a volumetric contact dynamics model

53
Introduction Volumetric Model Experiments Modelling A Volumetric Contact Dynamics Model Mike Boos SYDE 652 March 27, 2012 Mike Boos A Volumetric Contact Dynamics Model 1/ 34

Upload: mboos

Post on 13-Jul-2015

235 views

Category:

Education


1 download

TRANSCRIPT

IntroductionVolumetric Model

ExperimentsModelling

A Volumetric Contact Dynamics Model

Mike Boos

SYDE 652

March 27, 2012

Mike Boos A Volumetric Contact Dynamics Model 1/ 34

IntroductionVolumetric Model

ExperimentsModelling

Outline

1 Introduction

2 Volumetric ModelVolumetric model frameworkNormal forcesFriction forces

3 ExperimentsNormal force experimentsFriction experiments

4 ModellingGraph theoretic contact modelMapleSim modelDemos

Mike Boos A Volumetric Contact Dynamics Model 2/ 34

IntroductionVolumetric Model

ExperimentsModelling

Outline

1 Introduction

2 Volumetric ModelVolumetric model frameworkNormal forcesFriction forces

3 ExperimentsNormal force experimentsFriction experiments

4 ModellingGraph theoretic contact modelMapleSim modelDemos

Mike Boos A Volumetric Contact Dynamics Model 3/ 34

IntroductionVolumetric Model

ExperimentsModelling

Motivation

Dextre at the tip of Canadarm2 (Gonthier, 2007)

Mike Boos A Volumetric Contact Dynamics Model 4/ 34

IntroductionVolumetric Model

ExperimentsModelling

Point contact models

B1

B2

fn

Figure: Point contact model.

Hertz theory

fn = kδp n(p = 3/2 forsphere-on-sphere)

Hunt-Crossley

fn = kδp(1 + aδ)n

Mike Boos A Volumetric Contact Dynamics Model 5/ 34

IntroductionVolumetric Model

ExperimentsModelling

Point contact models

B1

B2

fn

Figure: Point contact model.

Hertz theory

fn = kδp n(p = 3/2 forsphere-on-sphere)

Hunt-Crossley

fn = kδp(1 + aδ)n

Mike Boos A Volumetric Contact Dynamics Model 5/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Outline

1 Introduction

2 Volumetric ModelVolumetric model frameworkNormal forcesFriction forces

3 ExperimentsNormal force experimentsFriction experiments

4 ModellingGraph theoretic contact modelMapleSim modelDemos

Mike Boos A Volumetric Contact Dynamics Model 6/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Volumetric model

B1

B2

fn

kv

Figure: Modified Winkler elastic foundation model.

Force element

dfn = kvδ(s)n

Mike Boos A Volumetric Contact Dynamics Model 7/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Volumetric model

B1

B2

n

S

δ(s)

s

Contact plate

B1

B2

n

S

pc

sc

ρs ρv

sp

V =∫S δ(s)dS

pc =∫V pdV

V

Js =∫S((ρs ·ρs)I−ρsρs)δ(s)dS

Jv =∫V ((ρv · ρv)I− ρvρv)dV

J{s,v}n = r2gyrV n

Mike Boos A Volumetric Contact Dynamics Model 8/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Volumetric model

B1

B2

n

S

δ(s)

s

Contact plate

B1

B2

n

S

pc

sc

ρs ρv

sp

V =∫S δ(s)dS

pc =∫V pdV

V

Js =∫S((ρs ·ρs)I−ρsρs)δ(s)dS

Jv =∫V ((ρv · ρv)I− ρvρv)dV

J{s,v}n = r2gyrV n

Mike Boos A Volumetric Contact Dynamics Model 8/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Volumetric model

B1

B2

n

S

δ(s)

s

Contact plate

B1

B2

n

S

pc

sc

ρs ρv

sp

V =∫S δ(s)dS

pc =∫V pdV

V

Js =∫S((ρs ·ρs)I−ρsρs)δ(s)dS

Jv =∫V ((ρv · ρv)I− ρvρv)dV

J{s,v}n = r2gyrV n

Mike Boos A Volumetric Contact Dynamics Model 8/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Volumetric model

B1

B2

n

S

δ(s)

s

Contact plate

B1

B2

n

S

pc

sc

ρs ρv

sp

V =∫S δ(s)dS

pc =∫V pdV

V

Js =∫S((ρs ·ρs)I−ρsρs)δ(s)dS

Jv =∫V ((ρv · ρv)I− ρvρv)dV

J{s,v}n = r2gyrV n

Mike Boos A Volumetric Contact Dynamics Model 8/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Volumetric model

B1

B2

n

S

δ(s)

s

Contact plate

B1

B2

n

S

pc

sc

ρs ρv

sp

V =∫S δ(s)dS

pc =∫V pdV

V

Js =∫S((ρs ·ρs)I−ρsρs)δ(s)dS

Jv =∫V ((ρv · ρv)I− ρvρv)dV

J{s,v}n = r2gyrV n

Mike Boos A Volumetric Contact Dynamics Model 8/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Normal Forces

B1

B2

τ s

τ r

fn

f t

dfn = kvδ(s)(1 + a vn)n

Normal force

fn = kvV (1 + a vcn)n

Rolling resistance torque

τ r = kv aJs · ωt

Mike Boos A Volumetric Contact Dynamics Model 9/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Normal Forces

B1

B2

τ s

τ r

fn

f t

dfn = kvδ(s)(1 + a vn)n

Normal force

fn = kvV (1 + a vcn)n

Rolling resistance torque

τ r = kv aJs · ωt

Mike Boos A Volumetric Contact Dynamics Model 9/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Normal Forces

B1

B2

τ s

τ r

fn

f t

dfn = kvδ(s)(1 + a vn)n

Normal force

fn = kvV (1 + a vcn)n

Rolling resistance torque

τ r = kv aJs · ωt

Mike Boos A Volumetric Contact Dynamics Model 9/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Basic friction model

B1

B2

τ s

τ r

fn

f t

df t = −µdfnvt

Friction force

f t = −µ fnvsct

Spinning friction torque

τ s = −µ r2gyrfn ωn

Mike Boos A Volumetric Contact Dynamics Model 10/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Basic friction model

B1

B2

τ s

τ r

fn

f t

df t = −µdfnvt

Friction force

f t = −µ fnvsct

Spinning friction torque

τ s = −µ r2gyrfn ωn

Mike Boos A Volumetric Contact Dynamics Model 10/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Basic friction model

B1

B2

τ s

τ r

fn

f t

df t = −µdfnvt

Friction force

f t = −µ fnvsct

Spinning friction torque

τ s = −µ r2gyrfn ωn

Mike Boos A Volumetric Contact Dynamics Model 10/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Stick-slip state

Average surface velocity

v2avg = vsct · vsct + (rgyr|ωn|)2

Stick-slip state

s = e−

v2avgv2s

Maximum friction coefficient

µmax = µC + (µS − µC) sCan add lag to s for dwell time dependency.

Mike Boos A Volumetric Contact Dynamics Model 11/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Stick-slip state

Average surface velocity

v2avg = vsct · vsct + (rgyr|ωn|)2

Stick-slip state

s = e−

v2avgv2s

Maximum friction coefficient

µmax = µC + (µS − µC) sCan add lag to s for dwell time dependency.

Mike Boos A Volumetric Contact Dynamics Model 11/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Stick-slip state

Average surface velocity

v2avg = vsct · vsct + (rgyr|ωn|)2

Stick-slip state

s = e−

v2avgv2s

Maximum friction coefficient

µmax = µC + (µS − µC) s

Can add lag to s for dwell time dependency.

Mike Boos A Volumetric Contact Dynamics Model 11/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Stick-slip state

Average surface velocity

v2avg = vsct · vsct + (rgyr|ωn|)2

Stick-slip state

s = e−

v2avgv2s

Maximum friction coefficient

µmax = µC + (µS − µC) sCan add lag to s for dwell time dependency.

Mike Boos A Volumetric Contact Dynamics Model 11/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Bristle model

fN

Contact sites

Surface asperities (‘bristles’) incontact (Gonthier, 2007).

Bristle properties

Deformation: zsc

Rotation: θn

Parameters

Stiffness: σo

Damping: σ1

Mike Boos A Volumetric Contact Dynamics Model 12/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Bristle model

fN

Contact sites

Surface asperities (‘bristles’) incontact (Gonthier, 2007).

Bristle properties

Deformation: zsc

Rotation: θn

Parameters

Stiffness: σo

Damping: σ1

Mike Boos A Volumetric Contact Dynamics Model 12/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Tangential friction forces

Friction force

f t = −fn (sat(σo zsc + σ1 zsc, µmax) + σ2 vsct)

Bristle deformation rate

zsc = svsct + (1− s)(1σ1 µC dirε(vsct, vε)− σo

σ1 zsc

)

Mike Boos A Volumetric Contact Dynamics Model 13/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Tangential friction forces

Friction force

f t = −fn (sat(σo zsc + σ1 zsc, µmax) + σ2 vsct)

Bristle deformation rate

zsc = svsct + (1− s)(1σ1 µC dirε(vsct, vε)− σo

σ1 zsc

)

Mike Boos A Volumetric Contact Dynamics Model 13/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Spinning friction torque

Spinning friction torque

τ s = −r2gyr fn(sat(σo θn + σ1 θn,

µmaxrgyr

)+ σ2 ωn

)n

Bristle deformation rate

θn = s ωn + (1− s)(

µCσ1 rgyr sgn(ωn)− σo

σ1 θn

)

Mike Boos A Volumetric Contact Dynamics Model 14/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

Spinning friction torque

Spinning friction torque

τ s = −r2gyr fn(sat(σo θn + σ1 θn,

µmaxrgyr

)+ σ2 ωn

)n

Bristle deformation rate

θn = s ωn + (1− s)(

µCσ1 rgyr sgn(ωn)− σo

σ1 θn

)

Mike Boos A Volumetric Contact Dynamics Model 14/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

The Contensou effect

Translational friction forcestend to ‘cancel out’ as angularvelocity increases.

Contensou factors

Cv =|vsct|vavg

Cω =rgyr|ωn|vavg

We now need to update theslipping coefficient in ourbristle dyanmics equations toinclude these factors.

C

A Bv

ωvA

vB

vC

vDD

ω r

ω r

ω r

ω r

v << ωr (Gonthier, 2007)

Mike Boos A Volumetric Contact Dynamics Model 15/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

The Contensou effect

Translational friction forcestend to ‘cancel out’ as angularvelocity increases.

Contensou factors

Cv =|vsct|vavg

Cω =rgyr|ωn|vavg

We now need to update theslipping coefficient in ourbristle dyanmics equations toinclude these factors.

C

A Bv

ωvA

vB

vC

vDD

ω r

ω r

ω r

ω r

v << ωr (Gonthier, 2007)

Mike Boos A Volumetric Contact Dynamics Model 15/ 34

IntroductionVolumetric Model

ExperimentsModelling

Volumetric model frameworkNormal forcesFriction forces

The Contensou effect

Translational friction forcestend to ‘cancel out’ as angularvelocity increases.

Contensou factors

Cv =|vsct|vavg

Cω =rgyr|ωn|vavg

We now need to update theslipping coefficient in ourbristle dyanmics equations toinclude these factors.

C

A Bv

ωvA

vB

vC

vDD

ω r

ω r

ω r

ω r

v << ωr (Gonthier, 2007)

Mike Boos A Volumetric Contact Dynamics Model 15/ 34

IntroductionVolumetric Model

ExperimentsModelling

Normal force experimentsFriction experiments

Outline

1 Introduction

2 Volumetric ModelVolumetric model frameworkNormal forcesFriction forces

3 ExperimentsNormal force experimentsFriction experiments

4 ModellingGraph theoretic contact modelMapleSim modelDemos

Mike Boos A Volumetric Contact Dynamics Model 16/ 34

IntroductionVolumetric Model

ExperimentsModelling

Normal force experimentsFriction experiments

Contact properties

Focus on simple geometric pairs:

Cylinder-on-plane

Sphere-on-plane

Payload material: Stainless steelContact plane materials: Al, Mg

Mike Boos A Volumetric Contact Dynamics Model 17/ 34

IntroductionVolumetric Model

ExperimentsModelling

Normal force experimentsFriction experiments

Apparatus in normal configuration

Force sensorPayload/specimen (stainless steel)

Encoder reference Contact surface (Al or Mg)

Linear

encoder

Mike Boos A Volumetric Contact Dynamics Model 18/ 34

IntroductionVolumetric Model

ExperimentsModelling

Normal force experimentsFriction experiments

Selected results: Normal forces

Quasi-static loading of SScylinder on Mg plane

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5−5

0

5

10

15

20

25

Displacement (µm)

Conta

ct fo

rce (

N)

Measured data

Perpendicular fit

Perpendicular contact point

Misaligned fit

Misaligned contact point

kv = 5.17× 1012N/m3

Damping factors (a) measured

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1

2

3

4

5

6

7

8

9

10x 10

4

Impact velocity (mm/s)D

am

pin

g facto

r (s

/m)

Estimated factors for AlFit of a ∝ 1/v

i for Al

Estimated factors for MgFit of a ∝ 1/v

i for Mg

a ≈ 1−e2eff

eeff vin

Mike Boos A Volumetric Contact Dynamics Model 19/ 34

IntroductionVolumetric Model

ExperimentsModelling

Normal force experimentsFriction experiments

Experimental procedure

Identify parameters

Verify parameters Contensou effect

Mike Boos A Volumetric Contact Dynamics Model 20/ 34

IntroductionVolumetric Model

ExperimentsModelling

Normal force experimentsFriction experiments

Experimental procedure

Identify parameters Verify parameters

Contensou effect

Mike Boos A Volumetric Contact Dynamics Model 20/ 34

IntroductionVolumetric Model

ExperimentsModelling

Normal force experimentsFriction experiments

Experimental procedure

Identify parameters Verify parameters Contensou effect

Mike Boos A Volumetric Contact Dynamics Model 20/ 34

IntroductionVolumetric Model

ExperimentsModelling

Normal force experimentsFriction experiments

Friction apparatus

Cylindrical

payload

Rotational

motor

Linear

motor

Encoder

reference

Linear

encoder

3DOF force sensors

Contact

surface

z

y

x

z

y

x

Mike Boos A Volumetric Contact Dynamics Model 21/ 34

IntroductionVolumetric Model

ExperimentsModelling

Normal force experimentsFriction experiments

Selected results: Contensou effect

0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (s)

Co

eff

icie

nt

of

Frictio

n

Measured coefficients

Model coefficients

0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (s)C

oe

ffic

ien

t o

f F

rictio

n

Measured coefficients

Model coefficients

Mike Boos A Volumetric Contact Dynamics Model 22/ 34

IntroductionVolumetric Model

ExperimentsModelling

Graph theoretic contact modelMapleSim modelDemos

Outline

1 Introduction

2 Volumetric ModelVolumetric model frameworkNormal forcesFriction forces

3 ExperimentsNormal force experimentsFriction experiments

4 ModellingGraph theoretic contact modelMapleSim modelDemos

Mike Boos A Volumetric Contact Dynamics Model 23/ 34

IntroductionVolumetric Model

ExperimentsModelling

Graph theoretic contact modelMapleSim modelDemos

Model

c1

c2

f

m1

m2

d

g

Bodies: m1, m2

Measured displacement: d

Volume centroid (relative toeach body): c1, c2

Contact forces: f

Mike Boos A Volumetric Contact Dynamics Model 24/ 34

IntroductionVolumetric Model

ExperimentsModelling

Graph theoretic contact modelMapleSim modelDemos

MapleSim Model: Assumptions

One deformable body model - body ‘a’ rigid, ‘b’ deformable

Normal axis is frame ‘a’ z-axis (body a is flat)

All vectors and tensors (i.e. inertia tensor, centroid, relativevelocity) calculated for frame ‘a’

Js ≈ JV - volume inertia tensor is easier to calculate thansurface inertia

Volume centroid and surface centroid are very close (normaland friction forces at same location)

Mike Boos A Volumetric Contact Dynamics Model 25/ 34

IntroductionVolumetric Model

ExperimentsModelling

Graph theoretic contact modelMapleSim modelDemos

Model

c1

c2

f

m1

m2

d

g

Mike Boos A Volumetric Contact Dynamics Model 26/ 34

IntroductionVolumetric Model

ExperimentsModelling

Graph theoretic contact modelMapleSim modelDemos

Parameters

Mike Boos A Volumetric Contact Dynamics Model 27/ 34

IntroductionVolumetric Model

ExperimentsModelling

Graph theoretic contact modelMapleSim modelDemos

Forces Block

Mike Boos A Volumetric Contact Dynamics Model 28/ 34

IntroductionVolumetric Model

ExperimentsModelling

Graph theoretic contact modelMapleSim modelDemos

Geometry Calculation Block

Mike Boos A Volumetric Contact Dynamics Model 29/ 34

IntroductionVolumetric Model

ExperimentsModelling

Graph theoretic contact modelMapleSim modelDemos

Geometry: Sphere-on-plane

Mike Boos A Volumetric Contact Dynamics Model 30/ 34

IntroductionVolumetric Model

ExperimentsModelling

Graph theoretic contact modelMapleSim modelDemos

Geometry: Cylinder-on-plane

Mike Boos A Volumetric Contact Dynamics Model 31/ 34

IntroductionVolumetric Model

ExperimentsModelling

Graph theoretic contact modelMapleSim modelDemos

Demo: ‘wobbly’ clutch

Mike Boos A Volumetric Contact Dynamics Model 32/ 34

IntroductionVolumetric Model

ExperimentsModelling

Graph theoretic contact modelMapleSim modelDemos

Demo: tippe top

Mike Boos A Volumetric Contact Dynamics Model 33/ 34

IntroductionVolumetric Model

ExperimentsModelling

Graph theoretic contact modelMapleSim modelDemos

Questions

Mike Boos A Volumetric Contact Dynamics Model 34/ 34