a statcom-control scheme for grid documentation

68
CHAPTER-1 INTRODUCTION To have sustainable growth and social progress, it is necessary to meet the energy need by utilizing the renewable energy resources like wind, biomass, hydro, co-generation, etc. In sustainable energy system, energy conservation and the use of renewable source are the key paradigm. The need to integrate the renewable energy like wind energy into power system is to make it possible to minimize the environmental impact on conventional plant. The integration of wind energy into existing power system presents a technical challenges and that requires consideration of voltage regulation, stability, power quality problems. The power quality is an essential customer-focused measure and is greatly affected by the operation of a distribution and transmission network. The issue of power quality is of great importance to the wind turbine. There has been an extensive growth and quick development in the exploitation of wind energy in recent years. The individual units can be of large capacity up to 2 MW, feeding into distribution network, particularly with customers connected in close proximity. Today, more than 28,000 wind generating turbines are successfully operating all over the world. In the fixed-speed wind turbine operation, all the

Upload: pradeep-bujji

Post on 19-Nov-2015

234 views

Category:

Documents


3 download

DESCRIPTION

Injection of the wind power into an electric gridaffects the power quality. The performance of the wind turbineand thereby power quality are determined on the basis of measurementsand the norms followed according to the guidelinespecified in International Electro-technical Commission standard,IEC-61400. The influence of the wind turbine in the gridsystem concerning the power quality measurements are-the activepower, reactive power, variation of voltage, flicker, harmonics,and electrical behavior of switching operation and these aremeasured according to national/international guidelines. Thepaper study demonstrates the power quality problem due toinstallation of wind turbine with the grid. In this proposed schemeSTATic COMpensator (STATCOM) is connected at a point ofcommon coupling with a battery energy storage system (BESS) tomitigate the power quality issues. The battery energy storage isintegrated to sustain the real power source under fluctuating windpower. The STATCOM control scheme for the grid connectedwind energy generation system for power quality improvementis simulated using MATLAB/SIMULINK in power system blockset. The effectiveness of the proposed scheme relives the mainsupply source from the reactive power demand of the load and theinduction generator. The development of the grid co-ordinationrule and the scheme for improvement in power quality norms asper IEC-standard on the grid has been presented.

TRANSCRIPT

CHAPTER-1INTRODUCTIONTo have sustainable growth and social progress, it is necessary to meet the energy need by utilizing the renewable energy resources like wind, biomass, hydro, co-generation, etc. In sustainable energy system, energy conservation and the use of renewable source are the key paradigm. The need to integrate the renewable energy like wind energy into power system is to make it possible to minimize the environmental impact on conventional plant. The integration of wind energy into existing power system presents a technical challenges and that requires consideration of voltage regulation, stability, power quality problems. The power quality is an essential customer-focused measure and is greatly affected by the operation of a distribution and transmission network. The issue of power quality is of great importance to the wind turbine.There has been an extensive growth and quick development in the exploitation of wind energy in recent years. The individual units can be of large capacity up to 2 MW, feeding into distribution network, particularly with customers connected in close proximity. Today, more than 28,000 wind generating turbines are successfully operating all over the world. In the fixed-speed wind turbine operation, all the fluctuation in the wind speed are transmitted as fluctuations in the mechanical torque, electrical power on the grid and leads to large voltage fluctuations. During the normal operation, wind turbine produces a continuous variable output power. These power variations are mainly caused by the effect of turbulence, wind shear, and tower-shadow and of control system in the power system. Thus, the network needs to manage for such fluctuations. The power quality issues can be viewed with respect to the wind generation, transmission and distribution network, such as voltage sag, swells, flickers, harmonics etc. However the wind generator introduces disturbances into the distribution network. One of the simple methods of running a wind generating system is to use the induction generator connected directly to the grid system. The induction generator has inherent advantages of cost effectiveness and robustness. However; induction generators require reactive power for magnetization. When the generated active power of an induction generator is varied due to wind, absorbed reactive power and terminal voltage of an induction generator can be significantly affected. A proper control scheme in wind energy generation system is required under normal operating condition to allow the proper control over the active power production. In the event of increasing grid disturbance, a battery energy storage system for wind energy generating system is generally required to compensate the fluctuation generated by wind turbine. A STATCOM based control technology has been proposed for improving the power quality which can technically manages the power level associates with the commercial wind turbines. The proposed STATCOM control scheme for grid connected wind energy generation for power quality improvement has following objectives. Unity power factor at the source side. Reactive power support only from STATCOM to wind Generator and Load. Simple bang-bang controller for STATCOM to achieve fast dynamic response.The paper is organized as fallows. The Section II introduces the power quality standards, issues and its consequences of wind turbine. The Section III introduces the grid coordination rule for grid quality limits. The Section IV describes the topology for power quality improvement. The Sections V, VI, VII describes the control scheme, system performance and conclusion respectively.

CHAPTER-22.1 POWER QUALITY

The contemporary container crane industry, like many other industry segments, is often enamored by the bells and whistles, colorful diagnostic displays, high speed performance, and levels of automation that can be achieved. Although these features and their indirectly related computer based enhancements are key issues to an efficient terminal operation, we must not forget the foundation upon which we are building. Power quality is the mortar which bonds the foundation blocks. Power quality also affects terminal operating economics, crane reliability, our environment, and initial investment in power distribution systems to support new crane installations.

To quote the utility company newsletter which accompanied the last monthly issue of my home utility billing: Using electricity wisely is a good environmental and business practice which saves you money, reduces emissions from generating plants, and conserves ourNatural resources. As we are all aware, container crane performance requirements continue to increase at an astounding rate. Next generation container cranes, already in the bidding process, will require average power demands of 1500 to 2000 kW almost double the total average demand three years ago. The rapid increase in power demand levels, an increase in container crane population, SCR converter crane drive retrofits and the large AC and DC drives needed to power and control these cranes will increase awareness of the power quality issue in the very near future.

2.2 POWER QUALITY PROBLEMSAny power problem that results in failure or disoperation of customer equipment, manifests itself as an economic burden to the user, or produces negative impacts on the environment.

When applied to the container crane industry, the power issues which degrade power quality include: Power Factor. Harmonic Distortion. Voltage Transients. Voltage Sags or Dips. Voltage Swells.

The AC and DC variable speed drives utilized on board container cranes are significant contributors to total harmonic current and voltage distortion. Whereas SCR phase control creates the desirable average power factor, DC SCR drives operate at less than this. In addition, line notching occurs when SCRs commutate, creating transient peak recovery voltages that can be 3 to 4 times the nominal line voltage depending upon the system impedance and the size of the drives. The frequency and severity of these power system disturbances varies with the speed of the drive. Harmonic current injection by AC and DC drives will be highest when the drives are operating at slow speeds. Power factor will be lowest when DC drives are operating at slow speeds or during initial acceleration and deceleration periods, increasing to its maximum value when the SCRs are fazed on to produce rated or base speed.

Above base speed, the power factor essentially remains constant. Unfortunately, container cranes can spend considerable time at low speeds as the operator attempts to spot and land containers. Poor power factor places a greater kVA demand burden on the utility or engine-alternator power source. Low power factor loads can also affect the voltage stability which can ultimately result in detrimental effects on the life of sensitive electronic equipment or even intermittent malfunction. Voltage transients created by DC drive SCR line notching, AC drive voltage chopping, and high frequency harmonic voltages and currents are all significant sources of noise and disturbance to sensitive electronic equipment

It has been our experience that end users often do not associate power quality problems with Container cranes, either because they are totally unaware of such issues or there was no economic Consequence if power quality was not addressed. Before the advent of solid-state power supplies, Power factor was reasonable, and harmonic current injection was minimal. Not until the crane Population multiplied, power demands per crane increased, and static power conversion became the way of life, did power quality issues begin to emerge.

Even as harmonic distortion and power Factor issues surfaced, no one was really prepared. Even today, crane builders and electrical drive System vendors avoid the issue during competitive bidding for new cranes. Rather than focus on Awareness and understanding of the potential issues, the power quality issue is intentionally or Unintentionally ignored. Power quality problem solutions are available. Although the solutions are not free, in most cases, they do represent a good return on investment. However, if power quality is not specified, it most likely will not be delivered.

Power quality can be improved through: Power factor correction, Harmonic filtering, Special line notch filtering, Transient voltage surge suppression, Proper earthing systems.

In most cases, the person specifying and/or buying a container crane may not be fully aware of the potential power quality issues. If this article accomplishes nothing else, we would hope to provide that awareness.

In many cases, those involved with specification and procurement of container cranes may not be cognizant of such issues, do not pay the utility billings, or consider it someone elses concern. As a result, container crane specifications may not include definitive power quality criteria such as power factor correction and/or harmonic filtering. Also, many of those specifications which do require power quality equipment do not properly define the criteria. Early in the process of preparing the crane specification:

Consult with the utility company to determine regulatory or contract requirements that must be satisfied, if any. Consult with the electrical drive suppliers and determine the power quality profiles that cable expected based on the drive sizes and technologies proposed for the specific project. Evaluate the economics of power quality correction not only on the present situation, but consider the impact of future utility deregulation and the future development plans for the terminal

2.3 THE BENEFITS OF POWER QUALITYPower quality in the container terminal environment impacts the economics of the terminal operation, affects reliability of the terminal equipment, and affects other consumers served by the same utility service. Each of these concerns is explored in the following paragraphs.Economic ImpactThe economic impact of power quality is the foremost incentive to container terminal operators. Economic impact can be significant and manifest itself in several ways:

Power Factor Penalties

Many utility companies invoke penalties for low power factor on monthly billings. There is no industry standard followed by utility companies. Methods of metering and calculating power factor penalties vary from one utility company to the next. Some utility companies actually meter kVAR usage and establish a fixed rate times the number of kVAR-hours consumed. Other utility companies monitor kVAR demands and calculate power factor. If the power factor falls below a fixed limit value over a demand period, a penalty is billed in the form of an adjustment to the peak demand charges. A number of utility companies servicing container terminal equipment do not yet invoke power factor penalties. However, their service contract with the Port may still require that a minimum power factor over a defined demand period be met. The utility company may not continuously monitor power factor or kVAR usage and reflect them in the monthly utility billings; however, they do reserve the right to monitor the Port service at any time. If the power factor criteria set forth in the service contract are not met, the user may be penalized, or required to take corrective actions at the users expense. One utility company, which supplies power service to several east coast container terminals in the USA, does not reflect power factor penalties in their monthly billings, however, their service contract with the terminal reads as follows:

The average power factor under operating conditions of customers load at the point where service is metered shall be not less than 85%. If below 85%, the customer may be required to furnish, install and maintain at its expense corrective apparatus which will increase the power factor of the entire installation to not less than 85%. The customer shall ensure that no excessive harmonics or transients are introduced on to the [utility] system. This may require special power conditioning equipment or filters. The IEEE Std. 519-1992 is used as a guide in determining appropriate design requirements.

The Port or terminal operations personnel, who are responsible for maintaining container cranes, or specifying new container crane equipment, should be aware of these requirements. Utility deregulation will most likely force utilities to enforce requirements such as the example above. Terminal operators who do not deal with penalty issues today may be faced with some rather severe penalties in the future. A sound, future terminal growth plan should include contingencies for addressing the possible economic impact of utility deregulation. System LossesHarmonic currents and low power factor created by nonlinear loads, not only result in possible power factor penalties, but also increase the power losses in the distribution system. These losses are not visible as a separate item on your monthly utility billing, but you pay for them each month. Container cranes are significant contributors to harmonic currents and low power factor. Based on the typical demands of todays high speed container cranes, correction of power factor alone on a typical state of the art quay crane can result in a reduction of system losses that converts to a 6 to 10% reduction in the monthly utility billing. For most of the larger terminals, this is a significant annual saving in the cost of operation.

2.4 Power Service Initial Capital Investments

The power distribution system design and installation for new terminals, as well as modification of systems for terminal capacity upgrades, involves high cost, specialized, high and medium voltage equipment. Transformers, switchgear, feeder cables, cable reel trailing cables, collector bars, etc. must be sized based on the kVA demand. Thus cost of the equipment is directly related to the total kVA demand. As the relationship above indicates, kVA demand is inversely proportional to the overall power factor, i.e. a lower power factor demands higher kVA for the same kW load. Container cranes are one of the most significant users of power in the terminal. Since container cranes with DC, 6 pulse, SCR drives operate at relatively low power factor, the total kVA demand is significantly larger than would be the case if power factor correction equipment were supplied on board each crane or at some common bus location in the terminal. In the absence of power quality corrective equipment, transformers are larger, switchgear current ratings must be higher, feeder cable copper sizes are larger, collector system and cable reel cables must be larger, etc. Consequently, the cost of the initial power distribution system equipment for a system which does not address power quality will most likely be higher than the same system which includes power quality equipment.

2.5 Equipment Reliability

Poor power quality can affect machine or equipment reliability and reduce the life of components. Harmonics, voltage transients, and voltage system sags and swells are all power quality problems and are all interdependent. Harmonics affect power factor, voltage transients can induce harmonics, the same phenomena which create harmonic current injection in DC SCR variable speed drives are responsible for poor power factor, and dynamically varying power factor of the same drives can create voltage sags and swells. The effects of harmonic distortion, harmonic currents, and line notch ringing can be mitigated using specially designed filters.

Power System Adequacy

When considering the installation of additional cranes to an existing power distribution system, a power system analysis should be completed to determine the adequacy of the system to support additional crane loads. Power quality corrective actions may be dictated due to inadequacy of existing power distribution systems to which new or relocated cranes are to be connected. In other words, addition of power quality equipment may render a workable scenario on an existing power distribution system, which would otherwise be inadequate to support additional cranes without high risk of problems.

Environment

No issue might be as important as the effect of power quality on our environment. Reduction in system losses and lower demands equate to a reduction in the consumption of our natural nm resources and reduction in power plant emissions. It is our responsibility as occupants of this planet to encourage conservation of our natural resources and support measures which improve our air quality.

2.5. POWER QUALITY STANDARDS, ISSUES AND ITS CONSEQUENCES

A. International Electro Technical Commission GuidelinesThe guidelines are provided for measurement of power quality of wind turbine. The International standards are developed by the working group of Technical Committee-88 of the International Electro-technical Commission (IEC), IEC standard 61400-21, describes the procedure for determining the power quality characteristics of the wind turbine . The standard norms are specified. 1) IEC 61400-21: Wind turbine generating system, part-21. Measurement and Assessment of power quality characteristic of grid connected wind turbine 2) IEC 61400-13: Wind Turbine measuring procedure in determining the power behavior. 3) IEC 61400-3-7: Assessment of emission limits for fluctuating load IEC 61400-12: Wind Turbine performance. The data sheet with electrical characteristic of wind turbine provides the base for the utility assessment regarding a grid connection.B. Voltage VariationThe voltage variation issue results from the wind velocity and generator torque. The voltage variation is directly related to real and reactive power variations. The voltage variation is commonly classified as under: Voltage Sag/Voltage Dips. Voltage Swells. Short Interruptions. Long duration voltage variation.The voltage flicker issue describes dynamic variations in the network caused by wind turbine or by varying loads. Thus the power fluctuation from wind turbine occurs during continuous operation. The amplitude of voltage fluctuation depends on grid strength, network impedance, and phase-angle and power factor of the wind turbines. It is defined as a fluctuation of voltage in a frequency 1035 Hz. The IEC 61400-4-15 specifies a flicker C. HarmonicsThe harmonic results due to the operation of power electronic converters. The harmonic voltage and current should be limited to the acceptable level at the point of wind turbine connection to the network. To ensure the harmonic voltage within limit, each source of harmonic current can allow only a limited contribution, as per the IEC-61400-36 guideline. The rapid switching gives a large reduction in lower order harmonic current compared to the line commutated converter, but the output current will have high frequency current and can be easily filter-out.D. Wind Turbine Location in Power SystemThe way of connecting the wind generating system into the power system highly influences the power quality. Thus the operation and its influence on power system depend on the structure of the adjoining power network.E. Self Excitation of Wind Turbine Generating SystemThe self excitation of wind turbine generating system (WTGS) with an asynchronous generator takes place after disconnection of wind turbine generating system (WTGS) with local load. The risk of self excitation arises especially when WTGS is equipped with compensating capacitor. The capacitor connected to induction generator provides reactive power compensation. However the voltage and frequency are determined by the balancing of the system. The disadvantages of self excitation are the safety aspect and balance between real and reactive power.F. Consequences of the IssuesThe voltage variation, flicker, harmonics causes the malfunction of equipments namely microprocessor based control system, programmable logic controller; adjustable speed drives, flickering of light and screen. It may leads to tripping of contractors, tripping of protection devices, stoppage of sensitive equipments like personal computer, programmable logic control system and may stop the process and even can damage of sensitive equipments. Thus it degrades the power quality in the grid.

CHAPTER-3FACTSFlexible AC Transmission Systems, called FACTS, got in the recent years a well known term for higher controllability in power systems by means of power electronic devices. Several FACTS-devices have been introduced for various applications worldwide. A number of new types of devices are in the stage of being introduced in practice.In most of the applications the controllability is used to avoid cost intensive or landscape requiring extensions of power systems, for instance like upgrades or additions of substations and power lines. FACTS-devices provide a better adaptation to varying operational conditions and improve the usage of existing installations. The basic applications of FACTS-devices are: Power flow control, Increase of transmission capability, Voltage control, Reactive power compensation, Stability improvement, Power quality improvement, Power conditioning, Flicker mitigation, Interconnection of renewable and distributed generation and storages.The usage of lines for active power transmission should be ideally up to the thermal limits. Voltage and stability limits shall be shifted with the means of the several different FACTS devices. It can be seen that with growing line length, the opportunity for FACTS devices gets more and more important.The influence of FACTS-devices is achieved through switched or controlled shunt compensation, series compensation or phase shift control. The devices work electrically as fast current, voltage or impedance controllers. The power electronic allows very short reaction times down to far below one second.

The development of FACTS-devices has started with the growing capabilities of power electronic components. Devices for high power levels have been made available in converters for high and even highest voltage levels. The overall starting points are network elements influencing the reactive power or the impedance of a part of the power system. Figure 1.2 shows a number of basic devices separated into the conventional ones and the FACTS-devicesFor the FACTS side the taxonomy in terms of 'dynamic' and 'static' needs some explanation. The term 'dynamic' is used to express the fast controllability of FACTS-devices provided by the power electronics. This is one of the main differentiation factors from the conventional devices. The term 'static' means that the devices have no moving parts like mechanical switches to perform the dynamic controllability. Therefore most of the FACTS-devices can equally be static and dynamic.

The left column in Figure 1.2 contains the conventional devices build out of fixed or mechanically switch able components like resistance, inductance or capacitance together with transformers. The FACTS-devices contain these elements as well but use additional power electronic valves or converters to switch the elements in smaller steps or with switching patterns within a cycle of the alternating current. The left column of FACTS-devices uses Thyristor valves or converters. These valves or converters are well known since several years. They have low losses because of their low switching frequency of once a cycle in the converters or the usage of the Thyristors to simply bridge impedances in the valves.The right column of FACTS-devices contains more advanced technology of voltage source converters based today mainly on Insulated Gate Bipolar Transistors (IGBT) or Insulated Gate Commutated Thyristors (IGCT). Voltage Source Converters provide a free controllable voltage in magnitude and phase due to a pulse width modulation of the IGBTs or IGCTs. High modulation frequencies allow to get low harmonics in the output signal and even to compensate disturbances coming from the network. The disadvantage is that with an increasing switching frequency, the losses are increasing as well. Therefore special designs of the converters are required to compensate this.3.1 Configurations of FACTS-Devices:Shunt Devices:The most used FACTS-device is the SVC or the version with Voltage Source Converter called STATCOM. These shunt devices are operating as reactive power compensators. The main applications in transmission, distribution and industrial networks are: Reduction of unwanted reactive power flows and therefore reduced network losses. Keeping of contractual power exchanges with balanced reactive power. Compensation of consumers and improvement of power quality especially with huge demand fluctuations like industrial machines, metal melting plants, railway or underground train systems. Compensation of Thyristor converters e.g. in conventional HVDC lines. Improvement of static or transient stability.Almost half of the SVC and more than half of the STATCOMs are used for industrial applications. Industry as well as commercial and domestic groups of users require power quality. Flickering lamps are no longer accepted, nor are interruptions of industrial processes due to insufficient power quality. Railway or underground systems with huge load variations require SVCs or STATCOMs.SVC:Electrical loads both generate and absorb reactive power. Since the transmitted load varies considerably from one hour to another, the reactive power balance in a grid varies as well. The result can be unacceptable voltage amplitude variations or even a voltage depression, at the extreme a voltage collapse.A rapidly operating Static Var Compensator (SVC) can continuously provide the reactive power required to control dynamic voltage oscillations under various system conditions and thereby improve the power system transmission and distribution stability.Applications of the SVC systems in transmission systems: To increase active power transfer capacity and transient stability margin To damp power oscillations To achieve effective voltage controlIn addition, SVCs are also used:1. In transmission systems To reduce temporary over voltages To damp sub synchronous resonances To damp power oscillations in interconnected power systems2. In traction systems To balance loads To improve power factor To improve voltage regulation3. In HVDC systems To provide reactive power to acdc converters.4. In arc furnaces To reduce voltage variations and associated light flickerInstalling an SVC at one or more suitable points in the network can increase transfer capability and reduce losses while maintaining a smooth voltage profile under different network conditions. In addition an SVC can mitigate active power oscillations through voltage amplitude modulation.SVC installations consist of a number of building blocks. The most important is the Thyristor valve, i.e. stack assemblies of series connected anti-parallel Thyristors to provide controllability. Air core reactors and high voltage AC capacitors are the reactive power elements used together with the Thyristor valves. The step up connection of this equipment to the transmission voltage is achieved through a power transformer.

SVC building blocks and voltage / current characteristicIn principle the SVC consists of Thyristor Switched Capacitors (TSC) and Thyristor Switched or Controlled Reactors (TSR / TCR). The coordinated control of a combination of these branches varies the reactive power as shown in Figure. The first commercial SVC was installed in 1972 for an electric arc furnace. On transmission level the first SVC was used in 1979. Since then it is widely used and the most accepted FACTS-device.

Comparison of the loss characteristics of TSCTCR, TCRFC compensators and synchronous condenserThese SVCs do not have a short-time overload capability because the reactors are usually of the air-core type. In applications requiring overload capability, TCR must be designed for short-time overloading, or separate thyristor-switched overload reactors must be employed.3.2 SVC USING A TCR AND TSC:This compensator overcomes two major shortcomings of the earlier compensators by reducing losses under operating conditions and better performance under large system disturbances. In view of the smaller rating of each capacitor bank, the rating of the reactor bank will be 1/n times the maximum output of the SVC, thus reducing the harmonics generated by the reactor. In those situations where harmonics have to be reduced further, a small amount of FCs tuned as filters may be connected in parallel with the TCR.

SVC of combined TSC and TCR type.When large disturbances occur in a power system due to load rejection, there is a possibility for large voltage transients because of oscillatory interaction between system and the SVC capacitor bank or the parallel. The LC circuit of the SVC in the FC compensator. In the TSCTCR scheme, due to the flexibility of rapid switching of capacitor banks without appreciable disturbance to the power system, oscillations can be avoided, and hence the transients in the system can also be avoided. The capital cost of this SVC is higher than that of the earlier one due to the increased number of capacitor switches and increased control complexity.3.3 STATCOM:In 1999 the first SVC with Voltage Source Converter called STATCOM (STATic COMpensator) went into operation. The STATCOM has a characteristic similar to the synchronous condenser, but as an electronic device it has no inertia and is superior to the synchronous condenser in several ways, such as better dynamics, a lower investment cost and lower operating and maintenance costs. A STATCOM is build with Thyristors with turn-off capability like GTO or today IGCT or with more and more IGBTs. The static line between the current limitations has a certain steepness determining the control characteristic for the voltage. The advantage of a STATCOM is that the reactive power provision is independent from the actual voltage on the connection point. This can be seen in the diagram for the maximum currents being independent of the voltage in comparison to the SVC. This means, that even during most severe contingencies, the STATCOM keeps its full capability.In the distributed energy sector the usage of Voltage Source Converters for grid interconnection is common practice today. The next step in STATCOM development is the combination with energy storages on the DC-side. The performance for power quality and balanced network operation can be improved much more with the combination of active and reactive power.

STATCOM structure and voltage / current characteristic.STATCOMs are based on Voltage Sourced Converter (VSC) topology and utilize either Gate-Turn-off Thyristors (GTO) or Isolated Gate Bipolar Transistors (IGBT) devices. The STATCOM is a very fast acting, electronic equivalent of a synchronous condenser. If the STATCOM voltage, Vs, (which is proportional to the dc bus voltage Vc) is larger than bus voltage, Es, then leading or capacitive VARS are produced. If Vs is smaller then Es then lagging or inductive VARS are produced.

6 Pulses STATCOM.The three phases STATCOM makes use of the fact that on a three phase, fundamental frequency, steady state basis, and the instantaneous power entering a purely reactive device must be zero. The reactive power in each phase is supplied by circulating the instantaneous real power between the phases. This is achieved by firing the GTO/diode switches in a manner that maintains the phase difference between the ac bus voltage ES and the STATCOM generated voltage VS. Ideally it is possible to construct a device based on circulating instantaneous power which has no energy storage device (ie no dc capacitor). A practical STATCOM requires some amount of energy storage to accommodate harmonic power and ac system unbalances, when the instantaneous real power is non-zero. The maximum energy storage required for the STATCOM is much less than for a TCR/TSC type of SVC compensator of comparable rating.

3.4 STATCOM Equivalent Circuit:Several different control techniques can be used for the firing control of the STATCOM. Fundamental switching of the GTO/diode once per cycle can be used. This approach will minimize switching losses, but will generally utilize more complex transformer topologies. As an alternative, Pulse Width Modulated (PWM) techniques, which turn on and off the GTO or IGBT switch more than once per cycle, can be used. This approach allows for simpler transformer topologies at the expense of higher switching losses. The 6 Pulse STATCOM using 1 harmonics. There are afundamental switching will of course produce the 6 N variety of methods to decrease the harmonics. These methods include the basic 12 pulse configuration with parallel star / delta transformer connections, a complete elimination of 5th and 7th harmonic current using series connection of star/star and star/delta transformers and a quasi 12 pulse method with a single star-star transformer, and two secondary windings, using control of firing phase shift between the two 6 pulse bridges. Thisangle to produce a 30 method can be extended to produce a 24 pulse and a 48 pulse STATCOM, thus eliminating harmonics even further. Another possible approach for harmonic cancellation is a multi-level configuration which allows for more than one switching element per level and therefore more than one switching in each bridge arm. The ac voltage derived has a staircase effect, dependent on the number of levels. This staircase voltage can be controlled to eliminate harmonics.

Substation with a STATCOM.3.5 Series Devices:Series devices have been further developed from fixed or mechanically switched compensations to the Thyristor Controlled Series Compensation (TCSC) or even Voltage Source Converter based devices. The main applications are: Reduction of series voltage decline in magnitude and angle over a power line, Reduction of voltage fluctuations within defined limits during changing power transmissions, Improvement of system damping resp. damping of oscillations, Limitation of short circuit currents in networks or substations, Avoidance of loop flows resp. power flow adjustments.3.6 TCSC:Thyristor Controlled Series Capacitors (TCSC) address specific dynamical problems in transmission systems. Firstly it increases damping when large electrical systems are interconnected. Secondly it can overcome the problem of Sub Synchronous Resonance (SSR), a phenomenon that involves an interaction between large thermal generating units and series compensated transmission systems.The TCSC's high speed switching capability provides a mechanism for controlling line power flow, which permits increased loading of existing transmission lines, and allows for rapid readjustment of line power flow in response to various contingencies. The TCSC also can regulate steady-state power flow within its rating limits.From a principal technology point of view, the TCSC resembles the conventional series capacitor. All the power equipment is located on an isolated steel platform, including the Thyristor valve that is used to control the behavior of the main capacitor bank. Likewise the control and protection is located on ground potential together with other auxiliary systems. Figure shows the principle setup of a TCSC and its operational diagram. The firing angle and the thermal limits of the Thyristors determine the boundaries of the operational diagram.

Advantages: Continuous control of desired compensation level. Direct smooth control of power flow within the network. Improved capacitor bank protection. Local mitigation of sub synchronous resonance (SSR). This permits higher levels of compensation in networks where interactions with turbine-generator torsional vibrations or with other control or measuring systems are of concern. Damping of electromechanical (0.5-2 Hz) power oscillations which often arise between areas in a large interconnected power network. These oscillations are due to the dynamics of inter area power transfer and often exhibit poor damping when the aggregate power tranfer over a corridor is high relative to the transmission strength.3.7 Dynamic Power Flow Controller:A new device in the area of power flow control is the Dynamic Power Flow Controller (DFC). The DFC is a hybrid device between a Phase Shifting Transformer (PST) and switched series compensation.A functional single line diagram of the Dynamic Flow Controller is shown in Figure 1.19. The Dynamic Flow Controller consists of the following components: A standard phase shifting transformer with tap-changer (PST) series-connected Thyristor Switched Capacitors and Reactors .(TSC / TSR). A mechanically switched shunt capacitor (MSC). (This is optional depending on the system reactive power requirements).

Based on the system requirements, a DFC might consist of a number of series TSC or TSR. The mechanically switched shunt capacitor (MSC) will provide voltage support in case of overload and other conditions. Normally the reactance of reactors and the capacitors are selected based on a binary basis to result in a desired stepped reactance variation. If a higher power flow resolution is needed, a reactance equivalent to the half of the smallest one can be added.The switching of series reactors occurs at zero current to avoid any harmonics. However, in general, the principle of phase-angle control used in TCSC can be applied for a continuous control as well. The operation of a DFC is based on the following rules: TSC / TSR are switched when a fast response is required. The relieve of overload and work in stressed situations is handled by the TSC / TSR. The switching of the PST tap-changer should be minimized particularly for the currents higher than normal loading. The total reactive power consumption of the device can be optimized by the operation of the MSC, tap changer and the switched capacities and reactors.In order to visualize the steady state operating range of the DFC, we assume an inductance in parallel representing parallel transmission paths. The overall control objective in steady state would be to control the distribution of power flow between the branch with the DFC and the parallel path. This control is accomplished by control of the injected series voltage.The PST (assuming a quadrature booster) will inject a voltage in quadrature with the node voltage. The controllable reactance will inject a voltage in quadrature with the throughput current. Assuming that the power flow has a load factor close to one, the two parts of the series voltage will be close to collinear. However, in terms of speed of control, influence on reactive power balance and effectiveness at high/low loading the two parts of the series voltage has quite different characteristics. The steady state control range for loadings up to rated current is illustrated in Figure 1.20, where the x-axis corresponds to the throughput current and the y-axis corresponds to the injected series voltage.

Operational diagram of a DFC:Operation in the first and third quadrants corresponds to reduction of power through the DFC, whereas operation in the second and fourth quadrants corresponds to increasing the power flow through the DFC. The slope of the line passing through the origin (at which the tap is at zero and TSC / TSR are bypassed) depends on the short circuit reactance of the PST.Starting at rated current (2 kA) the short circuit reactance by itself provides an injected voltage (approximately 20 kV in this case). If more inductance is switched in and/or the tap is increased, the series voltage increases and the current through the DFC decreases (and the flow on parallel branches increases). The operating point moves along lines parallel to the arrows in the figure. The slope of these arrows depends on the size of the parallel reactance. The maximum series voltage in the first quadrant is obtained when all inductive steps are switched in and the tap is at its maximum.Now, assuming maximum tap and inductance, if the throughput current decreases (due e.g. to changing loading of the system) the series voltage will decrease. At zero current, it will not matter whether the TSC / TSR steps are in or out, they will not contribute to the series voltage. Consequently, the series voltage at zero current corresponds to rated PST series voltage. Next, moving into the second quadrant, the operating range will be limited by the line corresponding to maximum tap and the capacitive step being switched in (and the inductive steps by-passed). In this case, the capacitive step is approximately as large as the short circuit reactance of the PST, giving an almost constant maximum voltage in the second quadrant.3.8 Unified Power Flow Controller:The UPFC is a combination of a static compensator and static series compensation. It acts as a shunt compensating and a phase shifting device simultaneously.

Principle configuration of an UPFC.

The UPFC consists of a shunt and a series transformer, which are connected via two voltage source converters with a common DC-capacitor. The DC-circuit allows the active power exchange between shunt and series transformer to control the phase shift of the series voltage. This setup, as shown in Figure 1.21, provides the full controllability for voltage and power flow. The series converter needs to be protected with a Thyristor bridge. Due to the high efforts for the Voltage Source Converters and the protection, an UPFC is getting quite expensive, which limits the practical applications where the voltage and power flow control is required simultaneously.

3.8.1 OPERATING PRINCIPLE OF UPFC:The basic components of the UPFC are two voltage source inverters (VSIs) sharing a common dc storage capacitor, and connected to the power system through coupling transformers. One VSI is connected to in shunt to the transmission system via a shunt transformer, while the other one is connected in series through a series transformer.

A basic UPFC functional scheme is shown in fig.The series inverter is controlled to inject a symmetrical three phase voltage system (Vse), of controllable magnitude and phase angle in series with the line to control active and reactive power flows on the transmission line. So, this inverter will exchange active and reactive power with the line. The reactive power is electronically provided by the series inverter, and the active power is transmitted to the dc terminals. The shunt inverter is operated in such a way as to demand this dc terminal power (positive or negative) from the line keeping the voltage across the storage capacitor Vdc constant. So, the net real power absorbed from the line by the UPFC is equal only to the losses of the inverters and their transformers. The remaining capacity of the shunt inverter can be used to exchange reactive power with the line so to provide a voltage regulation at the connection point.The two VSIs can work independently of each other by separating the dc side. So in that case, the shunt inverter is operating as a STATCOM that generates or absorbs reactive power to regulate the voltage magnitude at the connection point. Instead, the series inverter is operating as SSSC that generates or absorbs reactive power to regulate the current flow, and hence the power low on the transmission line.The UPFC has many possible operating modes. In particular, the shunt inverter is operating in such a way to inject a controllable current, ish into the transmission line. The shunt inverter can be controlled in two different modes: VAR Control Mode: The reference input is an inductive or capacitive VAR request. The shunt inverter control translates the var reference into a corresponding shunt current request and adjusts gating of the inverter to establish the desired current. For this mode of control a feedback signal representing the dc bus voltage, Vdc, is also required. Automatic Voltage Control Mode: The shunt inverter reactive current is automatically regulated to maintain the transmission line voltage at the point of connection to a reference value. For this mode of control, voltage feedback signals are obtained from the sending end bus feeding the shunt coupling transformer. The series inverter controls the magnitude and angle of the voltage injected in series with the line to influence the power flow on the line. The actual value of the injected voltage can be obtained in several ways. Direct Voltage Injection Mode: The reference inputs are directly the magnitude and phase angle of the series voltage. Phase Angle Shifter Emulation mode: The reference input is phase displacement between the sending end voltage and the receiving end voltage. Line Impedance Emulation mode: The reference input is an impedance value to insert in series with the line impedance. Automatic Power Flow Control Mode: The reference inputs are values of P and Q to maintain on the transmission line despite system changes.

3.9 STATIC SYNCHRONOUS COMPENSATOR (STATCOM): Introduction The STATCOM is a solid-state-based power converter version of the SVC. Operating as a shunt-connected SVC, its capacitive or inductive output currents can be controlled independently from its terminal AC bus voltage. Because of the fast-switching characteristic of power converters, STATCOM provides much faster response as compared to the SVC. In addition, in the event of a rapid change in system voltage, the capacitor voltage does not change instantaneously; therefore, STATCOM effectively reacts for the desired responses. For example, if the system voltage drops for any reason, there is a tendency for STATCOM to inject capacitive power to support the dipped voltages. STATCOM is capable of high dynamic performance and its compensation does not depend on the common coupling voltage. Therefore, STATCOM is very effective during the power system disturbances. Moreover, much research confirms several advantages of STATCOM. These advantages compared to other shunt compensators include: Size, weight, and cost reduction . Equality of lagging and leading output. Precise and continuous reactive power control with fast response. Possible active harmonic filter capability.This chapter describes the structure, basic operating principle and characteristics of STATCOM. In addition, the concept of voltage source converters and the corresponding control techniques are illustrated. STRUCTURE OF STATCOM Basically, STATCOM is comprised of three main parts (as seen from Figure below): a voltage source converter (VSC), a step-up coupling transformer, and a controller. In a very-high-voltage system, the leakage inductances of the step-up power transformers can function as coupling reactors. The main purpose of the coupling inductors is to filter out the current harmonic components that are generated mainly by the pulsating output voltage of the power converters.

Reactive power generation by a STATCOM.

CHAPTER-4 GRID COORDINATION RULE

The American Wind Energy Association (AWEA) led the effort in the united state for adoption of the grid code for the interconnection of the wind plants to the utility system. The first grid code was focused on the distribution level, after the blackout in the United State in August 2003. The United State wind energy industry took a stand in developing its own grid code for contributing to a stable grid operation. The rules for realization of grid operation of wind generating system at the distribution network are defined as-per IEC-61400-21. The grid quality characteristics and limits are given for references that the customer and the utility grid may expect. According to Energy-Economic Law, the operator of transmission grid is responsible for the organization and operation of interconnected system.1) Voltage Rise (u): The voltage rise at the point of common coupling can be approximated as a function of maximum apparent power of the turbine, the grid impedances R and X at the point of common coupling and the phase angle [7], given in (1)

Where -phase difference, U-is the nominal voltage of grid. The Limiting voltage rise value is