&  Universal  quantum  computaAon    

Example  6  

Page 31: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Acknowledgement  

Maissam  Barkeshli  Microsoe  StaAon  Q  

Zhao  Liu  Princeton  

Eun-­‐Ah  Kim  Cornell  

Kyungmin  Lee  Cornell  

Page 32: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Outline  for  Example  6  

•  FQH  states  at  2/3:  Fibonacci  phase  

•  Thin  torus  limit  

•  Parton  construcAon  

•  Numerical  results  

•  Experimental  signatures  

Page 33: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Experimental  setup  of  perturbed  1/3+1/3  FQH  

1/3    FQH  

1/3    FQH  B?

Bk

Charge  distribuAon  of  2DEG  in  a  wide  quantum  well  

Suen  et  al,  PRL,  1994  Monaharan  et  al,  PRL,  1996  

                                                     FQH  

1

3(") + 1

3(#)

Eisenstein  et  al,  PRB,  1990  

a)  Layer  index  

b)  Spin  index   c)  Valley  index:  graphene  

Du  et  al,  Nature,  2009  BoloAn  et  al,  Nature,  2009  

Page 34: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Previous  studies  

Fradkin,  Nayak,  Schoutens,  Nuc.  Phys.  B,  1999  Wen,  PRL,  2000    Ardonne  &  Schoutens,  PRL,  2000  Cappelli  et  al,  Nuc.  Phys.  B,  2001    Papic  et  al,  PRB,  2010  Peterson  &  Das  Sarma,  PRB  2010    Wen,  Rezayi  &  Read,  arXiv,  2010  Barkeshli  &  Wen,  PRB,  2010  

Page 35: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Candidate  states  at  2/3  filling  

Abelian  states:      McDonald  &  Haldane,  PRB,  1996    Interlayer  Pfaffian:  Graedts,  Zaletel,  Papic  &  Mong,  arXiv:1502.01340    Z4  RR  state:  Peterson,  Wu,  Cheng,  Barkeshli,  Wang  &  Das  Sarma,    arXiv:1502.02671    Bilayer  Fibonacci:    Liu,  Vaezi,  Lee,  Kim,  arXiv:  1502.05391;      to  appear  in  PRB(R)    

Page 36: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

A.  Thin  torus  limit  

Page 37: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Ax

= �By, Ay

= 0

FQH  states  on  Torus  

lB = 1

2⇡

Lx

l2B

y

| |2

B = r⇥A

n=0m

(x, y) = e

�i( 2⇡L

x

m)xe

�(y� 2⇡m

L

x

)2/2

En,m = ~!c (n+ 1/2)

m = 0 m = 1 m = 2m = �1m = �2

Page 38: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Ur,s = (r2 � s2)e�2⇡2(r2+s2)/L2x

1/3  Laughlin  state  

Ideal  Hamiltonian  for  1/3  Laughlin  state  

V1 =X

i

X

r>s

Ur,sc†i+sc

†i+rci+r+sci

V1 Laughlin1/3 = 0

Thin  torus  limit:   Lx

⌧ lB

: V1 'X

i

(U1,0ni

ni+1 + U2,0ni

ni+2)

Haldane,  1983  

Bergholtz  and  Karlhede,  JSM  (2006);  

Page 39: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

|gi1 = |100100100100100100100...i ⌘ [100]

|gi2 = |010010010010010010010...i ⌘ [010]

|gi3 = |001001001001001001001...i ⌘ [001]

1/3  FQH:  Thin  torus  limit  

Effec2ve  Hamiltonian:  

Degenerate  ground-­‐states  (CDW  pa]erns)  

lB = 1

2⇡

Lx

l2B

y

| |2

Seidel  et  al,  PRL  (2005);    Bergholtz  and  Karlhede,  JSM  (2006);  Bergholtz  and  Karlhede,  PRB  (2008);  Seidel  and  Yang,  PRL  (2008);  Ardonne,  PRL  (2009)  

 

Lx

⌧ Ly

: V1 'X

i

(U1,0nini+1 + U2,0nini+2)

Page 40: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Bilayer  (330)  state:  Thin  torus  limit  

|gi4 = [", #, 0, ", #, 0, ", #, 0, · · · ]|gi5 = [#, 0, ", #, 0, ", #, 0, ", · · · ]|gi6 = [0, ", #, 0, ", #, 0, ", #, · · · ]|gi7 = [#, ", 0, #, ", 0, #, ", 0, · · · ]|gi8 = [", 0, #, ", 0, #, ", 0, #, · · · ]|gi9 = [0, #, ", 0, #, ", 0, #, ", · · · ]

|gi1 = [2, 0, 0, 2, 0, 0, 2, 0, 0, · · · ]|gi2 = [0, 2, 0, 0, 2, 0, 0, 2, 0, · · · ]|gi3 = [0, 0, 2, 0, 0, 2, 0, 0, 2, · · · ]

GSD  =  9  =3  x  3  “3”  :    Transla2on  symmetry  in  Layer  1      (Abelian)  “3”  :    Transla2on  symmetry  in  Layer  2      (Abelian)  

Page 41: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

|gi1 = [2, 0, 0, 2, 0, 0, 2, 0, 0, · · · ]|gi2 = [0, 2, 0, 0, 2, 0, 0, 2, 0, · · · ]|gi3 = [0, 0, 2, 0, 0, 2, 0, 0, 2, · · · ]|gi4 = [1, 1, 0, 1, 1, 0, 1, 1, 0, · · · ]|gi5 = [1, 0, 1, 1, 0, 1, 1, 0, 1, · · · ]|gi6 = [0, 1, 1, 0, 1, 1, 0, 1, 1, · · · ]

GSD  =  6  =3  x  2    “3”  :    Transla2on  symmetry    (Abelian)  “2”  :    Non-­‐Abelian  sector:    1,  X    anyons  

X ⇥X = 1 + nX

Bilayer  Fibonacci  state:  :  Thin  torus  limit  

Vaezi,  Barkeshli,  PRL,  2014  Vaezi,  PRX,  2014  

Mong  et  al,  PRX,  2014  

1, 1 ⌘ |", #i � |#, "ip2

Page 42: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Quasi-­‐hole  excitaAons  

[200...200110...110020...020011...011010110...]

[200...200110...110101...101011...011010110...]

[200...200110...110020...020011...011002002...]

[020]

[101]

[011]

[200]

[011]

[110][200]

[002]

[110]

[110]

[002]

[110]

q⇤ =

e

3

(mod e) :

1                                          1                                            2                                          3                                                5                      

GSD(n)=Fib(n)   Vaezi,  Barkeshli,  PRL,  2014  

Page 43: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Quasi-­‐hole  excitaAons  

[200...200110...110020...020011...011010110...]

[200...200110...110101...101011...011010110...]

[200...200110...110020...020011...011002002...]

[020]

[101]

[011]

[200]

[011]

[110][200]

[002]

[110]

[110]

[002]

[110]

q⇤ =

e

3

(mod e) :

1                                          1                                            2                                          3                                                5                      

GSD(n)=Fib(n)   Vaezi,  Barkeshli,  PRL,  2014  

Page 44: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

[110][200]

[020]

[101][110]1st  row:   4th  row:  

[020]

[101]

[011]

[110]

[200]

[002]Ae/3 =

0

BBBBBB@

0 0 0 1 0 00 0 0 0 0 10 0 0 0 1 00 1 0 0 1 01 0 0 0 0 10 0 1 1 0 0

1

CCCCCCA

[200] [020] [101] [011][110][002]

GSD(nqh) ' Tr (Anqh) ⇠ �nqh

1 de/3 = �1 =1 +

p5

2

GSD:    Adjacency  matrix  

Page 45: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

[020]

[101]

[011]

[110]

[200]

[002]

[200] [020] [101][011] [110][002]

Ae/3,�e/3 =

0

BBBBBB@

0 1 0 0 0 01 1 0 0 0 00 0 0 1 0 00 0 1 1 0 00 0 0 0 0 10 0 0 0 1 1

1

CCCCCCA

GSD(nqh) ' Tr (Anqh) ⇠ �nqh

1de/3,�e/3 = �1 =

1 +p5

2

[...011011011...][...200200200...]

[...011011011...] [...200200200...]

[...011011011...] [...011011011...]

Neutral  excitaAons  (Fibonacci  anyons)  

Vaezi,  Barkeshli,  PRL,  2014  

Page 46: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Bilayer  Fibonacci  state  

           Operator                          Charge                      Topological  spin                Quantum  dimension  

1. 1 0 0 12. V1 2e/3 1/3 13. V2 e/3 1/3 14. ⌧ 0 2/5 1.618 · · ·5. V1⌧ 2e/3 11/15 1.618 · · ·6. V2⌧ e/3 11/15 1.618 · · ·

⌫ = 2/3 ctot

= 14/5

Va ⇥ Vb = Va+b ⌧ ⇥ ⌧ = 1 + ⌧

Page 47: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

B.  Parton  construcAon  of    the  bilayer  Fibonacci  state  

Page 48: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Parton  construc2on:  1/3  FQH  

c  =  volume  of  the  complex  space  of  fa    à  SU(3)  gauge  invariance  

X.-­‐G.  Wen,  PRB  (1999).  

e/3  

e/3   e/3  ci = f1,if2,if3,i⌫e = 1/3

Page 49: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

c  =  volume  of  the  complex  space  of  fa    à  SU(3)  gauge  invariance  

X.-­‐G.  Wen,  PRB  (1999).  

e/3  

e/3   e/3  

⌫e/3 = 1 e/3 =Y

i<j

(zi � zj)e� e

3B|zi|

2

4

ci = f1,if2,if3,i⌫e = 1/3

Parton  construc2on:  1/3  FQH  

Page 50: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

c  =  volume  of  the  complex  space  of  fa    à  SU(3)  gauge  invariance  

X.-­‐G.  Wen,  PRB  (1999).  

e/3  

e/3   e/3  

⌫e/3 = 1 e/3 =Y

i<j

(zi � zj)e� e

3B|zi|

2

4

e =� e/3

�3=

Y

i<j

(zi � zj)3e�e

B|zi|2

4

ci = f1,if2,if3,i⌫e = 1/3

Parton  construc2on:  1/3  FQH  

Page 51: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Bulk  theory:      Integra2ng  out  gapped  fermions:    SU(3)1  CS  ac2on  

Edge  theory:          

3  chiral  fermions  à  U(3)1  symmetry.      SU(3)1  subgroup  is  redundant  (gauge  symmetry)    

 Edge  CFT=  U(3)1/SU(3)1=U(1)3  

X.-­‐G.  Wen,  PRB  (1999).  

LCS =1

4⇡✏µ⌫⇢Tr

✓Aµ@⌫A⇢ +

2

3AµA⌫A⇢

◆1  

Parton  construc2on:  1/3  FQH  

Page 52: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

t=0  à  Gauge  symmetry:  

Bulk  theory:    Integra2ng  out  fermions:    SU(3)1  x  SU(3)1  CS  ac2on  

SU(3)" ⇥ SU(3)#

LCS =X

�=",#

1

4⇡✏µ⌫⇢Tr

✓A�

µ@⌫A�⇢ +

2

3A�

µA�⌫A

�⇢

Vaezi  &  Barkeshli,  PRL  (2014)  

Parton  construc2on:  1/3+1/3  FQH  

Page 53: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Vaezi  &  Barkeshli,  PRL  (2014)  

                                                                                     operator  carries  charge  under                                                                            à    Higgs  mechanism:  

�ab = f†a,"fb,# A" �A#

A" = A# = A< �ab > 6= 0

t=0  à  Gauge  symmetry:  

Bulk  theory:    Integra2ng  out  fermions:    SU(3)1  x  SU(3)1  CS  ac2on  

SU(3)" ⇥ SU(3)#

LCS =X

�=",#

1

4⇡✏µ⌫⇢Tr

✓A�

µ@⌫A�⇢ +

2

3A�

µA�⌫A

�⇢

Parton  construc2on:  1/3+1/3  FQH  

Page 54: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

t=0  à  Gauge  symmetry:  

Bulk  theory:    Integra2ng  out  fermions:    SU(3)1  x  SU(3)1  CS  ac2on  

SU(3)" ⇥ SU(3)#

LCS =X

�=",#

1

4⇡✏µ⌫⇢Tr

✓A�

µ@⌫A�⇢ +

2

3A�

µA�⌫A

�⇢

Vaezi  &  Barkeshli,  PRL  (2014)  

                                                                                     operator  carries  charge  under                                                                            à    Higgs  mechanism:  

�ab = f†a,"fb,# A" �A#

A" = A# = A< �ab > 6= 0

SU(3)2  CS  LCS !4⇡

✏µ⌫⇢Tr

✓Aµ@⌫A⇢ +

2

3AµA⌫A⇢

◆2

Parton  construc2on:  1/3+1/3  FQH  

Page 55: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Edge  theory:    6  chiral  fermions  à  U(6)1    SU(3)2  subgroup  is  redundant  (gauge  symmetry)    

Edge  CFT=  U(6)1/SU(3)2=  SU(2)3  x  U(1)6  

Vaezi  &  Barkeshli,  PRL  (2014)  

Parton  construc2on:  1/3+1/3  FQH  

Page 56: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

C.  Coupled  wires  construcAon  

Page 57: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Coupled  wires  construcAon  

Teo  &  Kane,  PRB,  2014;    Vaezi,  PRX,  2014;    

== FQH  FQH  

H0 =

X

I

vF1

4⇡

Zdx

h�@x

✓I�2

+

�@x

'I

�2i� gBS

Zdx cos

r2

⌫✓I

!

Page 58: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Coupled  wires  construcAon  

Vaezi  &  Barkeshli,  PRL  (2014);  Vaezi,  PRX,  2014;    Mong  et  al,  PRX,  2014  

He↵ =1

4⇡

Zdx

h(@

x

'

s

)2 + (@x

s

)2i� u

Zdx

ht? cos(

p3's) + tk cos(

p3✓s)

i

2,L

2,R

1,R

1,L

Page 59: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Vaezi,  (2014);    Mong  et  al.,  (2014);    Vaezi  and  Barkeshli,  (2014)  

III. Inter-­‐wire  coupling  

Page 60: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

c = 2 + 4/5

U(6)1/SU(3)2 = SU(2)3 ⇥ U(1)6

III. Parafermion  edge  state  

Vaezi,  (2014);    Mong  et  al.,  (2014);    Vaezi  and  Barkeshli,  (2014)  

Page 61: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

D.  Numerical  results  

Page 62: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Two-­‐body  interacAon  

Papic  &  Regnault,  2009;    Goerbig,  Moessner  &  Doucot,  2006;    Haldane,  1983;    Haldane  &  Rezayi,  1988  

Uee =e2

4⇡✏0r

PnLLUeePnLL =X

l

clVl

Page 63: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

(a) (b)

(c)

(6)

(6)

(9)

(3)

(3)

(9)

(9)

H = V intra1 + U0V inter

0 + U1V inter1 +Ht

Model  Hamiltonian  1  

Liu,  Vaezi,  Lee,  and  Kim;  arXiv:1502.05391  (to  appear  in  PRB  (R)  

Page 64: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Model  Hamiltonian  2  

H = Hintra

coulomb

+Hinter

coulomb

+ U0

V inter

0

+ U1

V inter

1

U0=

�0.4

U1=

0.6

Liu,  Vaezi,  Lee,  and  Kim;  arXiv:1502.05391  (to  appear  in  PRB  (R)  

Page 65: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Entanglement  measurements  Level  Cou

n2ng  

(Even  sector)  

 

Finite  size  sc

aling  of  

energy  gap

 

Entanglemen

t      Entropy  

 Level  Cou

n2ng  (O

dd  se

ctor)  

Liu,  Vaezi,  Lee,  and  Kim;  arXiv:1502.05391  (to  appear  in  PRB  (R)  

Page 66: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

ParAcle  Entanglement  Spectrum  

Ne=8              NeA=4              Nqh=12  

 Ne=10              Ne

A=4              Nqh=18    

Liu,  Vaezi,  Lee,  and  Kim;  arXiv:1502.05391  (to  appear  in  PRB  (R)  

Page 67: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Wave-­‐funcAon  overlap  

6-­‐fold  degenerate  state:      

Negligible  overlap  with  Z4  Read-­‐Rezayi  state    Small  overlap  with  interlayer  Paffian  à  decreases  with  increasing  Ne    Small  overlap  with  Abelian  states    

Page 68: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Experimental  relevance  

Papic  &  Regnault,  2009;    Goerbig,  Moessner  &  Doucot,  2006;    Haldane,  1983;    Haldane  &  Rezayi,  1988  

Uee =e2

4⇡✏0r

PnLLUeePnLL =X

l

clVl

Page 69: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite
Page 70: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

Experimental  signatures  

Page 71: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

(1)     Detec2ng  topological  phase  transi2on  

Experimental  probes  of  Bilayer  Fibonacci  state  

Phase  transiAon  happens  in  the  neutral  sector    Neutral  Excitons  carry  electric  dipole    dipole-­‐dipole  correlaAon  diverges  at  criAcal  point    Surface  acous2c  phonon  measurment?  

Page 72: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

2/3    FQH   2/3    FQH  

I / V 2gqh�1

xy

/T = c⇡2k2B3h

(2)    Thermal  Hall  conduc2vity:  

(3)    Edge  tunneling:                                        (a)    I-­‐V  curve                                      (b)    Zero  bias  conductance:   �

xy

/ T 2gqh�2

(4)    Interferometry  experiments  

Fib : gqh = 7/15 c = 14/5

Experimental  probes  of  Bilayer  Fibonacci  state  

Page 73: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

a.  A  novel  NA  state  at  2/3  filling  with  Fibonacci  anyons  

 b.  Fibonacci  anyons  à  Universal  quantum  computaAon  via  braiding  

c.  2-­‐body  interacAon  with  large  interlayer  V1  component                                                                                    à  Bilayer  Fibonacci  state  

a.  Large  interlayer  V1  component:                                                                      Second  Landau  level  in  graphene-­‐like  systems?  

Page 74: Abolhassan)Vaezi) Cornell)University) · e e e e ⌫ = N e N = 1 3 N = 0(e) BA 2⇡ e ~c GSD n.I. = N e g LL = 3N N NonXInteracAng)picture:) InteracAng)picture:) GSD n.I. =finite

 

Thanks  for  your  apenAon