aashto specifications for span lock designsp.bridges.transportation.org/documents/2011 scobs... ·...

7
Strana 1 (celkem 7) RNDr. M. Řehoř, Ph.D. 1) , Ing. P. Schmidt 1) , Ing. T. Lang 2) T 9 1) – Výzkumný ústav pro hnědé uhlí a.s. Most, 2) – Keramost a.s. HISTORICKÉ NÁLEZY ZKAMENĚLÝCH DŘEV NA ÚZEMÍ ČESKÉHO STÁTU OD 16. STOLETÍ PO SOUČASNOST A JEJICH MUZEJNÍ VYUŽITÍ 1 Úvod Pro poznání geologického vývoje oblasti dnešní České republiky mají paleontologické nálezy zkamenělých stromů velký význam. Jsou dochovanými svědky dávného života a pomáhají nám datovat jednotlivé geologické vrstvy. Dokumentace jejich historických nálezů je navíc cenným dokladem postupného rozvoje paleontologie a dalších geologických věd. Příspěvek v první části hodnotí nejstarší nález zkamenělého dřeva na území dnešní České republiky objeveného v 16. století v jáchymovských dolech. Vzorek se dnes nachází ve Francii, kde byl zkoumán a výsledky publikovány. Příspěvek se dále zabývá unikátním nálezem zkamenělého lesa v oblasti Radvanic publikovaným H. P. Goeppertem v roce 1857 a prvorepublikovými pracemi J. E. Purkyněho a A. Friče věnovanými zkamenělým lesům Podkrkonoší. Druhá část příspěvku je věnována dnešním možnostem nálezů zkamenělých dřev v České republice. Hlavní pozornost je věnována výskytu těchto přírodnin v širším okolí severočeské a sokolovské hnědouhelné pánve. Zvláště jsou popsány nálezy permokarbonských dřev z Podbořanska, terciérních zkamenělých lesů z lokalit u Kadaně, terciérních palem z lokality Nechranice a celá řada výskytu v povrchových dolech severočeské pánve a na lokalitách kaolínu. Závěr příspěvku se zabývá dnešní situací významných historických nálezů a výsledky spolupráce autorů s regionálními muzei severozápadních Čech. Příspěvek vznikl s podporou Ministerstva školství, mládeže a tělovýchovy ČR v rámci výzkumného záměru č. MSM 4456918101 „Výzkum fyzikálně chemických vlastností hmot dotčených těžbou a užitím uhlí a jejich vlivů na životní prostředí v regionu severozápadních Čech“ a dále také Grantové agentury České republiky v rámci grantového úkolu GAČR č. 105/09/1675. 2 Situace lokalit zkamenělých dřev České republiky Nejstarší primitivní suchozemské rostliny se na Zemi pravděpodobně poprvé vyskytly v druhé polovině prvohor (devonu) před cca 400 miliony let. Koncem prvohor se již objevují rozsáhlé pralesy tvořené kapradinami, přesličkami, plavuňovitými stromy a primitivními nahosemennými předchůdci dnešních jehličnanů. Na horizont permokarbonu jsou dnes vázány lokality nejstarších zkamenělých stromů, pocházejících z vrstev starých cca 280 – 300 mil. let. V České republice se nálezy soustřeďují do dvou hlavních oblastí. Vynikajícím nalezištěm je oblast Podbořanska, Rakovnicka a Plzeňska. Zdejší až 300

Upload: others

Post on 23-Dec-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Presented to AASHTO T-8, May 16, 2011

AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNBy James M. Phillips III, PEE.C. Driver

Page 2: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

PRESENTATION OUTLINE

Span Lock Synopsis Standard and LRFD Specification Design

Requirements Example Applications Evaluation Recommendations

Page 3: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

SPAN LOCK SYNOPSIS

AASHTO specifications require span locks for bascule bridges (6.8.1.5.1) and suggest them for vertical lift bridges (6.8.3.7.1)

Double-Leaf Bascule Bridges require “center locks” Span Locks on double-leaf bascule bridges are one of

the most maintenance prone mechanical components of any movable bridge.

This presentation focuses on the design of lock bar type, center locks and inconsistencies between the requirements and results obtained using the LRFD specifications versus the Standard Specifications

Page 4: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

DOUBLE-LEAF BASCULE SPAN LOCKS

Typical Florida Double-Leaf Bascule

Span LockC Between Bascule LeavesL

Page 5: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

DOUBLE-LEAF BASCULE SPAN LOCKS

Page 6: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

TYPICAL LOCK BAR TYPE SPAN LOCK

Page 7: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

LOCK BAR TYPE SPAN LOCK

Page 8: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

CALCULATING SPAN LOCK LOADS

[ ]( )ala

alabbPbV+

++−= 2

2

423

R1 R2

P

V

abl

Page 9: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

CODE REQUIREMENTSSTANDARD / LRFD SPECIFICATIONS

Bridge Specifications

Standard Specifications (1988) LRFD Specifications (2007)

Live Load HS-20, Alternate Lane Loading

Live Load Notional LoadHL-93 Truck + Lane LoadSpecial Fatigue Truck Load

3.8.2 Impact Formula

3.6.2 Dynamic Load Allowance (Impact)

IM = 76% Deck JointsIM = 15% for FatigueIM = 33% others

3.6.1.4 Fatigue load shall be one design truck with 30 foot axle spacing.

Page 10: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

CODE REQUIREMENTSSTANDARD / LRFD SPECIFICATIONS

Machinery ProvisionsStandard Specifications (1988) LRFD Specifications (2007)

2.1.11 The impact from live load shall be as specified in the current AASHTO Standard Specifications for Highway Bridges

6.8.1.5.1 Locking Devices

Center locks shall transfer live load and impact from one leaf to the other.

2.1.11 The end floorbeams of the moving span shall be proportioned for full live load plus twice the normal impact.

2.4.1.2.4 End Floorbeams

The end floorbeams of the moving span shall be proportioned for full factored live load plus twice the normal dynamic load allowance.

2.1.11 Allowance has been made for impact in trunnions, wire ropes, wire rope attachments, and machinery parts in the basic allowable unit stresses specified for such parts.

1.3.2 Limit States

For the service limit state, the load factors, Υi, will be taken as 1.0 unless specified otherwise and the resistance factor, Φ, will usually be taken equal to 1.0.Resistance should be based on allowable stresses

Page 11: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

CODE REQUIREMENTSSTANDARD / LRFD SPECIFICATIONS

Machinery ProvisionsStandard Specifications (1988) LRFD Specifications (2007)

6.4.1.1 Unless otherwise stated, machinery design shall bebased on the service and fatigue limit states using the loads and resistances specified herein.

2.5.11 All of the unit stresses specified in this Article provide appropriate safety factors against static failure and against failure by fatigue with and without reversal of stresses. In the determination of the safety factor against fatigue failure, provision was made for stress-raisers which would produce local stress concentrations of 140 percent of the computed stress.

Page 12: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Machinery ProvisionsStandard Specifications (1988) LRFD Specifications (2007)2.5.11 Unit Stresses in Machinery Parts

In the absence of keyways or other stress-raisers in a shaft, the (allowable) unit stresses for torsion and flexure in a shaft may be increased 20 percent.

2.5.11 Unit Stresses in Machinery Parts (table)

Allowable unit stresses:Forged carbon steel:Flexure, Fb = 0.4 Fy or 0.2 Ft

Shear, Fv = Fb/2Forged Alloy SteelFlexure, Fb = Fy/3 or 0.2 Ft

Shear, Shear, Fv = Fb/2

Resistance for Machinery PartsForged carbon steelFlexure, Fy/3Shear, Fy/6

Page 13: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Analysis of Typical Florida Span Lock

Two lane bridge Double-Leaf Bascule 28’ – 0” clear roadway 122.5 foot span between trunnions 6” x 4” Forged Steel Lock Bar

ASTM A668, Class D Fy = 37.5 ksi Ft = 75 ksi

Section Modulus = 24 in3

Plastic Section Modulus = 36 in3

Page 14: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Analysis of Typical Florida Span LockStandard Specifications – Lock Bar as Structure

Shear = 60 kips HS-20 Truck Positioned for maximum shear W 2 x Impact per 2.1.11

Max. Moment in Bar = 540 k” fb = 22.5 ksi Fb = 0.55 Fy = 20.6 ksi

Table 10.32.1A Ratio of = 0.91

Service Check

Page 15: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Analysis of Typical Florida Span LockStandard Specifications – Lock Bar as Machinery

Shear = 36 kips HS-20 Truck Positioned for maximum shear w/o Impact per 2.1.11

Max. Moment in Bar = 324 k” fb = 13.5 ksi Fb = 15 ksi x 120% = 18 ksi

15 ksi from Table 2.5.11 20% increase due to lack of stress raisers

Ratio of = 1.33

Service Check

Page 16: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Analysis of Typical Florida Span LockStandard Specifications – Lock Bar as Structure

Shear = 60 kips (range) HS-20 Truck Positioned for max shear No Impact

Moment (range) in Bar = 540 k” fb = 22.5 ksi Fb = 24 ksi (allowable stress range) Ratio of = 1.07

Fatigue Check

Page 17: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Analysis of Typical Florida Span LockStandard Specifications – Lock Bar as Machinery

Shear = 36 kips (range) Single HS-20 Truck Positioned in Lane No Impact

Moment (range) in Bar = 324 k” fb = 13.5 ksi Fb = 15 ksi x 120% = 18 ksi

15 ksi from Table 2.5.11 20% increase due to lack of stress raisers

Ratio of = 1.33

Fatigue Check

Page 18: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Analysis of Typical Florida Span LockLRFD Specifications – Lock Bar as Structure

Shear = 68 kips HL93 (Truck + Lane) Positioned for maximum shear w/o 2 x Impact (33% impact)

Strength I Limit State γLL = 1.75

γQ = 1071 k” φRn = Fy x Z = 1350 k”

Φ = 1.0

Strength Check

Page 19: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Analysis of Typical Florida Span LockLRFD Specifications – Lock Bar as Structure

Shear = 68 kips HL93 (Truck + Lane) Positioned for maximum shear w/ 2 x Impact (33% Impact)

Service II Limit State γLL = 1.30

γQ = 796 k” φRn = 1.0 x Fy x S = 900 k”

Φ = 1.0

Service Check

Page 20: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Analysis of Typical Florida Span LockLRFD Specifications – Lock Bar as Machinery

Shear = 68 kips HL93 (Truck + Lane) Positioned for maximum shear w/ 2 x Impact

Service II Limit State γLL = 1.30

γQ = 796 k” φRn = Fy / Ns x S = 300 k”

Φ = 1.0 Ns = 3 Fb = Fy / ns = 12.5 ksi

Service Check

Page 21: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Analysis of Typical Florida Span LockLRFD Specifications – Lock Bar as Structure

Shear = 35 kips HL93 Fatigue (Single Truck, 30 foot

axle spacing) Positioned for maximum shear w/o 2 x Impact (15% fatigue impact)

Fatigue Limit State γLL = 1.50

γQ = 473 k” φRn = FTH x S = 900 k”

Φ = 1.0

FTH = 24 ksi (constant amplitude

fatigue threshold, Category A)

Fatigue Check

Page 22: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Analysis of Typical Florida Span LockLRFD Specifications – Lock Bar as Machinery

Shear = 35 kips HL93 Fatigue (Single Truck, 30 foot

axle spacing) Positioned for maximum shear w/o 2 x Impact (15% fatigue impact)

Fatigue Limit State γLL = 1.50

γQ = 473 k” φRn = δe x S = 768 k”

Φ = 1.0 δe = 32 ksi (endurance limit)

Fatigue Check

Page 23: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Analysis of Typical Florida Span Lock Summary of Code Checks

Analysis CaseAllowable / Actual or Resistance / Force Effect

Standard Spec LRFDStrength – Lock Bar as Structural Element NA 1.26

Service – Lock Bar as Structural Element

0.91 1.13

Service – Lock Bar as Machinery 1.33 0.38

Fatigue – Lock Bar as Structural Element 1.07 1.90

Fatigue – Lock Bar as Machinery 1.33* 1.62

Page 24: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Analysis of Typical Florida Span LockLRFD Specifications – Lock Bar as Machinery

Shear = 41 kips HL93 (Truck + Lane) Positioned for maximum shear No Impact

Service II Limit State γLL = 1.0

γQ = 396 k” φRn = Fy / Ns x S = 300 k”

Φ = 1.0 Ns = 3 Fb = Fy / ns = 12.5 ksi

Modified Service CheckγLL = 1.0No Impact

Page 25: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

SR 31, Wilson Pigott Bridge

Real World Test Case Typical Florida Double-Leaf Bascule Heavy truck traffic Bridge instrumented and analyzed for effects of span

lock wear on main girder loads Lock bar is 6” OD x 4” ID tube Fy = 33 ksi, Ft = 45 ksi Standard Spec Evaluation

Bending stress Fb / fy = 0.73 Fatigue stress Fb / fe = 1.2

Page 26: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

SR 31, Wilson Pigott Bridge

Lock Bar as Structure

Strength 1

Service II

Fatigue

Lock Bar as Machinery

Service IIService II Modified

Fatigue

LRFD Evaluation

Page 27: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Code EvaluationLRFD Progression from Standard Spec No clear guidance on use of machinery design requirements

for elements subject to vehicular live load Implication that locks are machinery Requirement to design center locks (and trunnions) for live

load impact Removal of notes that machinery unit stresses include

allowance for impact and stress raisers Removal of note to allow 20% increase in unit stress where

no stress raisers exist. Use of the same basic allowable stress as a method of

calculating resistance Increased vehicular loading (HL93)

Page 28: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Code Evaluation – Issues

Synchronizing LRFD specification for span locks is complicated

Lock bars may be better designed as a structure, but some span lock types have more complex elements best designed as machinery

Any changes to basic allowable stress (or F.S.) impacts other machinery elements

Some provision for impact seems appropriate for span locks, at least a commentary

Page 29: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Potential LRFD RevisionsShort Term Fix

Add to Commentary in 6.8.1.5.1, Locking Devices:“Lock bars which are of uniform cross section and free of stress raisers may be designed as structural elements. Such lock bars shall be designed for Strength I, Service II and Fatigue limit states per the requirements of the AASHTO LRFD Bridge Design Specifications. Twice normal impact shall be applied in the design of center locks designed as structural elements.”

Page 30: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

Potential LRFD RevisionsLong Term Solution

Revisit the LRFD basic factors of safety and the allowable static stresses presented in Table 6.6.1-1 to determine if they already account for impact, stress raisers, and fatigue to some degree and clarify or adjust the values

Determine appropriate load, resistance and impact factors for design of machinery subject to vehicular live load

Determine if applying lane loading to span locks and other machinery is appropriate

Clarify if span locks and/or lock bars are to be designed as machinery and/or structural elements

Page 31: AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGNsp.bridges.transportation.org/Documents/2011 SCOBS... · 2011. 6. 14. · LRFD Specifications (2007) Live Load: HS-20, Alternate Lane Loading

AASHTO SPECIFICATIONS FOR SPAN LOCK DESIGN

Questions or Comments