a quick look to materials at hand ... - catalogue des cours

20
Cours Nanoph EnglishBenisty 2013 1 NANOPHOTONICS (Photonic crystals and Emitters) Sep 17th : Waveguide - Confinement, representations, wg garrays (3h) Sep 24th : from 1D periodic to 2D periodic, complete Photonic band gap (3h) Defect and light line along a non periodic dimension. Nov 5th : Defect in Photonic band gap (1h30) + C. Sauvan (Exercices) nov 12th : C. Sauvan (Exercices) + HB : Nano-emitters (1h30) Nov 19th : Emission issues Purcell effect, light extraction (3h) Nov 26 th : Combinations – emitters and cavities, interplay of confinements Dec 10th : Written exam in two parts (H B part will use ~3 Appl Phys Lett papers (available in early Nov.) as a basis 4 sessions till 22 Oct. included : Ph. Lalanne and C. Sauvan (artif Mat, Metamat, plasmons) Cours Nanoph EnglishBenisty 2013 2 Waveguide - Confinement, representations Confinement = boundary conditions Example Perfect conductor E=0 Magnetic wall H=0 Realistic Real metal, dielectric interfaces Confinement shape 0 or 1or 2 remaining invariant dimensions (translation or rotation) Dictates coordinate system and choice of field basis Plane waves or cylindrical waves or spherical waves Cours Nanoph EnglishBenisty 2013 3 A quick look to materials at hand Oxides Conductors Semiconductors organics - glass SiO2+some others n=1.5 quartz - CaCO3? (calcite) n=1.6 to 1.8 - PbO, Ta2O5,... - TiO2 n=2.2 to 2.8 Al203=alumina sapphire n=1.7 LiNbO3 n=2.2 ... MgO n<1.5 ________________ MgF2 n=1.38 - Au, Ag, Cu, Al,... Drude model index is complex-valued - Transparent conductor Indium-tin-oxide (n~2.0) ?- organics (low conductivity) ? -Graphene ? Si n=3.5 + more dispersive Ge n=3.8 ? GaAs n=3.5 GaN (blue LEDs) n=2.5 Carbon : Graphene ? Nanotubes ? (Graphene is a semi-metal) water n=1.33 alcohol n=1.4 PVC n=1.45-1.55 PMMA poly methyl metacrylate "Plexiglas" C=C chemistry n=1.7-1.8 Cours Nanoph EnglishBenisty 2013 4 // k n c k / // Slab waveguide with perfect conductor boundary ... E E o f ( x ) exp(i z t ) e y ; Field takes the form z x 2 2 2 2 2 2 () y y y E E x E x z c 2 2 2 2 2 () () () () f x fx x fx x c Helmholtz eqn becomes 1D eqn. Present case 2 ( ) constant = x n 1 2 ( ) sin( ) ( ) exp( ) exp( ) x x i m f x x ik x ik x L 2 2 2 2 2 2 2 2 2 x m k n c L L 2 2 2 2 1 m c n L 2 () () x nx Dispersion diagram : family of hyperbola m=1 m=3 m=6 m=1 m=3

Upload: others

Post on 28-Nov-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 20131

NANOPHOTONICS (Photonic crystals and Emitters)Sep 17th : Waveguide - Confinement, representations, wg garrays (3h)

Sep 24th : from 1D periodic to 2D periodic, complete Photonic band gap (3h) Defect and light line along a non periodic dimension.

Nov 5th : Defect in Photonic band gap (1h30) + C. Sauvan (Exercices)

nov 12th : C. Sauvan (Exercices) + HB : Nano-emitters (1h30)

Nov 19th : Emission issues Purcell effect, light extraction (3h)

Nov 26 th : Combinations – emitters and cavities, interplay of confinements

Dec 10th : Written exam in two parts(H B part will use ~3 Appl Phys Lett papers (available in early Nov.) as a basis

4 sessions till 22 Oct. included : Ph. Lalanne and C. Sauvan (artif Mat, Metamat, plasmons)

Cours Nanoph English– Benisty 20132

Waveguide - Confinement, representations

Confinement = boundary conditions

Example ‐ Perfect conductor   E=0Magnetic wall   H=0

Realistic ‐ Real metal, dielectric interfaces

Confinement shape

0 or 1or 2 remaining invariant dimensions (translation or rotation)

Dictates coordinate system and choice of field basisPlane waves or cylindrical waves or spherical waves

Cours Nanoph English– Benisty 20133

A quick look to materials at hand

Oxides Conductors Semiconductors organics

- glass SiO2+some othersn=1.5quartz- CaCO3? (calcite)n=1.6 to 1.8

- PbO, Ta2O5,...

- TiO2 n=2.2 to 2.8

Al203=aluminasapphire n=1.7

LiNbO3 n=2.2 ...

MgO n<1.5________________

MgF2 n=1.38

- Au, Ag, Cu, Al,...Drude modelindex is complex-valued

- Transparent conductor

Indium-tin-oxide (n~2.0)

?- organics (low conductivity)

? -Graphene ?

Si n=3.5 + more dispersive

Ge n=3.8 ?

GaAs n=3.5

GaN (blue LEDs) n=2.5

Carbon : Graphene ? Nanotubes ?(Graphene is a semi-metal)

water n=1.33

alcohol n=1.4PVC n=1.45-1.55

PMMA poly methyl metacrylate"Plexiglas"

C=C chemistryn=1.7-1.8

Cours Nanoph English– Benisty 20134

/ /k

nck ///

Slab waveguide with perfect conductor boundary...

E Eo f (x) exp(i z t) e y ;

Field takes the form

z

x

2 2 2

2 2 2( )y y yE E x Ex z c

2 22

2 2( ) ( ) ( ) ( )f x f x x f xx c

Helmholtz eqn becomes 1D eqn.

Present case 2( ) constant = x n

12( ) sin( ) ( ) exp( ) exp( )x xi

mf x x ik x ik xL

2 2 22 2 2 2

2 2xmk n

c L

L

22 2

21 m

c n L

2( ) ( )x n x

Dispersion diagram : family of hyperbola

m=1

m=3

m=6

m=1 m=3

Page 2: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 20135

/ /k

nck ///

Slab waveguide (perfect) ; group velocity

...

Group velocity

z

x

Here : group velocity inverse of phase velocityL / /

gd ddk d

v

Dispersion diagram

in general   ( )g kv

2

21

gc cc

n n n

v

2g

cn

v2

gcn

v v

Low,         High gv v

Both and                c/ngv v

1/222 2

21 12

2g c mn L

v

Cours Nanoph English– Benisty 20136

Density of statesThere are two in‐plane directions (z and y for us)

k// has to be discretized in a big box  Ly × Lz

Dispersion diagram

/ /k

nck ///

...

x

Ly

z

number of states in ring  and per branch

2 2(2 )

y zL LdN k dk

Born‐van Karman periodic boundary cdts 

2 2(2 )

y zL L dkdN k dd

2

2 22g g

dk k nk md c L

v v

So But

Hence2

2...(2 ) (2 )

dN S n S nd c c

PER BRANCH (m=1,2,...)

Cours Nanoph English– Benisty 20137

Density of states

DOS

Envelope of DOS is a parabola

2~dN Vd

in 3D limit

There are cut‐off frequencies

simply 

These are relevant to Fabry‐Perot physics

m mc nL

2m

cnL

Adding branch contributions :

Cours Nanoph English– Benisty 20138

More general boundariesReflectivity can be introduced

R=1 : perfect 1‐R<<1 : Fabry‐Perot R<<1 : “usual” weak R

L

Less singularity  ?   guided and non‐guided (Fabry‐Perot) modes...

Outside medium now exists, so overall R,T can be defined(denoted TFP, RFP)

Page 3: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 20139

1=n1 n2

c

ox kk /

General representation for slab with two dielectric media

In each medium, local solution is propagative or is evanescent

1:evan2:prop

1:prop2:prop

1:evan2:evan

Critical angle for the more refringent mediumSnell‐Descartes ≡ conserva on of k//

/ / / ok k

Definition of EFFECTIVE INDEX / / / /eff

vacuum( / )k k

nc k

1 eff 2n n n eff 1n n

Cours Nanoph English– Benisty 201310

z

x

y

E Eo f (x) exp(i z t) e y ;

kz 1=n1 n2

c

n

1

1

slab (plaque) = thin film ....reflectivity r=r()

~0°

p

T

nnrrFP 2~

2

22

)2exp11Airy(p)

ip(-rt

1

(if r<<1)

Airy(p)2 t

)1(~ FPo rEE

otEE ~

ox kk /

oz kk /

)'cos(2nep

Cours Nanoph English– Benisty 201311

slab (plaque) ... guided modes ...effective index

E Eo f (x) exp(i z t) e y ;

kz

z

x

y

n

1

1

f(x)

f(x)

DEFINITION OF EFFECTIVE INDEX kz = neff ko

independent of the choice of a reference medium (≠angles)

n1 n2

c

neff

oz kk /

ox kk /

FUNDAMENTAL MODE highest eff & neff (bottom of well)

Guided modes

Cours Nanoph English– Benisty 201312

Energy(& potential)

Equivalence with potential (quantum) well

eff

x

0(bands ...)

localized resonances(guided modes)

2eff( )n

y or z

Page 4: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 201313

OVERLAP : CONFINEMENT FACTOR maxmin

2

layer 2

xx E dx

E dx

bottom_clad core top_clad 1

core /L

/L

1

0

~

field profile width(« mode volume »)

effn

1n

2n

core

(curve ~ valid for both scales)

Optimalconfinement

(vs. L)

Cours Nanoph English– Benisty 201314

INDEX CONTRAST size2

2eff2

( ) ( ) ( ) ( )f x n f x x f xx

2 2 2vacuum eff core/xk k n

2 2 2vacuum eff clad/K k n

core clad2eff 2

n

For a typical « mid-well »case2 2

core clad2 2vacuum vacuum2

xk Kk k

2eff( )n

~2xk L size (µm)

2 2core clad~

2 2 2L

1/2core clad

1/2core clad1/2

core clad

~4 2

( )( )

4 2

L

n nL n n

Best confinement vs. index contrast ? ?

« half » sine wave

10-3 10-2 10-1 100

10

1.0

0.1

So the typical size L of coreassociated to tightest mode

n

opt. fiber

SC heterostruct

membrane

Field profile

L

Cours Nanoph English– Benisty 201315

POLARISATION

TE and TM cases (Ey,Hx,Hz) &(Ez,Ex,Hy)(also called « s » and « p » or « E » and « H »)

TE and TM modes, their dispersion are interspersed

TE symmetric solution easiest to get : same graphics solution as quantum well

[ tan(kx*L/2) = some function of kx ]

symmetric waveguide : no cutoff for fdtl modes TE or TM

asymmetric waveguide : cutoff is possible also for fdtl mode,but different for TE and TM

Cours Nanoph English– Benisty 201316

GENERALISATION

Channel guiding

Rectangular, Circular, Elliptic,...

Field has all six em components of E and H !

Approximate solutions for rectangular « wire »

Bessel/Hankel basis for circular : case of optical fibers, V-number : should be =2.4 for monomode criterion ...

Still the concepts of overlap and optimal confinement of fundamtl mode hold

But cutoff conditions may be widely different

Page 5: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 201317

Special : « Capillary » guiding : low-index core !

n

1

1

n

r1

Never Total internal reflection, but still high enough to get tens, or hundreds, of reflexions, hence a macroscopic path of100's or 10,000's of capillary diameters

Cours Nanoph English– Benisty 201318

TYPICAL EXAMPLES

Small index contrast : - Silica/Ge-doped silica- LiNbO3/Ion-exchanged LiNbO3

Medium index contrast : -GaAs/AlGaAs ; InP/GaASInP ; -GaN/AlGaN ; ZnSe/CdTe-Silicon nitride/silica-silica/water

In-between : Silica/air

High index contrast :-Silicon/silica-Silicon air-Silicon nitride/air-Ga(Al)As/air-InP/air

« membranes »

« nanofibers »

Cours Nanoph English– Benisty 201319

HOW “NANOPHOTONICS” COMES IN WAVEGUIDES

Simplest periodicity : same symmetry, k// « good quantum number » periodicity allow kx (vertical)

2nd « good quantum number » only in 1st Brillouin Zone

Simplest technology : breaks invariance

k// « good quantum number » only in 1st Brillouin zone

Cours Nanoph English– Benisty 201321

DISPERSION GENERALIZED (SLAB) Perfect Conductor

waveguide

/ /k

nck ///

...

x

L

Light line definition

/ / clad/k c n FP modes ≡ "fuzzy" modes, "finite Q" Above light line:

//k

nck ///

f(x)

Dielectric slab Waveguide

Finite Q

/ / clad/k c n

Below light line : // clad/k c n

nclad is index of cladding, nclad =1, or more

Discrete Guided modes ≡ "Q= FP modes"

(Q ∞ )

(Q finite )

/ / clad/k c n

Page 6: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 201322

DOS GENERALIZED (SLAB)

Light line definition

/ / clad/k c n FP modes ≡ "fuzzy" modes, "finite Q" Above light line:

//k

nck ///

f(x)

Dielectric slab Waveguide

Finite Q

/ / clad/k c n

Below light line : // clad/k c n

nclad is index of cladding, nclad =1, or more

Discrete Guided modes ≡ "Q= FP modes"

(Q ∞ )

(Q finite )

/ / clad/k c n

DOS

overall DOS is smoother

But an important issue is : What is DOS of modes of both types !And the ratio of them ! We will come back to this for the

emission control / extraction issue

Cours Nanoph English– Benisty 201323

BASIC OF PERIODIC SYSTEM

- SLAB ARRAY

- LIGHT LINE

Cours Nanoph English– Benisty 201324

NEXT SCOPE : slab array

zkk //

xk

?

/a

xk

zkk //

Cours Nanoph English– Benisty 201325

BAND GAP OPENING

r ~0.2, N~5

order=phase/2

N1

'1N

~ 2 ~ 4 ~ 6

~ reflection

round-tripphase

1 2 3

N1

~ normal incidence , kz=0

Page 7: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 201326

NAIVE ORIGIN OF GAP SIZE

)/(25.02 Np

)/(2 Np

(1) phasor of successive reflections

N reflections needed to decay by ~1/eN ~1/r where r=reflection of one period

Cours Nanoph English– Benisty 201327

(2) Reflections in one period

1r 2r{

Depends on internal round-trip phase(fraction of 1-period round-trip phase)Can be low if rather destructiveCan be high if etc.

NAIVE ORIGIN OF GAP SIZE

Cours Nanoph English– Benisty 201328

EXAMPLE8 unit cells of dielectric ( = 5 and = 1)

embedded in air of filling ratio 0.4

Transmission Re(ka) - - -2 2

Im(ka) Tr( [T] )

frequ

ency

a/

2c

average medium

(case kz=0)

0 1

0 1

[T]=1period transmission matrix Cours Nanoph English– Benisty 2013

29

k Periodicity Brillouin zone

/a

-/a

(Un)folding + symmetry

3/a

Conventional choice

2/a

2/a2/a

1st Brillouin Zone:modulus of k minimal

reducedBrillouin Zone

(takes symmetriesinto account)

Page 8: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 201330

π/a

-π/a 3π/a2π/a

2π/a2π/a

k

modes are plane wave, but it is allowed (conventional/...)to represent them shifted by 2/a.

The "empty lattice"

Cours Nanoph English– Benisty 201331

Dispersion along invariant direction

x

?//k

nck ///

/ / clad/k c n

Single slabSlab ARRAY

Cours Nanoph English– Benisty 201332

Dispersion along invariant direction

x

Now r can be large Bigger gaps, smaller room between

f(x)

or T by evanescence can occur Narrow T windows open insteadof « evanescent death » exp(-Kx)

Cours Nanoph English– Benisty 201333

Slab array in « potential well picture »

0

core

clad

2t

core

clad

1

bands

bands

The whole spectrum becomes a BAND spectrumThe nature of waves ? Spans from "very localised" to "quasi plane waves"

reflection=1

forbiddenbands(around half-integer valuesof )

Examples

p

paroundinteger

effectif

effectif

T modulation becomes the « band & gap » landscape with abrupt cliffs

Discrete modes couple together and form bands

Page 9: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 201334

Generality of « tight binding »

Bloch modes

k=0

k=/ak=2/a

T

FSR

k

n

1period ~FP

double FP

triple FP

« PARTICLES » « MODES »

Cours Nanoph English– Benisty 201335

0*00*...

0...*0...0*

*00

A

vv A )( EH

N1-N1

1-N2-NN

213

1N2

vv*vvv*v

......vv*vvv*v

Nnqi

Nne /2

n1...0v(q)v~

All the eqns then become :

Nnqi

qe /2

n (q)v~v

(q)v~(q)ev~*(q)ev~ /i2-i2 Nqq/N

Hence eigenvalues : )2cos(2

eee*e i2-i2i2-i2

q/Nq

q/Nq/Nq/Nq/Nq

There are only N eigenvalues !!

1 2 N...

0oE

(q)v~vN)(qv~ 2/2n

1...0

niNnqi

Nnee

Let us define a Fourier transform

« Simple » ... because math is the same(wonkish)

Cours Nanoph English– Benisty 201336

zkk //

xk

/a

xk

zkk //

So the overall issue ...

Cours Nanoph English– Benisty 201337

...can be sketched ...

zkk //xk

? ? ?

how are thesetwo plots compatible

zkk //

bandsalong the periodic direction

bandsalonginvariant directions

xk

coupling of guided modes

Page 10: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 201338

zkk //

xkk //

Chigrin & Sotomayor-Torres, NATO workshop Proc. 2001

zkk //

xk

very rarely shown (unfortunately in my opinion)...can be shown ! ...

Cours Nanoph English– Benisty 201339

... and brings a third diagram : WAVEVECTOR diagram(for k-space geeks)

zkk //

cut in the planes=cte

Also called "iso-frequency curves"(analogue to Fermi surfaces)

zkk //Difficulties : several folds !(plusieurs nappes)(i.e., multivalued )

xk

xk

Locus of vector k at constant

Cours Nanoph English– Benisty 201340

zkk //

The basic point :Structure of k-space...

xka

xka

xk

Cours Nanoph English– Benisty 201341

Invariance and periodicity vs. our 3D

Invariance × Invariance × Invariance BULK

Invariance × Invariance × Periodicity ARRAY OF SLABS

x × y × z

Invariance × Periodicity × Periodicity INIFINITE 2D PH.CRYSTAL

Periodicity × Periodicity × Periodicity 3D PH.CRYSTAL

/ a

Page 11: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 201342

Invariance and periodicity and « FINITE » vs. our 3DInvariance × Invariance × Finite

Invariance × Finite × Finite

Finite × Finite × Finite

Invariance × Periodicity × Finite

Periodicity × Periodicity × Finite

Periodicity × Finite × Finite

SLAB

CHANNEL

SPHERE, RESONATOR, TORE, PILLAR

(WAVEGUIDE) (RESONANT) GRATING

(WAVEGUIDE) CROSSED GRATINGFINITE-HEIGHT 2D PH. CRYSTAL

PERIODIC (CHANNEL) WG

Cours Nanoph English– Benisty 201343

Invariance × Periodicity × Finite

« Resonant waveguide grating »

zkk //

xk

or

Cours Nanoph English– Benisty 201344

« Finite 2D Photonic crystal »

,x yk k

zk Confinement

Periodicity × Periodicity × Finite

Cours Nanoph English– Benisty 201345

PERIODIC (CHANNEL) WG

xk

,z yk k Confinement²

Periodicity × Finite × Finite

Page 12: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 201346

LIGHT LINE GENERAL IDEAPeriodicity

Plane Waves of surrounding media are on finite circle.

How can their k component along periodic axis match k of periodic system ?

k along the periodic dimension (« and in the periodicsystem ») goes to as high as desired because it is [2/a]

So k component of outside plane wave could fit such k ?

?? need more drawing...

Cours Nanoph English– Benisty 201347

LIGHT LINE from WG Perspective

z

Gui

ded

mod

e

radi

atin

gm

ode

"leak

y" m

ode

G

"cladding circle"k=nclad/c

• In presence of periodicity kx -component is modulo G=2/a (≡Fourier)

• Bloch mode : Nature of wave weight of the various G components

Leakage ~ ratio of wave amplitudes

z-evanescent

nclad/c

weight of kx –component <nclad/c

weight of kx –components >nclad/c

zk zk zk

Cours Nanoph English– Benisty 201348

LIGHT LINE in k- diagram

• kin-plane> or < nclad/c"being OVER/UNDER the LIGHT CONE"

G GG

π/akx

"cladding light line"k=nclad/c

Gkx

G

(just)

4 cases ofincreasing

frequency

zk

Cours Nanoph English– Benisty 201349

Leakage and resonance dampingQuite general phenomenology. For instance : 

‐ surface plasmon resonance ("SPP » : will be seen with metal)‐microcavity resonance :

Photon Lifetime in a mode                                                 periods

"Res

onan

t " m

ode

G

incident plane wave

emergent plane wave

mode

π/a

kx

k

2 /Q T Q

"fuzzy" dispersion line~FP ~Airy resonance

G

Page 13: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 201350

Grating laws in k- diagram

π/akx

No-diffraction

G

One order allowed

Two orders allowed

G

Transm.grating

Refl.grating

Ideal Grating in air, supporting no other mode

Cours Nanoph English– Benisty 201351

Grating laws in k- diagram

π/akx

air to air

Grating at an interfaceindex "1" and index "n"

G

air to "n"

"n" to "n"

Of course, many more cut-off situations

Cours Nanoph English– Benisty 201352

π/a

kx

k

"fuzzy" dispersion line~FP ~Airy resonance

Resonant waveguide grating

A long history, a challenging topic

hint : « Wood anomalies of gratings »(1902) revisited by Rayleigh

Good papers by Ugo Fano (1940...196x) relation to « Fano resonance »

Then branched to : optics : narrow filters

(R,T outside) and optoelectronics in- & out-couplers

(wg to outside, wg to wg...)

Never ending ! General enough (2D gratings, LEDs...)

Why ? Mix of two dimensionalities !Cours Nanoph English– Benisty 2013

53

Resonant waveguide grating fishing (1)

Page 14: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 201354

Resonant waveguide grating fishing (2)

Cours Nanoph English– Benisty 201355

A tutorial paper for those interested

Cours Nanoph English– Benisty 201356

TOWARD2D STRUCTURES

- REMINDER ON DOS

- BANDGAP IN 2D :OMNIDIRECTIONNALITY

Cours Nanoph English– Benisty 201357

g()

scales as (–j)–13D 2D 1D 0D

L

~c/nL

L >>

L´ L

L´ L´ L

Directional control"total" control

extraction

Kleppner 1981

Demonstrated with Rydberg atoms (~1980) @ µwave em frequencies.

Confinement in 0,1,2,3 dimensions

Page 15: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 201358

Concept of photonic crystal and 3D forbidden gap (Yablonovitch 1987, John 1987)

zkk //

g()≠ !

NO « Constant Energy Surface"in a band of frequency

zk

xkyk

Cours Nanoph English– Benisty 201359

? Control of spontaneous emission by a 1D DBR ? (1988...1995)

g()

3D 2D

L

~c/nL

L >>

Directional control

extraction

Kleppner 1981

2D +1D periodic

zkk //

0

inhibition (directional)

coupling of guided modes

Cours Nanoph English– Benisty 201360

Density-of-states : A useful guide

Array of slabsInfinite along 2 dimensions

Array of teeth/groovesconfinement in third direction

infinite along one direction(e.g. grating,

or resonant-wg grating)

Cours Nanoph English– Benisty 201361

2D PHOTONIC BANDGAP

Page 16: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 201362

Concept of photonic crystal with forbidden bands in 2D

+ =

xy x y

"Tartan effect"3 distinctepsilon values!!!

1st Brillouin zoneof square lattice System invariant in the third direction

( Photonic crystal fiber, ...)

System confined inthe third direction( "PC membrane")

Cours Nanoph English– Benisty 201363

Omnidirectionnality Role of Lattice and of index contrast

Let us look at the Photonic Gaps along symmetry axis

k

BAND GAP

(Yablonovitch 1987)Two large gaps

have to overlap,

Each gap reflectsthe periodicity along its associated axis

(different period and strength)

The difference on |kmax| modulusbetween the two axis is therefore critical

It is 1.41 for the square lattice It is MUCH LESS for the triangular lattice : 1.15

1st Brillouin zoneof square lattice

/ a 2 / a

Cours Nanoph English– Benisty 201364

Simple and important

"Tartan effect" means less x smaller gaps in a given direction

More than 1D means mean-gap frequency depends on direction Roundest BZ preferred for coincidence ! Hexagonal lattice in 2D[fcc in 3D]

x y max0

small x

large x

Cours Nanoph English– Benisty 201365

Gap E or "TM" Gap H or "TE"

Key : Topology allows the first excited mode to change effectively change medium, while being orthogonal to the fundamental (see Joannopoulos et al. book, 1995)

E H

k generic 2D structure

low index is connex high index is connex

THE POLARISATION ISSUE

Page 17: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 201366

2D : triangular lattice of holes

real space reciprocal space2 2

3a

b

2M3a

22 4K33a a

Cours Nanoph English– Benisty 201367

Fig.5.21

Example : just the free photon : k = n/c(frequency ≡ distance to origin !)

"empty lattice"

Reading 2D dispersion relations (with care)

Cours Nanoph English– Benisty 201368

K lies on a symmetry axis• lin. comb. of two plane waves

stationary waves vg artificially low !!

Origin of Pseudo flat bands

Cours Nanoph English– Benisty 201369

Fig.5.22

Almost free photons (TE)K

M

Gaps at M and K : no overlap

Overlap of gapsat M and Kfr

éque

nce

norm

alis

ée

vecteur d'onde vecteur d'onde

2D dispersion for increasing "crystal strength"

=11

Page 18: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 201370

Fig.5.23

M gapOmnidirectional gap

van Hove singularity @ M

norm

alis

ed fr

eque

ncy

Density of states of triangular PhCs

Number of states per unit frequency (DOS)Cours Nanoph English– Benisty 2013

71

K

M

0.1

0.2

0.3

0.4

M K M

f = 30%

No TMgap

u =

a /

BAND STRUCTURE

dielectric neff2 = 11.3

TE gap

Around a=0.25, @ =1,56 µm, a=390 nm, hole diameter, ca. 200 nm

0 0.3 0.6 0.80

0.1

0.2

0.3

0.4

0.5

N=127

gap TE

Air Fraction

Gap TM

GAP MAP: GAP vs. Constituent Fraction (here air)

2 11.3n

The most common tool : gap map

Cours Nanoph English– Benisty 201372

Only two practical kinds of 2D PhCare "infinite": macroporous silicon

and propous alumina

Limitations :‐ vertical guiding :  none !‐ no large "hole‐free" zones (pores then coalesce)

limits the control of defects

The case of macroporous-Si

Cours Nanoph English– Benisty 201373

(z)

Substrate" approach"++ integrability++ electrical injection‐ ‐ etching (gravure)

[deep]

" approachMembrane"+(++) some modes are genuinely lossles

(usefulness in real‐world?)++ shallower etching  requirement‐‐ intégration/interfaçage

Preferred approach for optoelectronic integration

2D Photonic crystals on waveguides

Page 19: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 201374

40°30°

Superprism

vg = k

diffraction~0 !!

iso-Contours

Supercollimator

1 µm

)(sin)(sin 22 ykxk yxo

(This simple dispersion relation is also that of atom vibrations (phonons) in a squareideal lattice when their interaction is limited to the next nearest neighbour)

ALLOWED BANDS

ALLOWED BANDS

Using 2D bands of triangular PhCs

Cours Nanoph English– Benisty 201375

Kosaka et al.NEC, NTT

Superprism Effect

iso-contours

)(sin)(sin 22 ykxk yxo

Cours Nanoph English– Benisty 201376

2D PHOTONIC BANDGAP : practical implementation

Cours Nanoph English– Benisty 201377

light-line issue : 1D Example

nclad

• kin-plane# nclad/c

π/a

Lowest possible nclad : air, a/

Intermediate nclad (SiO2, AlOx), a/

Highest nclad (AlAs, InP) , a/

a/ = 1/(2nclad)

Mid-gap : a/ = 1/(2nav) [~0.17 for nav=3]

nclad

nav

norm

alis

ed fr

eque

ncy.

a/

kx

Page 20: A quick look to materials at hand ... - Catalogue des Cours

Cours Nanoph English– Benisty 201378

Example on a 2D structure

f = 30%

0.1

0.2

0.3

0.4

M K M

u =

a /

matrix neff2 = 11.3=3.421) Example with nclad=3 (AlAs)• light line @M u = 0.192

(=3-3/2)• light line @K u = 0.222

(=2/9) Almost 100 % of the gap

is "leaky"!!

1) Example with nclad=3 (AlAs)• light line @M u = 0.192

(=3-3/2)• light line @K u = 0.222

(=2/9) Almost 100 % of the gap

is "leaky"!!

2) Membrane nclad=1• light line @M u = 0.577

(=3-1/2)• light line @K u = 0.667

(=2/3) Fair fraction of gap is OK !!(if neff =3.4 .... However, for an InP membrane, neff ~2.7 )

2) Membrane nclad=1• light line @M u = 0.577

(=3-1/2)• light line @K u = 0.667

(=2/3) Fair fraction of gap is OK !!(if neff =3.4 .... However, for an InP membrane, neff ~2.7 )

BAND STRUCTURE

membrane

Cours Nanoph English– Benisty 201379

Measuring the leaky part of band diagram is easy

R(

°°°

R(

kx = (/c) sin π/a

Find "anomalies"in reflection spectra takenat various angles

( old topic : Wood, Phil. Mag. 1902 !)

Cours Nanoph English– Benisty 201380

A measurement method…

several periods a a/ variable

cleaved edge

(

excitationlaser

d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TE t

rans

mis

sion

alo

ng

K

u=a /

TE K

300nm280

nm

260nm

Stitching of 7 spectravisualisation of the whole gap

nm nm200 240

180nm

220nm

valence band edge

photonicgap

I2())I1

PL frontale

Lateral PL

1100

InAsQDs

ou QWs

PL

sign

al (

a.u.

)

900 1000Wavelenth (nm)

QDs

modest spectral width0.20 0.28 0.300.18

Tcristalref.

coll. EPFL, Lausannecoll. NanoElectronics, Glasgow

I2()

Cours Nanoph English– Benisty 201381

Defects in photonic crystal structure

Rationale : - Defect levels should be in gaps

- Bandgap cladding would guarantee absence of leakage : would act as

OPTICAL INSULATOR

- Very desirable becauseMETALS ARE LOSSY

Next : dimensionality of defecte.g. in 2D PhC : 1D or 0D 1 D = waveguide 0 D = (nano)cavity ...