a study on pv system output changes by pv array installation

6
Current Photovoltaic Research 2(4) 189-194 (2014) pISSN 2288-3274 태양광 어레이 설치 위치 및 각도변경 전후의 태양광 발전 시스템의 출력 변화에 관한 연구 윤정필 1) ㆍ차인수 2) *ㆍ최정식 2) ㆍ김동묵 2) ㆍ박종복 3) ㆍ하민호 3) ㆍ김원배 4) 1) (주)에스제이이엔지 기업부설연구소,담양 517-811 2) 동신대학교 수소에너지학과, 나주시, 524-714 3) 동신대학교 대학원 에너지환경공학과, 나주시, 524-714 4) 송원대학교 전기전자 공학과,광주시,503-742 A Study on PV System Output Changes by PV Array Installation Position and Mount Angle Change Jeong-Phil Yoon 1) In-Su Cha 2) * Jeong-Sik Choi 2) Dong-Mook Kim 2) Jong Bock Park 3) Min Ho Ha 3) Won Bae Kim 4) 1) Research Institute, SJENG Co.,Ltd, Damyang,517-811,Korea 2) Department of Hydrogen & Fuel cell. Dongshin University,Jeonnam 524-714,Korea 3) Dept.of Energy & Environment Dongshin Universityl Graduate School,524-714,Korea 4) Dept of Electrical & Electronic SongWon University,Gwangju,503-742,Korea ABSTRACT: In this paper, We have simulated the output variation of the PV arrays installation with position & angle change. The existing 3 solar array system are 43° southeast and each of the mounting angle is 17°. The PV output power is 240 kW. The composite studied systems in this paper arrays altered 2 PV array among 3 PV array system- the output 144kW. We simulated this system using Solar Pro ver.4.1. The simulation conditions are southwest 43°/array, mount angle 27°/array. Because the southeast have shadow effect-higher mountain The purpose of southwest 43° is reduce the shadow effect. The simulation results of the suggestion design algorithm compared to 1,590 kWh/year output is increased with the southeast. Key words: Photovoltaic, Shadow Effect, Mount angle, Solar Array, Wiring, Surge *Corresponding author: [email protected] Received November 23, 2014; Revised November 29, 2014; Accepted November 29, 2014 2014 by Korea Photovoltaic Society This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Nomenclature Pmax : max power, mW : total (solar) irradiance : direct component : diffuse component : reflected component : solar constant(=1.382[kW/m 2 ]) : etraterrestrial solar irradiance : albedo (ground reflectivity) : tilt < of PV module : azimuth < of PV module : angle between incident light and PV module : solar altitude : declination of the sun : latitude : total days of a year : solar azimuth : culminating solar altitude : equation of time deg : hour < : coefficient of days : total days of a year : latitude deg : longitude : photovoltaic current : diode saturation current : inner series resistance : inner parallel resistance : elementary charge 189

Upload: vuonglien

Post on 05-Feb-2017

232 views

Category:

Documents


1 download

TRANSCRIPT

  • Current Photovoltaic Research 2(4) 189-194 (2014) pISSN 2288-3274

    1)2)*2)2)3)3)4)

    1)() , 517-8112) , , 524-714

    3) , , 524-714

    4) ,,503-742

    A Study on PV System Output Changes by PV Array Installation Position and Mount Angle Change

    Jeong-Phil Yoon1) In-Su Cha2)* Jeong-Sik Choi2) Dong-Mook Kim2) Jong Bock Park3) Min Ho Ha3) Won Bae Kim4)1)Research Institute, SJENG Co.,Ltd, Damyang,517-811,Korea

    2)Department of Hydrogen & Fuel cell. Dongshin University,Jeonnam 524-714,Korea3)Dept.of Energy & Environment Dongshin Universityl Graduate School,524-714,Korea

    4)Dept of Electrical & Electronic SongWon University,Gwangju,503-742,Korea

    ABSTRACT: In this paper, We have simulated the output variation of the PV arrays installation with position & angle change. The existing 3 solar array system are 43 southeast and each of the mounting angle is 17. The PV output power is 240 kW. The compositestudied systems in this paper arrays altered 2 PV array among 3 PV array system- the output 144kW. We simulated this system using SolarPro ver.4.1. The simulation conditions are southwest 43/array, mount angle 27/array. Because the southeast have shadow effect-higher mountain The purpose of southwest 43 is reduce the shadow effect. The simulation results of the suggestion design algorithm compared to 1,590 kWh/year output is increased with the southeast.

    Key words: Photovoltaic, Shadow Effect, Mount angle, Solar Array, Wiring, Surge

    *Corresponding author: [email protected] November 23, 2014; Revised November 29, 2014; Accepted November 29, 2014

    2014 by Korea Photovoltaic SocietyThis is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License

    (http://creativecommons.org/licenses/by-nc/3.0)which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

    Nomenclature

    Pmax : max power, mW : total (solar) irradiance : direct component : diffuse component : reflected component : solar constant(=1.382[kW/m

    2]) : etraterrestrial solar irradiance : albedo (ground reflectivity) : tilt < of PV module : azimuth < of PV module : angle between incident light and PV module

    : solar altitude : declination of the sun : latitude : total days of a year : solar azimuth : culminating solar altitude : equation of timedeg : hour < : coefficient of days : total days of a year : latitudedeg : longitude : photovoltaic current : diode saturation current : inner series resistance : inner parallel resistance : elementary charge

    189

  • J.P. Yoon et al. / Current Photovoltaic Research 2(4) 189-194 (2014)190

    : boltzmann constant : module temperature

    Subscript

    BIPV : building integrated photovoltaic PCS : power conditioning system MPPT : maximum power point trackerDAQ : data aqusition systemRCC : remote control system

    1.

    ( Photovoltaic Power Generating System

    PV )

    , (

    ), ( ) ,

    +/- 10

    1).

    ,

    .

    ,

    .

    Solar Pro. tool

    .

    2.

    ,

    ,

    2).

    , .

    .

    (Power Coditioner)

    ,

    ,

    ,

    .

    ,

    .

    ( ) ?

    , ?

    ?( ),

    ?, ?,

    ?

    .

    , , ,

    ,

    ( )

    .

    .

    ,

    .

    .

    10-20C

    .

    ,

    .

    .

    .

    . (surge)

    ,

    ,

    3-5).

    ,

    .

    ,

  • J.P. Yoon et al. / Current Photovoltaic Research 2(4) 189-194 (2014) 191

    Fig. 1. Block diagram of PV system (5 junction box)

    Fig. 2. Outdoor layout of PV Array

    , .

    , , ,

    .

    ,

    6-10).

    Hay

    cos

    cos

    sin

    cos

    cos

    cos sincoscossincossincoscossinsincoscoscossinsincossin

    cossin (1)

    H

    cossincossin

    cossincossin

    sin coscossin sin coscoscossinsin

    sin cos (2) .

    PV .

    exp (3)

    Si

    300 W/ 800, 100 kW 2, 75 kW 1,

    19 1, 16 3, 16 1,

    , .

    5

    .

    Fig. 1, Fig. 2 .

    3.

    30 m,

    43 ,

    160 m 1, 100 m 1

  • J.P. Yoon et al. / Current Photovoltaic Research 2(4) 189-194 (2014)192

    Fig. 3. Topographical Map of PV site

    Fig. 4. 3D Map of PV site

    Fig. 5. Target PV array for simulation

    Fig. 6. Existing design of PV system . Fig. 3, Fig. 4 .

    4.

    4.1

    3 (Fig. 5

    ) ,

    .

    4.2 3D

    Fig. 6~Fig. 9 3D , 3D ,

    ,

    . 10 * 16 * 3

    , 95%, Max. 2%,

    70% .

    27 .

  • J.P. Yoon et al. / Current Photovoltaic Research 2(4) 189-194 (2014) 193

    Fig. 7. Changing the design for PV system

    Fig. 8. Wiring for PV circuit

    Fig. 9. Shadow effect simulation

    Fig. 10. Simulation Result of PV system

    5.

    43

    ,

    Fig. 10 .

    163,575.66[kWh/], 165,165.84[kWh/

    ] . 1,590.18[kW/]

    .

    6.

    240 kW

    144 kW ( 3)

    /

    1,600 kWh ,

    CO2 567 kg .

    ,

    .

    References

    1. , System , 2010.

    2. JIS (PV) .

    3. , , , 2010.

  • J.P. Yoon et al. / Current Photovoltaic Research 2(4) 189-194 (2014)194

    4. , - .

    5. ( ).

    , 2013.

    6. .PV BIPV ( )

    , 25(2), 2011.3.24.-32.

    7. , , , , , .

    BIPV , 2010

    2011.11, 9-14.

    8. .

    , ,

    23(1),209.1, 162-168.

    9. , , , .

    , ,

    62(5), 2013.5, 712-716.

    10. , .

    , ,

    27(3), 2007.9, 107-115.

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure true /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles true /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /NA /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /LeaveUntagged /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice