ab initio quantum monte carlokentpr/talks/kent_barcelona_2019...ab initio quantum monte carlo paul...

43
ORNL is managed by UT-Battelle, LLC for the US Department of Energy Ab initio Quantum Monte Carlo Paul Kent - [email protected] Oak Ridge National Laboratory, Tennessee, USA https://web.ornl.gov/~kentpr This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program and Center for Predictive Simulation of Functional Materials.

Upload: others

Post on 13-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Ab initio Quantum Monte CarloPaul Kent - [email protected]

Oak Ridge National Laboratory,Tennessee, USA

https://web.ornl.gov/~kentpr

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program and Center for Predictive Simulation of Functional Materials.

Page 2: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

22 Open slide master to edit

Acknowledgments

• Members of Center for Predictive Simulation of Functional Materials, from Livermore, Sandia, Argonne, Oak Ridge Labs, UC Berkeley, Brown, & North Carolina State U.

• While focused on QMC and open source QMCPACK, we also do DFT, DMFT, GW and experimental validation.

• INCITE supercomputer time.

August 2019

Page 3: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

33 Open slide master to edit

We are hiring – talk/email/apply ASAP if interested• Staff scientist in computational many-body theory

– Interested in all post-DFT methods: GW, DMFT, QMC,…

• Post-doc in Quantum Monte Carlo (Reboredo)

• Distinguished Fellowships– “Named postdocs” often leading to a staff position

• Post-doc in first-principles calculations for MXenes– Strong experimental collaborations

Page 4: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

44 Open slide master to edit

Outline• Motivation and Introduction

– Why take on an NP hard problem?– What is achieved today?– Why is the field growing?

• Quantum Monte Carlo Methods– There are many; Details matter– Real-space VMC, DMC, orbital space AFQMC

• The Future– New capabilities– New (& old) connections between QMC, GW, DMFT, DFT.

Page 5: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

55 Open slide master to edit

To find out more

1 © 2018 IOP Publishing Ltd Printed in the UK

Journal of Physics: Condensed Matter

QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

Jeongnim Kim1 , Andrew T Baczewski2, Todd D Beaudet3, Anouar Benali4,5, M Chandler Bennett6, Mark A Berrill7, Nick S Blunt8, Edgar Josué Landinez Borda9, Michele Casula10, David M Ceperley11, Simone Chiesa11, Bryan K Clark11, Raymond C Clay III2, Kris T Delaney12, Mark Dewing5, Kenneth P Esler13, Hongxia Hao14, Olle Heinonen15,16, Paul R C Kent17,18 , Jaron T Krogel19, Ilkka Kylänpää19, Ying Wai Li20, M Graham Lopez7, Ye Luo4,5 , Fionn D Malone9 , Richard M Martin11, Amrita Mathuriya1, Jeremy McMinis9, Cody A Melton6, Lubos Mitas6, Miguel A Morales9, Eric Neuscamman21,22 , William D Parker23 , Sergio D Pineda Flores21, Nichols A Romero4,5, Brenda M Rubenstein14, Jacqueline A R Shea21, Hyeondeok Shin5, Luke Shulenburger2, Andreas F Tillack20, Joshua P Townsend2 , Norm M Tubman21, Brett Van Der Goetz21, Jordan E Vincent11, D ChangMo Yang24 , Yubo Yang11, Shuai Zhang9 and Luning Zhao21

1 Intel Corporation, Hillsboro, OR 987124, United States of America2 Sandia National Laboratories, Albuquerque, NM 87185, United States of America3 Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, United States of America4 Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, IL 60439, United States of America5 Computational Science Division, Argonne National Laboratory, Argonne, IL 60439, United States of America6 Department of Physics, North Carolina State University, Raleigh, NC 27695, United States of America7 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America8 University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, United Kingdom9 Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America10 Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, IRD UMR 206, MNHN, 4 Place Jussieu, 75252 Paris, France11 Department of Physics, University of Illinois, Urbana, IL 61801, United States of America12 Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, United States of America13 Stone Ridge Technology, Bel Air, MD 21015, United States of America14 Department of Chemistry, Brown University, Providence, RI 02912, United States of America15 Material Science Division, Argonne National Laboratory, Argonne, IL 60439, United States of America16 Northwestern-Argonne Institute for Science and Engineering, Northwestern University, Evanston, IL 60208, United States of America17 Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America18 Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America19 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America20 National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America21 Department of Chemistry, University of California, Berkeley, CA 94720, United States of America22 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America

J Kim et al

QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules, and solids

Printed in the UK

195901

JCOMEL

© 2018 IOP Publishing Ltd

30

J. Phys.: Condens. Matter

CM

10.1088/1361-648X/aab9c3

Paper

19

Journal of Physics: Condensed Matter

IOP

2018

1361-648X

1361-648X/18/195901+29$33.00

https://doi.org/10.1088/1361-648X/aab9c3J. Phys.: Condens. Matter 30 (2018) 195901 (29pp)

Classic Review: W. Foulkes et al, Rev. Mod. Phys. 73 33 (2001) [real space only, older]QMCPACK citation: J. Kim et al, JPCM 30 195901 (2018) [newer references, methods]

Page 6: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

66 Open slide master to edit

Our Challenge

Solve the many-body Schrodinger equation for general systems and with only readily controllable approximations

Develop a practical and convergent method for real materials and chemistry

Understand many-body physics, chemistry, materials

Provide useful benchmarks and make connections to other methods, particularly for periodic systems, and eventual upscaling

Our Goals

Page 7: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

77 Open slide master to edit

Collaboration wanted: Experiment can’t provide all the answers we need or are asked to provide

Neutrons show ⍺-RuCl3“is close” to Kitaevquantum spin liquid. Models for QSL depend strongly on Hamiltonian parameters.

New phenomenaNo Definitive Result New materials

TiO2 shows multiple metastable phases. Different theory and experimental camps have argued which is the ground state.

MXenes (Prototype: Ti3C2), the largest family of 2D nanomaterials. Robust predictions needed to

guide synthesis.

Page 8: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

88 Open slide master to edit

DFT challenges…

Word cloud of “popular” DFTsmarcelswart.eu

Many DFT approximationsto choose from

Medvedev et al. Science 355 49 (2017)+ comment & reply.

~ Energies & densities should be simultaneously improving.Empirical fitting has reversed this trend

Perdew & Zunger PRB 23 5048 (1981)The LDA DFT paper is about an error in LDA DFTMost functionals still have self-interaction error

(really, delocalization error is key)

We need methods to rationally choose and improve DFT approximations in physics, chemistry, materials

Page 9: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

99 Open slide master to edit

Exact QMC results for the Homogeneous Electron Gas

Ceperley & Alder PRL 45 566 (1980)See N. Tubman et al. JCP 135 184109 (2011) for discussion of modern prospects

Exact released-node DMC calculationExponential scaling

Parameterized in LDA-DFT by Perdew & Zunger (1982)

Page 10: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

1010 Open slide master to edit

Mn Doped Phosphors with DMC

K. Saritas et al. JPCL 10 67 (2019)

Excited states can be run

“Standard recipe” fixed-node single determinant DMC gives excellent results for emission energies vs experiment.Predicts red Y2O3:Mn emission

Hybrid DFT is too low.

O(1M) CPU hours

No heroics.

Page 11: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

1111 Open slide master to edit

Scandium oxide polymorphs“Standard recipe” fixed-node single determinant DMC gives good thermodynamics, bulk moduli and correct energy ordering for rocksalt, wurtzite, zinc blende.

PBE, HSE, SCAN do not.

SCAN+U corrects order but overbinds.

Followed QMC workshop recipe.Setup for a later series of perovskite calculations with defects.

K. Saritas et al. PRB 98 155130 (2018)

Page 12: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

1212 Open slide master to edit

Why the Field of QMC is Growing

Massive growth in computing increases accessible materials • Accelerated computation (GPUs &

more) driven by power efficiency

• Memory size & type

• Institutional level resources are very useable.

New ideas, methods, algorithms

• New methods including AFQMC, FCIQMC…

• Numerics: QMC is 2-10x faster for solids than ~2 years ago

• New related methods: Stochastic GW, CC…

1

2

4

8

16

32

1 2 4 8 16 32 64 128 256 512

DM

C s

peed-u

p

Number of delays

384768

11521536230430726144

12288

“Delayed update” algorithm

Page 13: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

1313 Open slide master to edit

Outline• Motivation and Introduction

– Why take on an NP hard problem?– What is achieved today?– Why is the field growing?

• Quantum Monte Carlo Methods– There are many; Details matter– Real-space VMC, DMC, orbital space AFQMC

• The Future– New capabilities– New (& old) connections between QMC, GW, DMFT, DFT.

Page 14: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

1414 Open slide master to edit

Monte Carlo MethodsUse statistical methods to tackle the high dimensionality of the Schrodinger equation: Monte Carlo is more efficient than numerical integration in high dimensions.

Trade-off: all measurements have a statistical error.

Estimate π via random sampling and ratio of points inside circle to square.

Wikipedia

100x increase in cost to reduce error 10x ! Sample accurately (importance sampling)

Plan calculations carefully!

Standard error of mean / 1pN

<latexit sha1_base64="eVmgMGPfwTUyfm3ZAjM4GFveUkI=">AAACJ3icbVBNSxxBEO3RaHQTzUaPXposgZyWGREUAkHixVNQzK7CzrLU9NRoY39MumsCyzD/xot/xYsQRcwx/8Tej0OiKeiux3tVdL+XlUp6iuPf0cLiq6Xl1yurrTdv19bftd9v9L2tnMCesMq6sww8KmmwR5IUnpUOQWcKT7PLg4l++hOdl9Z8p3GJQw3nRhZSAAVq1P6SaqALp+sTApODy9PPHJ2zLnRbhEsjmCYtnS3J8rRwIOqkqVP/wxH/1ozanbgbT4u/BMkcdNi8jkbtX2luRaXRkFDg/SCJSxrW4EgKhU0rrTyWIC7hHAcBGtDoh/XUZ8M/BibnhXXhGOJT9u+NGrT3Y52FyYkr/1ybkP/TBhUVe8NamrIiNGL2UFEpHixPQuO5dChIjQMA4WT4KxcXELKgEG0rhJA8t/wS9Le7SdxNjnc6+1/ncaywLfaBfWIJ22X77JAdsR4T7IrdsDt2H11Ht9FD9DgbXYjmO5vsn4r+PAEpZ6a3</latexit><latexit sha1_base64="eVmgMGPfwTUyfm3ZAjM4GFveUkI=">AAACJ3icbVBNSxxBEO3RaHQTzUaPXposgZyWGREUAkHixVNQzK7CzrLU9NRoY39MumsCyzD/xot/xYsQRcwx/8Tej0OiKeiux3tVdL+XlUp6iuPf0cLiq6Xl1yurrTdv19bftd9v9L2tnMCesMq6sww8KmmwR5IUnpUOQWcKT7PLg4l++hOdl9Z8p3GJQw3nRhZSAAVq1P6SaqALp+sTApODy9PPHJ2zLnRbhEsjmCYtnS3J8rRwIOqkqVP/wxH/1ozanbgbT4u/BMkcdNi8jkbtX2luRaXRkFDg/SCJSxrW4EgKhU0rrTyWIC7hHAcBGtDoh/XUZ8M/BibnhXXhGOJT9u+NGrT3Y52FyYkr/1ybkP/TBhUVe8NamrIiNGL2UFEpHixPQuO5dChIjQMA4WT4KxcXELKgEG0rhJA8t/wS9Le7SdxNjnc6+1/ncaywLfaBfWIJ22X77JAdsR4T7IrdsDt2H11Ht9FD9DgbXYjmO5vsn4r+PAEpZ6a3</latexit><latexit sha1_base64="eVmgMGPfwTUyfm3ZAjM4GFveUkI=">AAACJ3icbVBNSxxBEO3RaHQTzUaPXposgZyWGREUAkHixVNQzK7CzrLU9NRoY39MumsCyzD/xot/xYsQRcwx/8Tej0OiKeiux3tVdL+XlUp6iuPf0cLiq6Xl1yurrTdv19bftd9v9L2tnMCesMq6sww8KmmwR5IUnpUOQWcKT7PLg4l++hOdl9Z8p3GJQw3nRhZSAAVq1P6SaqALp+sTApODy9PPHJ2zLnRbhEsjmCYtnS3J8rRwIOqkqVP/wxH/1ozanbgbT4u/BMkcdNi8jkbtX2luRaXRkFDg/SCJSxrW4EgKhU0rrTyWIC7hHAcBGtDoh/XUZ8M/BibnhXXhGOJT9u+NGrT3Y52FyYkr/1ybkP/TBhUVe8NamrIiNGL2UFEpHixPQuO5dChIjQMA4WT4KxcXELKgEG0rhJA8t/wS9Le7SdxNjnc6+1/ncaywLfaBfWIJ22X77JAdsR4T7IrdsDt2H11Ht9FD9DgbXYjmO5vsn4r+PAEpZ6a3</latexit><latexit sha1_base64="eVmgMGPfwTUyfm3ZAjM4GFveUkI=">AAACJ3icbVBNSxxBEO3RaHQTzUaPXposgZyWGREUAkHixVNQzK7CzrLU9NRoY39MumsCyzD/xot/xYsQRcwx/8Tej0OiKeiux3tVdL+XlUp6iuPf0cLiq6Xl1yurrTdv19bftd9v9L2tnMCesMq6sww8KmmwR5IUnpUOQWcKT7PLg4l++hOdl9Z8p3GJQw3nRhZSAAVq1P6SaqALp+sTApODy9PPHJ2zLnRbhEsjmCYtnS3J8rRwIOqkqVP/wxH/1ozanbgbT4u/BMkcdNi8jkbtX2luRaXRkFDg/SCJSxrW4EgKhU0rrTyWIC7hHAcBGtDoh/XUZ8M/BibnhXXhGOJT9u+NGrT3Y52FyYkr/1ybkP/TBhUVe8NamrIiNGL2UFEpHixPQuO5dChIjQMA4WT4KxcXELKgEG0rhJA8t/wS9Le7SdxNjnc6+1/ncaywLfaBfWIJ22X77JAdsR4T7IrdsDt2H11Ht9FD9DgbXYjmO5vsn4r+PAEpZ6a3</latexit>

Page 15: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

1515 Open slide master to edit

Flavors of Ab initio Quantum Monte Carlo

• Real space QMC– Sample electron positions in real space– Variational, diffusion, reptation…– Longest established, most results

• Auxiliary Field QMC– Works in a basis. Strong basis set effects.– Easier access to observables than DMC– Appears more accurate by default than DMC, but larger cost

prefactor. Fewer results.

• Full Configuration Interaction QMC– Works in a basis of determinants– Potentially exact, expensive. Booth et al. Nature 493 365 (2013)

Motta & Zhang Comp. Mol. Science 8 e1364 (2018)

All can treat strong electronic correlations, Van der Waals etc.

Page 16: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

1616 Open slide master to edit

Use Monte Carlo integration to obtain a variational energy bound from a trial wavefunction. Optimize parameters in trial to reduce variational energy and improve trial wavefunction.

Variational Monte Carlo

Red-shaded part is a probability density: positive definite & normalized Use textbook Metropolis Monte Carlo

For 1000 electrons = 3000 dimensional integral

ET =

R ⇤

T H TR| T |2

� E0<latexit sha1_base64="kiy2f8VXRryntLaoG3bl20n6lMM=">AAACKXicbVDLSsNAFJ34rPUVdelmsAjioiRF0I1QlEKXFfqCJg2T6aQdOnk4MxFKmt9x46+4UVDUrT/itMlCWw8MnHvOvcy9x40YFdIwPrWV1bX1jc3CVnF7Z3dvXz84bIsw5pi0cMhC3nWRIIwGpCWpZKQbcYJ8l5GOO76d+Z0HwgUNg6acRMT20TCgHsVIKsnRqzWneW15HOHEooGEVkNQp9k/h9YISVjPa5hm7jQrp/1Kag3JPaw5hqOXjLIxB1wmZk5KIEfD0V+tQYhjnwQSMyREzzQiaSeIS4oZSYtWLEiE8BgNSU/RAPlE2Mn80hSeKmUAvZCrp/aZq78nEuQLMfFd1ekjORKL3kz8z+vF0ruyExpEsSQBzj7yYgZlCGexwQHlBEs2UQRhTtWuEI+Qik2qcIsqBHPx5GXSrpRNo2zeXZSqN3kcBXAMTsAZMMElqII6aIAWwOARPIM38K49aS/ah/aVta5o+cwR+APt+wd2r6WF</latexit><latexit sha1_base64="kiy2f8VXRryntLaoG3bl20n6lMM=">AAACKXicbVDLSsNAFJ34rPUVdelmsAjioiRF0I1QlEKXFfqCJg2T6aQdOnk4MxFKmt9x46+4UVDUrT/itMlCWw8MnHvOvcy9x40YFdIwPrWV1bX1jc3CVnF7Z3dvXz84bIsw5pi0cMhC3nWRIIwGpCWpZKQbcYJ8l5GOO76d+Z0HwgUNg6acRMT20TCgHsVIKsnRqzWneW15HOHEooGEVkNQp9k/h9YISVjPa5hm7jQrp/1Kag3JPaw5hqOXjLIxB1wmZk5KIEfD0V+tQYhjnwQSMyREzzQiaSeIS4oZSYtWLEiE8BgNSU/RAPlE2Mn80hSeKmUAvZCrp/aZq78nEuQLMfFd1ekjORKL3kz8z+vF0ruyExpEsSQBzj7yYgZlCGexwQHlBEs2UQRhTtWuEI+Qik2qcIsqBHPx5GXSrpRNo2zeXZSqN3kcBXAMTsAZMMElqII6aIAWwOARPIM38K49aS/ah/aVta5o+cwR+APt+wd2r6WF</latexit><latexit sha1_base64="kiy2f8VXRryntLaoG3bl20n6lMM=">AAACKXicbVDLSsNAFJ34rPUVdelmsAjioiRF0I1QlEKXFfqCJg2T6aQdOnk4MxFKmt9x46+4UVDUrT/itMlCWw8MnHvOvcy9x40YFdIwPrWV1bX1jc3CVnF7Z3dvXz84bIsw5pi0cMhC3nWRIIwGpCWpZKQbcYJ8l5GOO76d+Z0HwgUNg6acRMT20TCgHsVIKsnRqzWneW15HOHEooGEVkNQp9k/h9YISVjPa5hm7jQrp/1Kag3JPaw5hqOXjLIxB1wmZk5KIEfD0V+tQYhjnwQSMyREzzQiaSeIS4oZSYtWLEiE8BgNSU/RAPlE2Mn80hSeKmUAvZCrp/aZq78nEuQLMfFd1ekjORKL3kz8z+vF0ruyExpEsSQBzj7yYgZlCGexwQHlBEs2UQRhTtWuEI+Qik2qcIsqBHPx5GXSrpRNo2zeXZSqN3kcBXAMTsAZMMElqII6aIAWwOARPIM38K49aS/ah/aVta5o+cwR+APt+wd2r6WF</latexit><latexit sha1_base64="kiy2f8VXRryntLaoG3bl20n6lMM=">AAACKXicbVDLSsNAFJ34rPUVdelmsAjioiRF0I1QlEKXFfqCJg2T6aQdOnk4MxFKmt9x46+4UVDUrT/itMlCWw8MnHvOvcy9x40YFdIwPrWV1bX1jc3CVnF7Z3dvXz84bIsw5pi0cMhC3nWRIIwGpCWpZKQbcYJ8l5GOO76d+Z0HwgUNg6acRMT20TCgHsVIKsnRqzWneW15HOHEooGEVkNQp9k/h9YISVjPa5hm7jQrp/1Kag3JPaw5hqOXjLIxB1wmZk5KIEfD0V+tQYhjnwQSMyREzzQiaSeIS4oZSYtWLEiE8BgNSU/RAPlE2Mn80hSeKmUAvZCrp/aZq78nEuQLMfFd1ekjORKL3kz8z+vF0ruyExpEsSQBzj7yYgZlCGexwQHlBEs2UQRhTtWuEI+Qik2qcIsqBHPx5GXSrpRNo2zeXZSqN3kcBXAMTsAZMMElqII6aIAWwOARPIM38K49aS/ah/aVta5o+cwR+APt+wd2r6WF</latexit>

ET =

R| T |2 H T

TR| T |2

<latexit sha1_base64="IbxGNAgP3HpxK8DLF6cE+8QxzJw=">AAACMnicbVDLSsNAFJ3UV62vqEs3g0VwVZIi6EYoilB3FfqCJobJdNIOnUzCzEQoab7JjV8iuNCFIm79CKdtFtp6YZjDOedy7z1+zKhUlvVqFFZW19Y3ipulre2d3T1z/6Ato0Rg0sIRi0TXR5IwyklLUcVINxYEhT4jHX90PdU7D0RIGvGmGsfEDdGA04BipDTlmbc3XvPSCQTCqUO5ghOnIanXnNxXYc4OkYJ1OKezNP9htmjPPLNsVaxZwWVg56AM8mp45rPTj3ASEq4wQ1L2bCtWboqEopiRrOQkksQIj9CA9DTkKCTSTWcnZ/BEM30YREI/vceM/d2RolDKcehrZ4jUUC5qU/I/rZeo4MJNKY8TRTieDwoSBlUEp/nBPhUEKzbWAGFB9a4QD5FOSumUSzoEe/HkZdCuVmyrYt+dlWtXeRxFcASOwSmwwTmogTpogBbA4BG8gHfwYTwZb8an8TW3Foy85xD8KeP7B7nqqnU=</latexit><latexit sha1_base64="IbxGNAgP3HpxK8DLF6cE+8QxzJw=">AAACMnicbVDLSsNAFJ3UV62vqEs3g0VwVZIi6EYoilB3FfqCJobJdNIOnUzCzEQoab7JjV8iuNCFIm79CKdtFtp6YZjDOedy7z1+zKhUlvVqFFZW19Y3ipulre2d3T1z/6Ato0Rg0sIRi0TXR5IwyklLUcVINxYEhT4jHX90PdU7D0RIGvGmGsfEDdGA04BipDTlmbc3XvPSCQTCqUO5ghOnIanXnNxXYc4OkYJ1OKezNP9htmjPPLNsVaxZwWVg56AM8mp45rPTj3ASEq4wQ1L2bCtWboqEopiRrOQkksQIj9CA9DTkKCTSTWcnZ/BEM30YREI/vceM/d2RolDKcehrZ4jUUC5qU/I/rZeo4MJNKY8TRTieDwoSBlUEp/nBPhUEKzbWAGFB9a4QD5FOSumUSzoEe/HkZdCuVmyrYt+dlWtXeRxFcASOwSmwwTmogTpogBbA4BG8gHfwYTwZb8an8TW3Foy85xD8KeP7B7nqqnU=</latexit><latexit sha1_base64="IbxGNAgP3HpxK8DLF6cE+8QxzJw=">AAACMnicbVDLSsNAFJ3UV62vqEs3g0VwVZIi6EYoilB3FfqCJobJdNIOnUzCzEQoab7JjV8iuNCFIm79CKdtFtp6YZjDOedy7z1+zKhUlvVqFFZW19Y3ipulre2d3T1z/6Ato0Rg0sIRi0TXR5IwyklLUcVINxYEhT4jHX90PdU7D0RIGvGmGsfEDdGA04BipDTlmbc3XvPSCQTCqUO5ghOnIanXnNxXYc4OkYJ1OKezNP9htmjPPLNsVaxZwWVg56AM8mp45rPTj3ASEq4wQ1L2bCtWboqEopiRrOQkksQIj9CA9DTkKCTSTWcnZ/BEM30YREI/vceM/d2RolDKcehrZ4jUUC5qU/I/rZeo4MJNKY8TRTieDwoSBlUEp/nBPhUEKzbWAGFB9a4QD5FOSumUSzoEe/HkZdCuVmyrYt+dlWtXeRxFcASOwSmwwTmogTpogBbA4BG8gHfwYTwZb8an8TW3Foy85xD8KeP7B7nqqnU=</latexit><latexit sha1_base64="IbxGNAgP3HpxK8DLF6cE+8QxzJw=">AAACMnicbVDLSsNAFJ3UV62vqEs3g0VwVZIi6EYoilB3FfqCJobJdNIOnUzCzEQoab7JjV8iuNCFIm79CKdtFtp6YZjDOedy7z1+zKhUlvVqFFZW19Y3ipulre2d3T1z/6Ato0Rg0sIRi0TXR5IwyklLUcVINxYEhT4jHX90PdU7D0RIGvGmGsfEDdGA04BipDTlmbc3XvPSCQTCqUO5ghOnIanXnNxXYc4OkYJ1OKezNP9htmjPPLNsVaxZwWVg56AM8mp45rPTj3ASEq4wQ1L2bCtWboqEopiRrOQkksQIj9CA9DTkKCTSTWcnZ/BEM30YREI/vceM/d2RolDKcehrZ4jUUC5qU/I/rZeo4MJNKY8TRTieDwoSBlUEp/nBPhUEKzbWAGFB9a4QD5FOSumUSzoEe/HkZdCuVmyrYt+dlWtXeRxFcASOwSmwwTmogTpogBbA4BG8gHfwYTwZb8an8TW3Foy85xD8KeP7B7nqqnU=</latexit>

Use best available physics-motivated trial Great flexibility: only need to evaluate value &

derivatives in real space T =

X

i

DieJ

<latexit sha1_base64="udyOuQy+R2OZ/YEP9/P52OFd8DY=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIrkoigm6Eoi7EVYW+oIlhMp20Q2eSMDMRSij4K25cKOLW73Dn3zh9LLT1wIXDOfdy7z1hypnSjvNtFZaWV1bXiuuljc2t7R17d6+pkkwS2iAJT2Q7xIpyFtOGZprTdiopFiGnrXBwPfZbj1QqlsR1PUypL3AvZhEjWBspsA+8mmJB/dJTmQgYujFFH+4Cu+xUnAnQInFnpAwz1AL7y+smJBM01oRjpTquk2o/x1Izwumo5GWKppgMcI92DI2xoMrPJ+eP0LFRuihKpKlYo4n6eyLHQqmhCE2nwLqv5r2x+J/XyXR04ecsTjNNYzJdFGUc6QSNs0BdJinRfGgIJpKZWxHpY4mJNomVTAju/MuLpHlacZ2Ke39Wrl7N4ijCIRzBCbhwDlW4hRo0gEAOz/AKb9aT9WK9Wx/T1oI1m9mHP7A+fwDk5pTH</latexit><latexit sha1_base64="udyOuQy+R2OZ/YEP9/P52OFd8DY=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIrkoigm6Eoi7EVYW+oIlhMp20Q2eSMDMRSij4K25cKOLW73Dn3zh9LLT1wIXDOfdy7z1hypnSjvNtFZaWV1bXiuuljc2t7R17d6+pkkwS2iAJT2Q7xIpyFtOGZprTdiopFiGnrXBwPfZbj1QqlsR1PUypL3AvZhEjWBspsA+8mmJB/dJTmQgYujFFH+4Cu+xUnAnQInFnpAwz1AL7y+smJBM01oRjpTquk2o/x1Izwumo5GWKppgMcI92DI2xoMrPJ+eP0LFRuihKpKlYo4n6eyLHQqmhCE2nwLqv5r2x+J/XyXR04ecsTjNNYzJdFGUc6QSNs0BdJinRfGgIJpKZWxHpY4mJNomVTAju/MuLpHlacZ2Ke39Wrl7N4ijCIRzBCbhwDlW4hRo0gEAOz/AKb9aT9WK9Wx/T1oI1m9mHP7A+fwDk5pTH</latexit><latexit sha1_base64="udyOuQy+R2OZ/YEP9/P52OFd8DY=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIrkoigm6Eoi7EVYW+oIlhMp20Q2eSMDMRSij4K25cKOLW73Dn3zh9LLT1wIXDOfdy7z1hypnSjvNtFZaWV1bXiuuljc2t7R17d6+pkkwS2iAJT2Q7xIpyFtOGZprTdiopFiGnrXBwPfZbj1QqlsR1PUypL3AvZhEjWBspsA+8mmJB/dJTmQgYujFFH+4Cu+xUnAnQInFnpAwz1AL7y+smJBM01oRjpTquk2o/x1Izwumo5GWKppgMcI92DI2xoMrPJ+eP0LFRuihKpKlYo4n6eyLHQqmhCE2nwLqv5r2x+J/XyXR04ecsTjNNYzJdFGUc6QSNs0BdJinRfGgIJpKZWxHpY4mJNomVTAju/MuLpHlacZ2Ke39Wrl7N4ijCIRzBCbhwDlW4hRo0gEAOz/AKb9aT9WK9Wx/T1oI1m9mHP7A+fwDk5pTH</latexit><latexit sha1_base64="udyOuQy+R2OZ/YEP9/P52OFd8DY=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIrkoigm6Eoi7EVYW+oIlhMp20Q2eSMDMRSij4K25cKOLW73Dn3zh9LLT1wIXDOfdy7z1hypnSjvNtFZaWV1bXiuuljc2t7R17d6+pkkwS2iAJT2Q7xIpyFtOGZprTdiopFiGnrXBwPfZbj1QqlsR1PUypL3AvZhEjWBspsA+8mmJB/dJTmQgYujFFH+4Cu+xUnAnQInFnpAwz1AL7y+smJBM01oRjpTquk2o/x1Izwumo5GWKppgMcI92DI2xoMrPJ+eP0LFRuihKpKlYo4n6eyLHQqmhCE2nwLqv5r2x+J/XyXR04ecsTjNNYzJdFGUc6QSNs0BdJinRfGgIJpKZWxHpY4mJNomVTAju/MuLpHlacZ2Ke39Wrl7N4ijCIRzBCbhwDlW4hRo0gEAOz/AKb9aT9WK9Wx/T1oI1m9mHP7A+fwDk5pTH</latexit>

ci

Page 17: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

1717 Open slide master to edit

Modern QMC trial wavefunctions𝛹$ = (𝐷(+*

+,

𝑐+,𝐷+, + *+,./

𝑐+,./𝐷+,./ + ⋯) exp (𝐽(𝑟78, 𝑟7:, 𝑟78:, … ))

(1) Start with best affordable density functional or quantum chemistry wavefunction.

(2) Reoptimize some or all coefficients.

Parameterized Jastrow factor. Build in physics, e.g. wavefunction cusps.Greatly improves trial wavefunction. Does

not change nodes

e.g. Drummond et al. PRB 70 235119 (2004)Other options: Backflow, Geminals…

SolidsToday mostly single determinant

from DFT+U/EXX + Jastrow

MoleculesState of art: O(104-5) determinants + Jastrow and full reoptimization

Page 18: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

1818 Open slide master to edit

Key features of VMC

Explicit form of trial wavefunction

• Can use any trial wavefunction we can imagine

• Easy to compute any observable

• Simple Monte Carlo – no timesteperror or other discretization introduced

Advantages

Finite size scaling for periodic calculations

Explicit form of trial wavefunction

• Limited to forms of trial wavefunction we can imagine -high accuracy difficult for solids, correlated physics.

• Potentially many parameters to optimize reliably. Not yet automated.

Disadvantages

Page 19: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

1919 Open slide master to edit

Diffusion Quantum Monte Carlo

Project out ground state to minimize trial wavefunction dependence.

Write the time dependent Schrodinger equation in imaginary time

Maps to a branching importance sampled Monte Carlo

Enforce a fermionic solution via the “fixed-node approximation”. Require nodes of projected wavefunction to be the same as trial. Variational error in energy. Most significant approximation in DMC.

Leads to a robust method with good properties: variational, consistently yields high-fraction of correlation energy, formally N2-N4

scaling, readily parallelized...

Page 20: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

2020 Open slide master to edit

Cartoon Example

After initial projection to ground state, branching random walk has greatest density where wavefunction probability largest

Page 21: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

2121 Open slide master to edit

Real World DMC: Bulk VO2Production run from Kylanpaa PRM 1 065408 (2017).

200 electrons, 0.01 a.u. timesteps

-831.5

-831.0

-830.5

-830.0

-829.5

-829.0

0 200 400 600 800 1000

Ener

gy (a

.u.)

Time step

~8000 steps of 3000 walkers for statistics

Page 22: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

2222 Open slide master to edit

Key features of DMC

Potentially all controllable

“Fixed node” Variational error in energy is key approximation.

Errors, Approximations

Finite size scaling & cost in solid-state (Supercells).

Small timestep needed for high Z.

Unlike VMC, no explicit wavefunction obtained. Mixed estimator problem for non-commuting observables.

Advantages Disadvantages

Gives very accurate and robust results, even with simple nodal surfaces/trial wavefunctions.

Easily take advantages of supercomputers.

Becomes faster, cheaper with improved trial wavefunctions.

Page 23: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

2323 Open slide master to edit

Auxiliary Field QMC

Strong basis set errorFlexible treatment of core electrons

Spin-orbit, operators are easy

Direct connection to models

K-point symmetries (NEW)Well suited to GPUs

Simple workflow

Overall costs (time, memory)

AFQMC

Works at basis set limit

Additional approximations needed for non-local potentials

Spin-orbit is not straightforwardTrivial explicit correlation

Memory friendly

Complex workflow

DMC

AFQMC is projection method like DMC but works in orbital space. Same or similar as AFQMC used for “model” Hamiltonians.

Far fewer published AFQMC than DMC results. First production open source implementation is in QMCPACK.

See https://github.com/QMCPACK/qmcpack_workshop_2019 + YouTube

Page 24: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

2424 Open slide master to edit

Molecular systemsChemical accuracy <1kcal/mol achieved via the “linear method” for wf optimization of Umrigar et al. PRL (2007).

Trial wavefunctions use large multideterminant expansions DMC better than VMC.

G1 test set. Morales et al. JCTC 8 2181 (2012) VdW Review: M. Dubecky Chem. Rev. 116 5188 (2016)

1kcal/molChemicalAccuracy

Increasing #determinants

Page 25: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

2525 Open slide master to edit

Solids: Metal oxidesSingle determinant DMC results are the most accurate in cohesive energy and lattice constant.

Error increases for heavier elements.

Recall: These are not exact calculations. Relative size of nodal and pseudopotential errors is not known.

J. Santana et al. JCP (2016,2017)

Page 26: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

2626 Open slide master to edit

Copper oxidesThe best variational DMC results give the best agreement with experiment. Note: DFT+U is simply not predictive.

K. Foyevtsova et al. PRX 4 031003 (2014)

Other studies inc. La2CuO4:L. Wagner et al. PRB 90 125129 (2014), PRB 92 161116 (2015)

Expt.

Page 27: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

2727 Open slide master to edit

The Titania (TiO2) ConundrumRutile generally considered to be stable phase at ambient.

Most DFTs at 0K find anatase most stable, famously claimed to be an error.

Two QMC results (different codes, choices) also find anatase most stable at 0K. Finite T vibrational contributions to stability are important (via DFT).

J. Trail et al. PRB 95 121108 (2017), Y. Luo et al. NJP 18 113049 (2016)

Cross validation with other methods or systematic error reduction is needed

to completely solve this problem

Page 28: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

2828 Open slide master to edit

Solids: Graphite & Van de WaalsGraphite (A-B stacked graphene sheets) is bound via weak Van de Waals forces. Long a challenge for DFT.

Accurate treatment of Van de Waals critical for the increasing number of 2D materials & heterostructures.

L. Spanu, S. Sorella, G. Galli PRL 103 196401 (2009)

DMC calculations with up to 64 atoms, 256 electrons.

Simple, single determinant trial wavefunctions from DFT.

Predicted binding energy (56 meV/atom) close to experiment (62 meV/atom), lattice parameter within 2%.

Now well predicted by various Van de Waals DFT methods.

Page 29: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

2929 Open slide master to edit

QMC for A-A Graphite Helps Identify Preferred VdW DFTs

DMC is within 0.1A of experiment. A-A stacked graphite sensibly higher in energy than A-B stacked ground state.

Self-consistent VdW functionals perform best in this case.

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4

Bin

ding

Ene

rgy

(eV

per

ato

m)

Lattice Spacing (Å)

3.63(2)Å, 0.036(1) eV

AA Graphite Experiment 3.55Å

AA Graphite DMCPBE

DFT−D2TS−vdw

vdw−DF2Spanu et al., AB Graphite LRDMC

Ganesh et al.JCTC 10 5318 (2014)

Page 30: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

3030 Open slide master to edit

The Future

“The future is already here – it’s just not very evenly distributed”

William Gibson

Page 31: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

3131 Open slide master to edit

Towards Systematic convergenceWe can use selected-CI methods to build large multideterminant wavefunctions & reoptimize.

Pioneered for QMC by Toulouse group: Use CIPSI to perturbatively grow a wavefunction with a single threshold parameter.

Near push-button workflow developed for molecules.

H2O molecule−76.438 94(12) a.u. CIPSI-DMC

vs −76.438 9 a.u. Experiment

Most accurate theory calculation to-date

Caffarel et al. JCP 144 151103 (2016)

Page 32: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

3232 Open slide master to edit

Systematic convergence in solidsSimilar techniques should work in solids – the question is how complex a solid can be treated?

Current practical bottleneck is LCAO interface, Gaussians

Carbon 1x1x1, A. Benali, Unpublished

Page 33: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

3333 Open slide master to edit

Convergent Excited statesBuild multideterminant wavefunctions, selectively target and optimize for ground & excited states, match error (variance) between states.

states and thus probes optical gaps, and so exciton bindingenergies (EBEs) must be considered when comparingwith fundamental gaps. Gap comparisons aside, the factthat the method yields an explicit wave function for theVBM → CBM excitation allows us to directly inspecthow well a given density functional satisfies MBPT’szeroth-order picture and thus how likely it is that accuratepredictions will result.Just as the energy E ¼ hΨjHjΨi=hΨjΨi can be mini-

mized to find a “variationally best” ground state within agiven ansatz, we find our excited state by minimizing

Ωðω;ΨÞ ¼ hΨjω −HjΨihΨjðω −HÞ2jΨi

¼ ω − Eðω − EÞ2 þ σ2

; ð1Þ

whose global minimum is not the ground state but the Heigenstate with energy immediately above the chosen valueω [20], which we place within the band gap to targetthe first excited state and thus predict the optical gap.To mitigate the difficulty of dealing with the H2 term, ourQMCPACK [24] implementation evaluates Ω via variationalMonte Carlo (VMC) method [20,25] and minimizes itusing the linear method [20,26,27]. For a more detaileddiscussion of how this approach is kept size extensive [22]and balanced between states [21], as well as computationaldetails and the addressing of finite size effects, we refer thereader to the Supplemental Material [28].We pair this variational approach with a multi–Slater-

Jastrow [29,30] ansatz

ΨðrÞ ¼ eU ðrÞX

I

CIΦIðrÞ; ð2Þ

where U ðrÞ is a correlation factor [24]

U ðrÞ ¼X

ip

VpðripÞ þX

i<j

WðrijÞ; ð3Þ

detailed in the Supplemental Material [28]. This configu-ration interaction (CI) of the Slater determinants ΦI is usedto accommodate the basic structure of each state andaccount for state-specific polarization effects. For theground state, we include the closed-shell Kohn-Shamdeterminant for the basic ground state structure, plus allsingle-particle-hole excitations, which represent the lead-ing-order terms in a Taylor expansion of the orbital rotationthat would transform the Kohn-Sham determinant intowhichever determinant minimizes Ω in the presence ofthe correlation factor. For the excited state, we would liketo include all single-particle-hole excitations as in the BSEapproach as well as the closed-shell determinant and alldouble particle-hole excitations. This would again allow usto capture the leading-order effects of an orbital rotation[31,32] that would in this case accommodate repolariza-tions of the electron cloud in the vicinity of the exciton.However, as it is prohibitively expensive to include all

double excitations in real materials, we approximateorbital relaxations by first minimizing Ω for singles andthe closed-shell term and then adding only those doublesthat contain a singles component with coefficient largerthan 0.1.As seen in Fig. 1 and Tables I and II, the approach in

which we include both singly and doubly excited configu-rations in the excited state (VMC-CISD) is quite effectivefor predicting optical gaps in small (Si), medium (C, LiH,ZnO), and large (LiF) band gap materials. Its mean absolutedeviation (MAD) from experimental values across thesefive systems is just 3.5% compared to MADs more thantwice this large for the optical gaps obtained by subtractingthe known exciton binding energies from G0W0 and self-consistent GW gaps. Of course, MBPT is highly effectivein Si, C, and LiH, and so we expect that in these cases thezeroth-order DFT wave function is sound. The analysis inFig. 2 confirms this expectation by showing that over 90%of the VMC-CISD wave function is accounted for by the

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Si

ZnOLiH

C

LiF

VM

C G

ap (e

V)

Experimental Gap (eV)

FIG. 1. VMC-CISD optical gap predictions plotted againstexperimental results. See Table I for more details.

TABLE I. Band gaps in eV. The quasiparticle gaps of DFT andthe GW methods should be reduced by the EBEs when compar-ing with the VMC and experimental optical gaps.

C Si LiH LiF

LDA 3.93 0.47 2.68 8.60G0W0 5.50 [15] 1.12 [15] 4.64 [33] 13.27 [15]GW 5.99 [15] 1.28 [15] 4.75 [34] 15.10 [15]VMC-CIS 5.68(6) 1.41(6) 5.01(6) 14.6(1)VMC-CISD 5.55(6) 1.20(6) 4.65(6) 12.7(1)Experiment 5.50 [35] 1.17 [35] 4.90 [36] 12.6 [37]EBE 0.07 [38] 0.015 [39] 0.1 [40] 1.6 [37]

PHYSICAL REVIEW LETTERS 123, 036402 (2019)

036402-2

Simple VMC gives accurate results!No supercomputers used!

Zhao & Neuscamman PRL 123 036402 (2019)

Analyze wavefunction to understand + guide G0W0 accuracy in ZnO

ZnO hole density isocontours

Page 34: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

3434 Open slide master to edit

Cross-validationUse of multiple, distinct methods will give stronger predictions and help drive methods improvement for strongly correlated materials.

H10 chainMany methods :

DMC, AFQMC, DMRG,…Motta PRX 2017

0

20

40

60

80

100

DZ TZ QZ DZ TZ QZ extrap

% c

orre

latio

n en

ergy

DMC AFQMC

Exactresult

Carbon diamond primitive cellMultideterminants, large basis sets in DMC

Strong basis set dependence in AFQMCUnpublished, M. Morales & A. Benali.

Page 35: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

3535 Open slide master to edit

Improving DFT functionals

Clearly, this is a hard problem…

Use QMC data from real materials, models to:

– Choose best functional for given application– Obtain improved understanding by analyzing many-

body wavefunctions for solid-state

Page 36: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

3636 Open slide master to edit

QMC can already inform DFT choice

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4

Bin

ding

Ene

rgy

(eV

per

ato

m)

Lattice Spacing (Å)

3.63(2)Å, 0.036(1) eV

AA Graphite Experiment 3.55Å

AA Graphite DMCPBE

DFT−D2TS−vdw

vdw−DF2Spanu et al., AB Graphite LRDMC

Ganesh et al.JCTC 10 5318 (2014)

Mattsson et al.PRB 90 184105 (2014)

Graphite, Lithium-GraphitePick best vdw method for more

extensive DFT studies

Kr liquid at high pressureAM05 has best agreement with QMC.Use AM05 for large scale dynamics.

Page 37: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

3737 Open slide master to edit

VO2 metal-insulator transition and phase diagram

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

r (A)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

4⇡r2

h⇢M

ethod

spin

i ⌦,V

(Ne/A

)

LDA

(a)

M1 phase

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

r (A)

(b)

R phaseDMCHSEPBE0TPSSPBE

PBEsolLDALDA+U(1.0)LDA+U(3.5)LDA+U(6.0)

Phase stability Spin-density analysis

Long a challenge for ”band theories” to obtain the correct phase ordering and physics.M1 transitions to rutile phase at ~340K, becoming metallic. Analysis of the QMC charge density -- with good statistics -- finds that functionals have difficulty with the vanadium d electrons (presumably self-interaction error.)

Structure

I. Kylanpaa et al. PRM 1 065408 (2017)H. Zheng & L. K. Wagner PRL 114 176401 (2015)

With access to energies and densities for many materials, we could empirically fit a functional (dangerous) or help design one (preferred).

BLUE = Gives correct ordering

Page 38: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

3838 Open slide master to edit

Analyzing the wavefunctionA better route to understanding successes & failures of DFT in both real materials and model systems could be analyzing the many-body wavefunction in more depth.

Accessible many-body quantities: density n(r), pair correlation function g(r,r’), density matrix n(r,r’), exchange correlation energy density exc(r),…Little explored: bulk Si, some model and atomic systems.

R. Q. Hood et al. PRL 78 3350 (1997)

Monte Carlo integral over N-2 particle positions + Coupling constant integration.

g(r,r’) spin parallel, one electron on bond center, Si (110) plane

Page 39: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

3939 Open slide master to edit

Bulk silicon analysis

R. Q. Hood et al. PRL 78 3350 (1997)R. Q. Hood et al. PRB 57 8972 (1998)

Some evidence of real space cancelation of errors in LDAADA (averaged density approximation) performs better than LDA in this case.

Datasets are very rich!

This analysis has not been repeated in other materials or with modern functionals.

Page 40: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

4040 Open slide master to edit

Summary: Informing DFT

• QMC can be used to help select the most accurate existing functional today. Can connect to DMFT the same way. Similar to use of quantum chemistry for molecular systems.

• Analysis of many-body wavefunctions may yield greater understanding.

• Important to heed the lessons of Medvedev et al. Science (2017).

Page 41: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

4141 Open slide master to edit

Conclusions

Stochastic methods are a promising route to meeting the challenge of the full quantum many-body problem.

Today, QMC can to be applied to important materials where DFT approximations are questioned.

Accurate wavefunctions from QMC in solids can potentially inform DFT, GW, DMFT and other theories.

www.qmcpack.orgFully open source, github.com/QMCPACK. 50 contributors!

[email protected]

Page 42: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

4242 Open slide master to edit

Page 43: Ab initio Quantum Monte Carlokentpr/talks/KENT_Barcelona_2019...Ab initio Quantum Monte Carlo Paul Kent -kentpr@ornl.gov Oak Ridge National Laboratory, Tennessee, USA kentpr This work

4343 Open slide master to edit

A New Generation of Effective Core Potentials Pseudopotentiallibrary.orgNew many-body construction method H-Kr, L. Mitas and co-workers, JCP 2017, JCP 2018x2, arxiv 2019

Improved accuracy compared to previous potentials including for stretched+compressed bonds.Open website, various quantum chemistry formats + UPF with KB projectors for plane wave codes

Sc Ti V Cr Mn Fe Co Ni Cu Zn

0.0

0.5

1.0

1.5

2.0

Mea

nA

bsol

ute

Dev

iati

on(e

V) UC

BFD

STU

eCEPP

ccECP.S

ccECP