a transparent tellurite ceramicfor nearinfraredapplications · 2016. 11. 24. · tellurite glasses...

35
A transparent tellurite ceramic for near infrared applications Morgane DOLHEN E-mail: [email protected] A. Bertrand, J. Carreaud, S. Chenu, M. Allix, J. Cornette, M. Colas, E. Véron, V. Couderc, T. Hayakawa, F. Célarié, C. Genevois, P. Thomas, J.-R. Duclère, G. Delaizir

Upload: others

Post on 20-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Atransparenttellurite ceramic fornear infrared applications

    MorganeDOLHENE-mail:[email protected]

    A.Bertrand,J.Carreaud,S.Chenu,M.Allix,J.Cornette,M.Colas,E.Véron,V.Couderc,T.Hayakawa,F.Célarié,C.Genevois,P.Thomas,J.-R.Duclère,G.Delaizir

  • Transparent ceramics

    2

    MgAl2O4 Transparentarmor[2]

    Nd:YAGLaserceramic[3]

    Mechanical

    Dielectric

    Thermal

    OPTICAL

    PROPERTIES

    ALONInfraredwindowsopticallenses[1]

  • Transparent ceramics

    2

    Light scattering sources [4]:• 1: Grain boundary• 2: residual pores• 3: secondary phase(s)• 4: double refraction• 5: inclusions• 6: surface roughness

    MgAl2O4 Transparentarmor[2]

    Nd:YAGLaserceramic[3]

    Mechanical

    Dielectric

    Thermal

    OPTICAL

    PROPERTIES

    [1]http://www.surmet.com/technology/alon-optical-ceramics/[2]A.Goldstein,etal.,JournaloftheEuropeanCeramicSociety2012,32,2869-2886.[3]W.Liu,etal.,CeramicsInternational2012,38,259-264[4]L.B.Kong,etal.,TransparentCeramics.Editor,SpringerInternationalPublishing,2015.

    ALONInfraredwindowsopticallenses[1]

  • Transparent crystalline material elaboration

    3

    [5]H.Li,etal.,OpticalMaterials2013,35,1071-1076[6]R.Boulesteix,etal.,Materials Letters 2010,64,1854-1857[7]K.Morita,etal.,JournaloftheEuropeanCeramicSociety2016,36,2961-2968[8]R.Boulesteix,etal.,ScriptaMaterialia 2014,75,54-57[9]J.Akiyama,etal.,inBookFirstdemonstrationofrare-earth-dopedanisotropicceramiclaser,ed.byEditor,City,2011,Chap.,pp.1-1.

    SapphirecrystalsConventionalsingle-crystalgrowthby

    Czochralski [5]

    TRANSPARENT

  • 3

    Nd:YAG Vacuumreaction-sintering[6]

    SapphirecrystalsConventionalsingle-crystalgrowthby

    Czochralski [5]

    TRANSPARENT

    Transparent crystalline material elaboration

    [5]H.Li,etal.,OpticalMaterials2013,35,1071-1076[6]R.Boulesteix,etal.,Materials Letters 2010,64,1854-1857[7]K.Morita,etal.,JournaloftheEuropeanCeramicSociety2016,36,2961-2968[8]R.Boulesteix,etal.,ScriptaMaterialia 2014,75,54-57[9]J.Akiyama,etal.,inBookFirstdemonstrationofrare-earth-dopedanisotropicceramiclaser,ed.byEditor,City,2011,Chap.,pp.1-1.

  • Transparent crystalline material elaboration

    3

    Nd:YAG Vacuumreaction-sintering[6]

    SapphirecrystalsConventionalsingle-crystalgrowthby

    Czochralski [5]

    MgAl2O4 SparkPlasmaSintering[7]

    TRANSPARENT Nd:Lu2O3 Slip-castingcoupledwithSparkPlasmaSintering (SPS)[8]

    [5]H.Li,etal.,OpticalMaterials2013,35,1071-1076[6]R.Boulesteix,etal.,Materials Letters 2010,64,1854-1857[7]K.Morita,etal.,JournaloftheEuropeanCeramicSociety2016,36,2961-2968[8]R.Boulesteix,etal.,ScriptaMaterialia 2014,75,54-57[9]J.Akiyama,etal.,inBookFirstdemonstrationofrare-earth-dopedanisotropicceramiclaser,ed.byEditor,City,2011,Chap.,pp.1-1.

  • 3

    Nd:YAG Vacuumreaction-sintering[6]

    SapphirecrystalsConventionalsingle-crystalgrowthby

    Czochralski [5]

    MgAl2O4 SparkPlasmaSintering[7]

    TRANSPARENT Nd:Lu2O3 Slip-castingcoupledwithSparkPlasmaSintering (SPS)[8]

    AnisotropicNd:FAP(Fluorapatite)ceramic[9]

    Transparent crystalline material elaboration

    [5]H.Li,etal.,OpticalMaterials2013,35,1071-1076[6]R.Boulesteix,etal.,Materials Letters 2010,64,1854-1857[7]K.Morita,etal.,JournaloftheEuropeanCeramicSociety2016,36,2961-2968[8]R.Boulesteix,etal.,ScriptaMaterialia 2014,75,54-57[9]J.Akiyama,etal.,inBookFirstdemonstrationofrare-earth-dopedanisotropicceramiclaser,ed.byEditor,City,2011,Chap.,pp.1-1.

  • 3

    Nd:YAG Vacuumreaction-sintering[6]

    SapphirecrystalsConventionalsingle-crystalgrowthby

    Czochralski [5]

    MgAl2O4 SparkPlasmaSintering[7]

    TRANSPARENT Nd:Lu2O3 Slip-castingcoupledwithSparkPlasmaSintering (SPS)[8]

    AnisotropicNd:FAP(Fluorapatite)ceramic [9]

    Presenceofporosity

    Timeconsuming

    Carboncontamination

    Post-treatment

    Transparent crystalline material elaboration

    [5]H.Li,etal.,OpticalMaterials2013,35,1071-1076[6]R.Boulesteix,etal.,Materials Letters 2010,64,1854-1857[7]K.Morita,etal.,JournaloftheEuropeanCeramicSociety2016,36,2961-2968[8]R.Boulesteix,etal.,ScriptaMaterialia 2014,75,54-57[9]J.Akiyama,etal.,inBookFirstdemonstrationofrare-earth-dopedanisotropicceramiclaser,ed.byEditor,City,2011,Chap.,pp.1-1.

  • Full crystallization from glass technique

    4

    Mixprecursors

    MeltingandAnnealing

    GLASS

    Congruentandfull

    crystallization

    TransparentCeramics

  • Full crystallization from glass technique

    4

    Mixprecursors

    MeltingandAnnealing

    GLASS

    Congruentandfull

    crystallization

    TransparentCeramics

    Easyglassshaping

    Ceramicproperties

    Cost-effectivenessAbsenceofporosityNocontamination

  • Full crystallization from glass technique

    4

    Aluminate[10]Mixprecursors

    MeltingandAnnealing

    GLASS

    Congruentandfull

    crystallization

    TransparentCeramics

    Easyglassshaping

    Ceramicproperties

    Cost-effectivenessAbsenceofporosityNocontamination

    Silico-aluminate[12]

    Aluminateetgallate [11]

    [10]M.Allix,etal.,AdvancedMaterials2012,24,5570-5575[11]S.Alahraché,etal.,ChemistryofMaterials2013,25,4017-4024[12]K.AlSaghir,etal.,ChemistryofMaterials2015,27,508-514

  • 1st Transparent tellurite ceramic

    5

    75TeO2 - 12.5Nb2O5 - 12.5Bi2O3

    25μm

    [13]A.Bertrand,etal.,AdvancedOpticalMaterials2016,4,1482-1486

  • 1st Transparent tellurite ceramic

    5

    75TeO2 - 12.5Nb2O5 - 12.5Bi2O3

    25μm

    [13]A.Bertrand,etal.,AdvancedOpticalMaterials2016,4,1482-1486

  • Outline

    6

    Ø CharacteristicoftheTNBglass

    • Glasscomposition

    • DSCcurves

    Ø StudyofthecrystallizationbyX-raydiffraction

    Ø CharacteristicoftheTNBceramic

    • Opticalproperties

    • Microstructureandthermo-mechanicalproperties

  • Glass composition

    7

    Telluriteglassesvssilicaglasses[14]

    • Highertransparency

    • Lowermeltingpoint(800-900°C)

    • Highrefractiveindex

    • Goodnonlinearopticalproperties

    [14]R.A.El-Mallawany,inBookTelluriteGlassesHandbook:PhysicalPropertiesandData,ed.byEditor,CRCpress,City,2011,Chapter.

    Tellurite

  • Glass composition

    7

    75TeO2 - 12.5Nb2O5 - 12.5Bi2O3

    Non-linearopticalproperties

    Thermomechanicalproperties

    (Eliaison Nb-O-Te >Eliaison Te-O-Te )

    Homogeneousnucleation leadto

    crystallization involume

    [14]R.A.El-Mallawany,inBookTelluriteGlassesHandbook:PhysicalPropertiesandData,ed.byEditor,CRCpress,City,2011,Chapter

    Congruentcrystallizationwithacubicsymmetry

    Telluriteglassesvssilicaglasses[14]

    • Highertransparency

    • Lowermeltingpoint(800-900°C)

    • Highrefractiveindex

    • Goodnonlinearopticalproperties

    Tellurite

    Glasssystem

  • Characteristic of the TNB glass

    8

    • SimilarDSCcurvesbetweenpowderandbulkglass

    • Stabilityoftheglass≈60°C

    Homogeneouscrystallization

    350 400 450 500 550

    Temperature (°C)

    Hea

    t flo

    w (m

    W)

    Exo

    Bulk

    Powder

    Tg = 390°C

    Mixprecursors(TeO2,Nb2O5,

    Bi2O3)

    Meltingatrelativelylowtemperature:

    850°CPARENTGLASS

    Tc1 =450°C Tc2 =500°C

  • Study of the crystallization

    9

    T<400°C:Glass

    In-situX-raydiffraction

  • Study of the crystallization

    9

    400°C:CubicphaseBi0,8Nb0,8Te2,4O8(anti-glassβ-Bi2Te4O11)

    T<400°C:Glass

    In-situX-raydiffraction

  • Study of the crystallization

    9

    In-situX-raydiffraction

    480°C:TransformationintoanotherpolymorphofBi0,8Nb0,8Te2,4O8(isostructuraltoSnTe3O8)400°C:CubicphaseBi0,8Nb0,8Te2,4O8(anti-glassβ-Bi2Te4O11)

    T<400°C:Glass

  • Study of the crystallization

    9

    Temperaturerange400°C<T< 520°C

    In-situX-raydiffraction

    T>520°C:Secondary phases(BiNbTe2O8)

    480°C:TransformationintoanotherpolymorphofBi0,8Nb0,8Te2,4O8(isostructuraltoSnTe3O8)400°C:CubicphaseBi0,8Nb0,8Te2,4O8(anti-glassβ-Bi2Te4O11)

    T<400°C:Glass

  • Study of the crystallization

    9[15]M.Trömel,etal.,JournalofTheLess-CommonMetals1985,110,421-424[16]O.Masson,etal.,JournalofSolidStateChemistry2004,177,2168-2176.[17]O.Durand,“Propriétés structurales etvibrationnelles desphasesdésordonnées dans lesystème TeO2-Bi2O3”,Université deLimoges,2006.

    Anti-glass:concept introduce by Trömel [15] in 1983in tellurite-based glasses. Structure: acationic periodic order at long rangeorder and a disorder of the anions [16]

    In-situX-raydiffraction

    Raman spectra of β-Bi2Te4O11 [17]

    T>520°C:Secondary phases(BiNbTe2O8)

    480°C:TransformationintoanotherpolymorphofBi0,8Nb0,8Te2,4O8(isostructuraltoSnTe3O8)400°C:CubicphaseBi0,8Nb0,8Te2,4O8(anti-glassβ-Bi2Te4O11)

    T<400°C:Glass

  • Optical characterization

    10

    200 400 600 800 1000 1200 1400 1600 18002,1

    2,2

    2,3

    2,4

    2,5

    2,6

    2,7

    2,8

    2,9

    Refra

    ctive

    inde

    x n

    Wavelength (nm)

    glass antiglass ceramic

    RefractiveindexSlight difference between glass,antiglass and ceramic

  • Optical characterization

    10

    200 400 600 800 1000 1200 1400 1600 18002,1

    2,2

    2,3

    2,4

    2,5

    2,6

    2,7

    2,8

    2,9

    Refra

    ctive

    inde

    x n

    Wavelength (nm)

    glass antiglass ceramic

    RefractiveindexSlight difference between glass,antiglass and ceramic

    510°C– 1h30

    T < 510°C: light scattering (residual

    glass and/or antiglass with a different n)

    T > 510°C: translucent and opaque

    ceramics (cubic phase decomposition

    and cracks at grain boundaries)

  • Transparent ceramic

    11

    ParentglassCrystallization(510°C– 1h30)

    TRANSPARENTCERAMIC

    § High transparency up to 74%(15 cm between ceramic and text)

    § Transparent in the MIR (3 - 5 μm)

  • Properties of the ceramic

    12

    EDSanalysisCongruent crystallization

  • Properties of the ceramic

    12

    EBSD-SEMmap(F.Brisset,ICMMO)

    EDSanalysisCongruent crystallization

    AbsenceofporosityNoresidualanti-glassphase

    Thingrainboundaries

    20µm

    SEMimage(Y.Launay,SPCTS)

  • Properties of the ceramic

    12

    EDSanalysisCongruent crystallization

    AbsenceofporosityNoresidualanti-glassphase

    Thingrainboundaries

    TNBglass TNBceramicYoung’smodulus,E

    [GPa] 59.4 79.5

    Thermalconductivity[Wm-1 K-1] 0.75 1.1

    EBSD-SEMmap(F.Brisset,ICMMO)

    20µm

    SEMimage(Y.Launay,SPCTS)

  • Conclusion

    13

    Fullandcongruentcrystallization

    Parentglass Ceramic

    Intricateshape(bulk,fibers,…)

    Cost-effectiveprocess

    Highrefractiveindexgoodthermo-

    mechanicalpropertiesNoresidualporositynocontamination

    Application:infraredlensesforthermalimagingcameras

    Hightransparency(upto5.5μm)

  • 14

    Thankyou

    for

    yourattention

    A.Bertrand,etal.,AdvancedOpticalMaterials2016,4,1482-1486

    E-mail: [email protected]

  • 15

  • 15

    amorphous

    crystallized

    Raman spectra of amorphous and crystallized phase

  • 16

    Raman spectra of glass, anti-glass and ceramic

  • 17

    Transmission Electron Microscopy

    TEMimageofaceramic(thermallytreatedat510°C– 1h30)

  • 18

    LaserEmission?

    J.Carreaud,A.Labruyère,H.Dardar,F.Moisy,J.R.Duclère,V.Couderc,A.Bertrand,M.Dutreilh-Colas,G.Delaizir,T.Hayakawa,A.Crunteanu,P.Thomas,OpticalMaterials2015,47,99-107