a4. ( ) ( )4msgrantsphysics.weebly.com/uploads/2/1/3/3/21339258/ib... · 2019. 9. 8. · this...

16
8806-6505 – 8 – N06/4/PHYSI/SP2/ENG/TZ0/XX+ A4. This question is about nuclear binding energy. The table below gives the mass defect per nucleon of deuterium 1 2 H ( ) and helium-4 2 4 He ( ) . Mass defect per nucleon / u 1 2 H 0.00120 2 4 He 0.0060 (a) Explain the term mass defect. ....................................................................... ....................................................................... ....................................................................... [2] (b) Calculate the energy, in joule, that is released when two deuterium nuclei fuse to form a helium-4 nucleus. ....................................................................... ....................................................................... ....................................................................... ....................................................................... [4] 0824 COMBINED IB SL ATOMIC LONG QS 06-08 Page 1

Upload: others

Post on 12-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: a4. ( ) ( )4msgrantsphysics.weebly.com/uploads/2/1/3/3/21339258/ib... · 2019. 9. 8. · This question is about nuclear binding energy. 2The table below gives the mass defect per

8806-6505

– 8 – N06/4/PHYSI/SP2/ENG/TZ0/XX+

a4. This question is about nuclear binding energy.

The table below gives the mass defect per nucleon of deuterium 12 H( ) and helium-4 2

4 He( ).

Mass defect per nucleon / u

12 H 0.00120

24 He 0.00�60

(a) Explain the term mass defect.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) Calculate the energy, in joule, that is released when two deuterium nuclei fuse to form a helium-4 nucleus.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[4]

0824COMBINED IB SL ATOMIC LONG QS 06-08 Page 1

Page 2: a4. ( ) ( )4msgrantsphysics.weebly.com/uploads/2/1/3/3/21339258/ib... · 2019. 9. 8. · This question is about nuclear binding energy. 2The table below gives the mass defect per

2206-6511

– 17 –

turn over

M06/4/PHYSI/SP2/ENG/TZ1/XX+

(Question B2 continued)

part 2 Radioactive decay

(a) Carbon-14 is a radioactive isotope with a half-life of 5500 years. It is produced in the atmosphere by neutron bombardment of nitrogen. The equation for this reaction is

714

01

614N n C X+ → + .

(i) Explain what are meant by isotopes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) Definethetermradioactive half-life.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(iii) Identify the particle X.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) Living trees contain atoms of carbon-14. The activity per gram of carbon from a living tree is higher than that per gram of carbon-14 from burnt wood (charcoal) found at an ancient campsite.

(i) A living tree continuously takes in carbon dioxide from the atmosphere. Suggest why the activity of the carbon from the charcoal is less than that of the living wood.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(ii) Each gram of a living tree contains approximately 1 10–12 g of the isotope carbon-14. Deduce that each gram of carbon in living wood contains approximately 4  1010 atoms of carbon-14.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

1723COMBINED IB SL ATOMIC LONG QS 06-08 Page 2

Page 3: a4. ( ) ( )4msgrantsphysics.weebly.com/uploads/2/1/3/3/21339258/ib... · 2019. 9. 8. · This question is about nuclear binding energy. 2The table below gives the mass defect per

2206-6511

– 18 – M06/4/PHYSI/SP2/ENG/TZ1/XX+

(Question B2, part 2 continued)

(c) On the grid below, draw a graph to show the variation with time of the number of carbon-14 atoms in one gram of wood from a tree. Your graph should indicate the number of atoms for a period of 1.8  104 years after the tree has died. (Half-life of carbon-14 = 5500 years) [3]

number of atoms 1010

4

3

2

1

0 0 0.40 0.80 1.2 1.6 2.0

time / years 104

(d) The activity of a radioactive sample is proportional to the number of atoms in the sample. The activity per gram of carbon from a living tree is 9.6 disintegrations per minute. The activity per gram of carbon in burnt wood found at the ancient campsite is 1.9 disintegrations per minute.

(i) Estimate the number of atoms of carbon-14 in the burnt wood.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) From the graph you have drawn in (c), estimate the age of the burnt wood.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

1823COMBINED IB SL ATOMIC LONG QS 06-08 Page 3

Page 4: a4. ( ) ( )4msgrantsphysics.weebly.com/uploads/2/1/3/3/21339258/ib... · 2019. 9. 8. · This question is about nuclear binding energy. 2The table below gives the mass defect per

2206-6517

– 14 – M06/4/PHYSI/SP2/ENG/TZ2/XX+

b2. This question is about nuclear energy.

(a) Definenuclear binding energy.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) A neutron collides with a nucleus of uranium-235 and the following reaction takes place.

92 01

3796

55138

012235 U n Rb Cs n+ → + +

State the name of this type of reaction.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(c) Themassofnucleicanbeexpressedintermsofunifiedmassunits(u).

(i) Definethetermunified mass unit.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) Using the data below, calculate the energy, in MeV, that is released in the reaction.

mass of 92235 U = 235.0439 u

mass of 3796 Rb = 95.9342 u

mass of 55138Cs = 137.9112 u

mass of 01n = 1.0087 u

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[4]

(This question continues on the following page)

1421COMBINED IB SL ATOMIC LONG QS 06-08 Page 4

Page 5: a4. ( ) ( )4msgrantsphysics.weebly.com/uploads/2/1/3/3/21339258/ib... · 2019. 9. 8. · This question is about nuclear binding energy. 2The table below gives the mass defect per

2206-6517

– 15 –

turn over

M06/4/PHYSI/SP2/ENG/TZ2/XX+

(Question B2 continued)

(d) Explain the importance of the two neutrons produced in the reaction.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(e) Each neutron accounts for about 2 MeV of the energy released in the reaction. Suggest what accounts for the rest of the energy released.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(f) The reaction in (b) is more likely to take place if the colliding neutron has an energy of about 0.1 eV. In certain types of nuclear reactors in which this reaction might take place, the neutrons produced have their energy reduced by collisions with nuclei of graphite (12C). The law of conservation of momentum can be used to estimate the number of collisions required to reduce the energy of the neutrons to 0.1 eV.

State the law of conservation of momentum.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(g) A neutron has a kinetic energy of 2.00 MeV. Deduce that the speed of the neutron is 1.95 107 m s−1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

1521COMBINED IB SL ATOMIC LONG QS 06-08 Page 5

sweatherell
Cross-Out
Page 6: a4. ( ) ( )4msgrantsphysics.weebly.com/uploads/2/1/3/3/21339258/ib... · 2019. 9. 8. · This question is about nuclear binding energy. 2The table below gives the mass defect per

2207-6511

– 1� –

turn over

M07/4/PHYSI/SP2/ENG/TZ1/XX+

(Question B1, continued)

part 2 Nuclear decay

(a) State the nature of an α-particle.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) In the Rutherford-Geiger-Marsden experiment to investigate the structure of the atom, α-particles were directed towards a gold foil. Explain why α-particles, rather than electrons, were used in this experiment.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(c) Uranium-2�8 922�8 U( ) undergoes α-decay to form thorium (Th). The half-life of

uranium 922�8 U is 4.5×109 years.

(i) Definehalf-life.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) Write down the nuclear equation for the α-decay of uranium to thorium.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(d) Thorium is radioactive and further decays occur, eventually giving lead which is stable. These further decays all occur within a time that is short compared to the half-life of 92

2�8 U. In a sample of rocks the ratio of the number of uranium atoms to

the number of lead atoms is 17

.

(i) Estimate the age of the rocks assuming that no lead was initially present in the rocks.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) State one further assumption that is made in this estimate.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

1322COMBINED IB SL ATOMIC LONG QS 06-08 Page 6

Page 7: a4. ( ) ( )4msgrantsphysics.weebly.com/uploads/2/1/3/3/21339258/ib... · 2019. 9. 8. · This question is about nuclear binding energy. 2The table below gives the mass defect per

2207-6517

– 1� –

turn over

M07/4/PHYSI/SP2/ENG/TZ2/XX+

(Question B2 continued)

part 2 Radioactive decay

(a) The nucleon number (mass number) of a stable isotope of argon is 36 and of a radioactive isotope of argon is 3�.

(i) State what is meant by a nucleon.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) Explain, in terms of the number of nucleons and the forces between them, why argon-36 is stable and argon-3� is radioactive.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[4]

(b) A particular nucleus of argon-3� undergoes the decay shown by the nuclear reaction equation below.

(i) State the proton (atomic) number and the nucleon (mass) number of the potassium (K) nucleus.

Proton number: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nucleon number: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) Use the following data to determine the maximum energy, in J, of the β− particle in the decay of a sample of argon-3�.

Mass of argon-3� nucleus = 3�.�6431 u Mass of K nucleus = 3�.�6370 u

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(This question continues on the following page)

1926

1�3� Ar K→ + −β

COMBINED IB SL ATOMIC LONG QS 06-08 Page 7

Page 8: a4. ( ) ( )4msgrantsphysics.weebly.com/uploads/2/1/3/3/21339258/ib... · 2019. 9. 8. · This question is about nuclear binding energy. 2The table below gives the mass defect per

2207-6517

– 20 – M07/4/PHYSI/SP2/ENG/TZ2/XX+

(Question B2, part 2 continued)

(c) The graph below shows the variation with time t of the activity A of a sample of argon-3�.

activity / Bq

1750

1600

1450

1300

1150

1000

�50

700

550

400

250

100 0 1 2 3 4 5 6 7 � � 10 11 12 time / 102 years

Use the graph to determine the half-life of argon-3�. Explain your reasoning.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2026COMBINED IB SL ATOMIC LONG QS 06-08 Page 8

Page 9: a4. ( ) ( )4msgrantsphysics.weebly.com/uploads/2/1/3/3/21339258/ib... · 2019. 9. 8. · This question is about nuclear binding energy. 2The table below gives the mass defect per

2208-6511

–17–

turn over

M08/4/PHYSI/SP2/ENG/TZ1/XX+

(Question B2, part 1 continued)

(d) The engine that drives the conveyor belt has an efficiency of 40 %. Calculate the input powertotheengine.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

Part 2 Nuclearreaction

(a) Statethemeaningoftheterms

(i) nuclide

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) isotope

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(b) Anucleusof 2411 Na undergoesradioactivedecaytothestablenucleus 24

12 Mg.

(i) Identifythistypeofradioactivedecay.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) Usethedatabelowtodeterminetherestmassinatomicmassunitoftheparticleemittedinthedecayof 24

11 Na .

2411restmassof Na u= 23.990962412restmassof Mg u= 23.98504

energyreleasedindecay MeV= 5.002160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(This question continues on the following page)

1722COMBINED IB SL ATOMIC LONG QS 06-08 Page 9

Page 10: a4. ( ) ( )4msgrantsphysics.weebly.com/uploads/2/1/3/3/21339258/ib... · 2019. 9. 8. · This question is about nuclear binding energy. 2The table below gives the mass defect per

2208-6511

–18– M08/4/PHYSI/SP2/ENG/TZ1/XX+

(Question B2 part 2 continued)

(c) Theisotopesodium-24isradioactivebuttheisotopesodium-2�isstable.Suggestwhichoftheseisotopeshasthegreaternuclearbindingenergy.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(d) Attime t = 0,asampleofsodium-24containsN0 atomsofsodium-24.Thehalf-lifeofsodium-24isT1

2.

(i) Usingtheaxesbelow,drawasketchgraphtoshowthevariationwithtimetofthenumberNofsodium-24atomsinthesample. [2]

00

T12

2T12

�T12

t

0N

N

(ii) Statehowtherateatwhichthesampleisdecayingatanytimetcanbefoundfromyoursketchgraph.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

1822COMBINED IB SL ATOMIC LONG QS 06-08 Page 10

Page 11: a4. ( ) ( )4msgrantsphysics.weebly.com/uploads/2/1/3/3/21339258/ib... · 2019. 9. 8. · This question is about nuclear binding energy. 2The table below gives the mass defect per

2208-6517

–20– M08/4/PHYSI/SP2/ENG/TZ2XX+

(Question B3 continued)

Part 2 Nucleardecay

(a) (i) Describethephenomenonofnaturalradioactivedecay.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(ii) Ionizingradiationisemittedduringradioactivedecay.Explainwhatismeantbythetermionizing.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) Thesketchgraphbelowshowsthevariationwithmassnumber(nucleonnumber)AofthebindingenergypernucleonEofnuclei.

E

A

Onepossiblenuclearreactionthatoccurswhenuranium-235isbombardedbyaneutrontoformxenon-142andstrontium-90isrepresentedas

92235

01

54142

3890

014U n Xe Sr n+ → + + .

(i) Identifythetypeofnuclearreactionrepresentedabove.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) Onthesketchgraphabove,identifywiththeirsymbolstheapproximatepositionsof theuranium(U), thexenon(Xe)and thestrontium(Sr)nuclei. [2]

(This question continues on the following page)

2021COMBINED IB SL ATOMIC LONG QS 06-08 Page 11

Page 12: a4. ( ) ( )4msgrantsphysics.weebly.com/uploads/2/1/3/3/21339258/ib... · 2019. 9. 8. · This question is about nuclear binding energy. 2The table below gives the mass defect per

2208-6517

–21– M08/4/PHYSI/SP2/ENG/TZ2XX+

(Question B3, part 2 continued)

(iii) Dataforthebindingenergiesofxenon-142andstrontium-90aregivenbelow.

isotope binding energy / MeV

xenon-142 strontium-90

1189784.8

Thetotalenergyreleasedduringthereactionis187.9MeV.Determinethebindingenergypernucleonofuranium-235.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[3]

(iv) Statewhybindingenergyoftheneutronsformedinthereactionisnotquoted.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

2121COMBINED IB SL ATOMIC LONG QS 06-08 Page 12

Page 13: a4. ( ) ( )4msgrantsphysics.weebly.com/uploads/2/1/3/3/21339258/ib... · 2019. 9. 8. · This question is about nuclear binding energy. 2The table below gives the mass defect per

8807-6505

– 1� –

turn over

N07/4/PHYSI/SP2/ENG/TZ0/XX+

(Question B1 continued)

part 2 Nuclear reactions

(a) (i) State what is meant by radioactive decay.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(ii) Radioactive decay is said to be a random process. State what is meant by random decay.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(b) In 1919, Rutherford was investigating the bombardment of nitrogen by α-particles. He discovered that, in the interaction between an α-particle and a nitrogen nucleus, the nitrogen nucleus was transformed into an oxygen nucleus with the emission of a proton.

(i) Complete the nuclear reaction equation for this transformation.

714

24N He O p

........

........................+ → +

[2]

(ii) The rest masses of the particles shown in the reaction equation are given in the table below.

particle rest mass / u

He

N

O

p

4.00260

14.00�07

16.9991�

1.0078�

Calculate the minimum energy, in MeV, of an α-particle required to cause this transformation to occur. Explain your answer.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[4]

1324COMBINED IB SL ATOMIC LONG QS 06-08 Page 13

Page 14: a4. ( ) ( )4msgrantsphysics.weebly.com/uploads/2/1/3/3/21339258/ib... · 2019. 9. 8. · This question is about nuclear binding energy. 2The table below gives the mass defect per

8808-6505

–19–

turn over

N08/4/PHYSI/SP2/ENG/TZ0/XX+

(Question B2 continued)

Part 2 Radioactivity

(a) Nuclei of the carbonisotope, C-14, arecontinuously produced in the atmosphere bythe collision of neutrons with nuclei of nitrogenN-14.

(i) Definethetermisotope.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) State the nuclear reaction equation for the production of a nucleus of C-14(proton(atomic)numberofcarbon=6,proton(atomic)numberofnitrogen=7).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

1928COMBINED IB SL ATOMIC LONG QS 06-08 Page 14

Page 15: a4. ( ) ( )4msgrantsphysics.weebly.com/uploads/2/1/3/3/21339258/ib... · 2019. 9. 8. · This question is about nuclear binding energy. 2The table below gives the mass defect per

8808-6505

–20– N08/4/PHYSI/SP2/ENG/TZ0/XX+

(Question B2, part 2 continued)

(b) InalivinganimalthefractionF = numberof Cnucleinumberof Cnuclei

614

612 isconstantduetothereplacement

ofcarboninthebone.

Thegraphshowsthevariationwithtimet(sincedeath)ofthefractionFintheboneofadeadanimal.

F/×10–12 1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.00 2 4 6 8 10 12 14

t/×103years

ExplainwhythefractionFdoesnotstayconstantintheboneofadeadanimal.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(This question continues on the following page)

2028COMBINED IB SL ATOMIC LONG QS 06-08 Page 15

Page 16: a4. ( ) ( )4msgrantsphysics.weebly.com/uploads/2/1/3/3/21339258/ib... · 2019. 9. 8. · This question is about nuclear binding energy. 2The table below gives the mass defect per

8808-6505

–21–

turn over

N08/4/PHYSI/SP2/ENG/TZ0/XX+

(Question B2, part 2 continued)

(c) Usethegraphin(b)todeterminethe

(i) valueofthefractionFfortheboneofananimalwhilstitwasalive.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[1]

(ii) half-lifeofcarbonC-14.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(d) EstimatetheageofaboneforwhichF =6.0×10–13.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

(e) Suggestwhy a graph ofF versus t is inappropriate for finding the age of a dinosaurbone.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[2]

2128COMBINED IB SL ATOMIC LONG QS 06-08 Page 16