a primer to designing organic synthesis

42
ﺑﺴﻢ ﺍﷲ ﺍﻟﺮ ﺑﺴﻢ ﺍﷲ ﺍﻟﺮ ﺑﺴﻢ ﺍﷲ ﺍﻟﺮ ﺑﺴﻢ ﺍﷲ ﺍﻟﺮ ﲪﻦ ﺍﻟﺮﺣﻴﻢ ﲪﻦ ﺍﻟﺮﺣﻴﻢ ﲪﻦ ﺍﻟﺮﺣﻴﻢ ﲪﻦ ﺍﻟﺮﺣﻴﻢA PRIMER TO Prepared by: Mr. Mohammed H. Raidah 2008-2009 [email protected] 00972599497541

Upload: mohammed-rida

Post on 14-Jun-2015

676 views

Category:

Documents


5 download

DESCRIPTION

Synthesis is the process of making a desired compound using chemical reaction. more often than not, more than one step is involved. : The importance of synthesis 1. Total synthesis of interesting and/or useful natural products 2. Industrially important compounds 3. Compounds of theoretical interest 4. Structure proof 5. Development of new synthetic methodology 6. Importance to other areas of science and technology : Basic steps of solving synthetic problems a. Choice of TARGET MOLECULE (T.M) b. Consideration of applicable synthetic methodology c. Design of synthetic pathway d. Execution of synthesis -- these steps are highly interactive

TRANSCRIPT

Page 1: A primer to designing organic synthesis

محن الرحيممحن الرحيممحن الرحيممحن الرحيمبسم اهللا الربسم اهللا الربسم اهللا الربسم اهللا الر

A PRIMER TO

Prepared by:

Mr. Mohammed H. Raidah

2008-2009

[email protected] 00972599497541

Page 2: A primer to designing organic synthesis

- 2 -

*Contents:

Introduction to Organic synthesis …………………………………………………3

One group disconnection

disconnection of simple alcohol ………………………………………………….12

disconnection of simple olefins……………………………………………………17

disconnection of aryl ketones…………..………………………………………….18

Two group disconnection ……………………………………………………….21

β-Hydroxy carbonyl compounds …………………………………………………21

α-β unsaturated carbonyl compounds……………………………………………..23

1,3-dicarbonyl compounds ……………….............................................................24

1,5-dicaronyl compounds…………………………………………………………26

Mannich reaction………………………………………………………………….28

α-Hydroxy carbonyl compounds………………………………………………….29

1,2-diol…………………………………………………………………………….33

The Pinacol-Pinacolone rearrangement……………………………………………34

Allan-Robinson reaction…………………………………………………………...36

Bischler-Napieralski reaction………………………………………………………37

Bartoli Indol synthesis…………………………………………………………… .38

Benzilic acid rearrangement……………………………………………………….39

Benzoin condensation……………………………………………………………..39

Birch reduction……………..………………………………………………………40

Page 3: A primer to designing organic synthesis

- 3 -

Introduction to Organic synthesis

Synthesis is the process of making a desired compound using chemical reaction. more

often than not, more than one step is involved.

: The importance of synthesis

1. Total synthesis of interesting and/or useful natural products

2. Industrially important compounds

3. Compounds of theoretical interest

4. Structure proof

5. Development of new synthetic methodology

6. Importance to other areas of science and technology

: Basic steps of solving synthetic problems

a. Choice of TARGET MOLECULE (T.M)

b. Consideration of applicable synthetic methodology

c. Design of synthetic pathway

d. Execution of synthesis

-- these steps are highly interactive

Approaching the design of a synthesis (part one)

For simple molecules it can be obvious just by looking at the target structure ,for example:

Bromoalkanes are available from alkenes or from alcohols

Esters are available from carboxylic acids by reaction with alcohols

;benzoic acid is available from toluene

Br

bromocyclohexane

HBrBr

OHPBr3

Br

CO2Me

methyl benzoate

Page 4: A primer to designing organic synthesis

- 4 -

Approaching the designing of a synthesis (part two)

For more complex molecules , it help to have a formalized , logic-centred approach;

RETROSYNTHETIC ANALYSIS

Retrosynthetic analysis is the process of working backwards from the target molecule to

progressively simpler molecules by means of DISCONNECTIONS and /or

FUNCTIONAL GROUP INTERCONVERSIONS that correspond to know reactions .

When you`ve got to a simple enough starting material (like something you can buy and

usually is cheap) then the synthetic plan is simply to reverse of the analysis . The design

of a synthesis needs to take into account some important factors

1. it hase to actually work

2. In general , it should be as short as possible

3. Each step should be efficient

4. Side products (if formed) and impurities (there always are ) should be easily

separable from the desired product

5. Environmental issues may be relevant 6. There's more than one way to skin a cat

Example retrosynthetic analysis

Target molecule :

OH

Disconnect

AB

OHSYNTHONS

REAGENTS ? ?

OH

PhMgBr

O

H

SYNTHONS

REAGENTS

CO2H CO2Me

KMnO4 MeOH

H2SO4

Page 5: A primer to designing organic synthesis

- 5 -

Therefore the target molecule could be synthesized as follows :

What is a synthon?

When we disconnect a bond in target molecule , we are imagining a pair of charged

fragments that we could stick together , like Lego bricks , to make the molecule we

want . these imaginary charged species are called SYNTHONS . When you can

think of a chemical with polarity that matches the synthon , you can consider that a

Synthetic equivalent of the synthon. Thus,

An aldehyde is a synthetic equivalent for the above synthon.

There can be more than one synthetic equivalent for a given synthone, but if you can't

think of one …try a different disconnection.

Always consider alternative strategies.

Bri) Mg/Et2O

ii) CHO

OH

R H

O

R H

OH

≡ δ+

δ-

OH

AB

SYNTHONS

Syntheticequivalents

OH

PhCHO BrMg

OH

Br?

SYNTHONS

Syntheticequivalents

Page 6: A primer to designing organic synthesis

- 6 -

Besides disconnections , we can also consider

functional group interconversion . Our target molecule is a secondary alcohol ,which could be prepare

by reduction of a ketone . this is represented as follows:

Ph

OHFGI

Ph

O

DISCONNECT

Ph

O

Ph

O

Br

Synthesis number four

Ph

Oi)base

ii) Br

Ph

OLiAlH4

Ph

OH

T.M

Target Molecule

A second possible synthesis :

Bri)Mg/Et2O

ii)PhCHOPh

OH

similary

Ph

OH

Ph

OH

≡ ≡

Ph

O

BrMg

thus a third possible synthesis is

Ph

O BrMg

Ph

OH

Page 7: A primer to designing organic synthesis

- 7 -

There are other possibilities , but let's not bother with any more.

How do you choose which method?

Personal choice .If you have a favourite reagent, or if you are familiar with a

particular reaction (or if you have a strong aversion to a reaction/reagent) then this

will affect your choice .Also you need to bear in mind the efficiency of the reaction

involved, and any potential side reactions (for example ,self- condensation of

PhCOMe in method 4 ).

Analysis number five :

Ph

O

Ph

O

Ph

O

LiCu 2

Synthesis number five :

Ph

Ot-Bu2CuLi Ph

O

NaBH4 Ph

OH

T.M

Ph

OH

Disconnecting heteroatoms can also be a good idea:

Ph

OH H2O

Ph

6th approach :

Phi) Hg(OAc)2

ii) NaBH4Ph

OH

Page 8: A primer to designing organic synthesis

- 8 -

DEFI.ITIO.S

What you need to make TARGET MOLECULE (T.M)

The process of deconstructing the T.M

by breaking it into simpler molecules

until you get to a recognizable SM

RETROSYNTHETIC ANALYSIS

An available chemical that you can

arrive at by retrosynthetic analysis and

thus probably convert into the target

molecule

STARTING MATERIAL (SM)

Taking apart a bond in the T.M to see if

it gives a pair of reagents

DISCONNECTION

Changing a group in the T.M into a

different one to see if it gives accessible

intermediate

FUNCTIONAL GROUP

INTERCONVERSION (FGI)

Add a functional group to facilitate bond

formation ,FGA especially applies in the

case of molecule containing no reactive

functional group

FUNCTIONAL GROUP ADDITION

(FGA)

Conceptual fragment that arise from

disconnection

SYNTHON

Chemical that reacts as if it was a

synthon

SYNTHETIC EQUIVALENT

Page 9: A primer to designing organic synthesis

- 9 -

Some synthons and synthetic equivalents:

synthon equivalent(s)

R

R R

OH

R R

O

R

OH OH

R

O

RCl ,RBr , RI , ROMs , ROTsonly when R= alkyl

Br

R

O

R

O

R

O

R OEt

O

R Cl

O

R O

O

R

O

R

(alkyl ; NOT"RH+base")RMgBr , RLi , R2CuLi , other organometallic reagents

R

O

R

O

R

O

CO2Et

make sure you don't lose CH2 group if you represent eg. RCH2 as R

( viz. make sure the product hase the right number of carbon atoms)

Page 10: A primer to designing organic synthesis

- 10 -

Latent Polarity

Think about some of the reaction we've looked at for carbonyl compounds:

AO OH O

OO

O

O

Nu

Nuδ+

δ−

H baseB

E

E

O

δ+

δ−

δ−

C NuNu

O

E

Nu

O

E

O

δ+

δ−

δ−δ+

ie O

δ+ δ+δ+δ+δ− δ−δ−

δ−

these polarities apply quite generally:

OH

δ+δ+δ+δ− δ−δ−

δ−

δ−

Br

δ+δ+δ+δ− δ−δ−

δ−

δ−

NR

δ+δ+δ+δ− δ−δ−

δ−

δ−

NHR

δ+δ+δ+δ− δ−δ−

δ−

δ−

Page 11: A primer to designing organic synthesis

- 11 -

The partial positive and negative charges indicate the latent polarity of the bonds in

a molecule. They help us choose the synthons for key disconnections in a

retrosynthetic analysis . viz.

OH

δ+

δ−

δ−

OH

Equivalents for synthons with reversed polarity

synthon equivalent(s)

R R

OH

R

O

Me

O

O

R RBr

OH

,or

RBr

O

,or

OO

RBr

OEt

+ sec-BuLi

OEt

(VERY strong base)

OEt

Li

EOEt

E

H3O+

E

O

ethoxy vinillithiumEVL

similary from acetylene:

i) base

ii) E

EH3O

+

HgO E

OHtautom.

s-BuLi

Page 12: A primer to designing organic synthesis

- 12 -

1.One group disconnection

:nection of simple alcoholdiscon **

A + B Cconnection

disconnectionA + B

Me OH

Me CN OH + CN

disconnection

Synthesis

O + +H NaCNMe OH

Me CN

mechanism O + H OH

CN

T.M

Example.1.1

Example.1.2

Me C

OHPh

CH

Ph

Me

OH +C CH

SynthesisPh

Me

O + H + HC CHbase

Me C

OHPh

CH

mechanism

HC CH baseCHC

Ph

Me

OH T.M

Page 13: A primer to designing organic synthesis

- 13 -

Example.1.3

Me Et

OHPh

OH + H3C CH2

Synthesis

EtBrMg/Et2O EtMgBr

Ph

Me

O + EtMgBrMe Et

OHPh

mechanism

O + H

H +

Ph

Me

OH

Et MgBr

T.M

Me Me

OHC

O

OEt+ 2MeMgBr

C

O

OEt+ 2MeMgBr

Me Me

OH

C

O

OEt C

O

Me

Me MgBr Me MgBr

+C

O

OEt+

T.M

Example.1.4

Synthesis

mechanism

Page 14: A primer to designing organic synthesis

- 14 -

Compounds derived from alcohols

alcohol

Esters

OlefinsAldehydes

KetonesAlkylhalids

Example.1.5

Ph Ph

OAc FGI

Ph Ph

OH

Synthesis:

mechanism:

+ HC OEt

Ph Ph

OH

Ph2 + HC OEt

O

PhMgBr

2O

Ph Ph

OH

PhMgBr

HC OEt

O

PhMgBr

Ph H

O

Ph Ph

OH

Ph Ph

OH

+ CH3COOHPh Ph

OAc

T.M

R C

O

OHSOCl2 R C

O

ClR`OH

R C

O

OR`

Reminder:

Page 15: A primer to designing organic synthesis

- 15 -

Example.1.6

Ph

OH O

H +BrMg

Ph

O

H

FGIOH

H

(aldehyde) (alcohol)

Br

+ H C

O

H

cyclopentanecarbaldehydeformaldehyde

Br Mg/Et2O MgBr

Synthesis

MgBrH C

O

H

oxidation

O

H

O

H +BrMg

PhPh

OH

H

cyclopentylmethanol

OH

H

H

Page 16: A primer to designing organic synthesis

- 16 -

O

O

Me

Me

Example.1.7

O

O

Me

Me

OH2H HO

O

Me

Me

OH

H

HO

HO+ Me Me

O

HO

HO

2 H H

O

+ C C HH

Synthesis:

2 H H

O

+ C C HH

HO

HO

Me Me

O

O

O

Me

Me

mechanism:

C CH H H

O

C C

HOH H

O

HO

HO

BaSO4

reduction

HO

HO

HO

HOMe

MeOO

HO

Me

Me

OHO

O

Me

Me

Page 17: A primer to designing organic synthesis

- 17 -

**disconnection of simple olefins:

Ph FGI OHPh

O

cyclohexanone

+ PhMgBr

Example.1.8

FGI

Ph

OH

no helpful disconnection

a

b

Example.1.9

PhFGI

a

Ph

OH

O

+BrMg

Ph

FGI

Ph

OH

H

O+ BrMg

Ph

b

another analysis for synthesis:

in example 1.9 the pathway (a) use Wittig reaction instead of Grinard.

Ph

BrPh3P

Ph

Ph3P H

base Ph

Ph3P

Ph

PPh3O

Ph

PPh3O Ph + PPh3O

R em in d e r

O H H H

a c id

Page 18: A primer to designing organic synthesis

- 18 -

**disconnection of aryl ketones:

Example.1.10

Ph

FGI Ph

OH

Ph

O

H+Ph3Pa

bFGI

Ph

OH

PhPPh3 +

O

H

Example.1.11

O

MeOMeO

+Cl

O

Synthesis:

MeO

+Cl

O

AlCl3

O

MeO

mechanism:

MeOCl

O

MeO

O

H

O

MeO

Page 19: A primer to designing organic synthesis

- 19 -

Example.1.12

O

O

O

O

O

+

O

Cl

O

O

H

H

OH2

HO

HO

+ H C

O

H

Synthesis

HO

HO+ H C

O

H + H

O

O

O

O+

O

Cl

AlCl3

O

O

O

Example.1.13

O

Me

MeO

NO2

a b

a

Me

MeO

+

O

NO2

Cl

Pathway (b) not occur because NO2 group is electrons withdraw

Example.1.14

O FGIO

CH

O

+ Me I

O

Br+ HC CH

O

COOEt

+CH

BrMg

ab

a b

Page 20: A primer to designing organic synthesis

- 20 -

Example.1.15

N

O

NH+

O

HO CO2 +BrMg

Example.1.16

R1R2 R1

R2 R1R2

OH

R1 H

O

R2BrMg+

Example.1.17

OH

MgBr O

Synthesis

+

Br

Mg/Et2Oi)

ii)O

OHH3PO4i)

ii) H2/Pd

T.M

Reminder:

C C

H OH

C C

H H

O

acid

heat

heat

LiAlH4C OH

H

+

+

H2O

H2

Page 21: A primer to designing organic synthesis

- 21 -

2.Two group disconnection

**β-Hydroxy carbonyl compounds

One group disconnections summary

1. alcohols

2. Olefins

3. acids

R1

R3

OHR2 R1 MgBr +R2

R3

O

PPh3 + O

R C

O

OH RMgBr + CO2

4. carbonyl compounds

Ar C OR

O

ArH +Cl R

O

CH2 C

O

RR RBr +

O

OEt

OR

OH O

H

Example.2.1

αβ H

O

+

O

H

Synthesis:

O

HH Base

O

H

O

HH

OH

O

OH O

H

Page 22: A primer to designing organic synthesis

- 22 -

Example.2.2

Ph

OO

Ph OH

αβ

OH

+Ph

Ph

O

O

Synthesis:

OH

PhPh

O

O

Ph

OO

Ph OH

Reminder:

the group is attached to a carbon atom that has at least one H substituent (e.g.-CHCHO,-CHCOR, -CHCO2Et ),then electron-withdrawal by the group results in such H atom being acidic:

C

O

C

O

C C O

H

HHO

OH

H2O

C C O

H

C C O

Page 23: A primer to designing organic synthesis

- 23 -

** α-β unsaturated carbonyl compounds

H

O

αβ

Example.2.3

H

OOH

H

O

H3C H

O

+

H3C H

OBase

H2C H

O

αH

O

H2C H

O H

OOH

H

OOHacid

heatH

O

αβ

T.M

Synthesis:

Example.2.4

Ph CO2H

αPh CO2H

OH O

Ph H

O

+H3C CO2H

O

Synthesis:

H3C CO2H

Obase

H2C CO2H

OPh H

O

Ph CO2H

OH Oacid

heat Ph CO2H

O

T.M

Example.2.5

R

Oβ α

R

OHO

O

+

R

O

Synthesis:

R

Obase

R

O

O

R

OOH

acid

heatR

O

Example.2.6

α

β

O O

OH

O

O

Page 24: A primer to designing organic synthesis

- 24 -

** 1,3-dicarbonyl compounds

O O

δ+ δ−δ−

δ−δ−

δ−δ+

Ph Ph

O O

Example.2.7

Ph

O

Ph

O

Ph

O

Ph

O

OEt+

Synthesis:

O

Ph

O

Ph

Base

NaOEt

Ph

O

OEtPh Ph

O O

T.M

Ph

O O

OEt

Pha b

Ph

O

Ph

O

OEt

+O

OEt

Ph

O

OEt

Ph

a

b

O

OEt+ Ph

O

Ph

O

OEtPh

O

Ph

Example.2.8

EtO

Example.2.9

Ph

O

O

OEt

OEt

Ph

O

OEt + OEt

O

Ph

O

OEtOEt

O

EtO

Page 25: A primer to designing organic synthesis

- 25 -

Example.2.10

Ph

CPh

O

OEt

Ph

Br+ CPh

O

OEt

Synthesis:

Ph

Br+ CPh

O

OEtBase T.M

mechanism:

CPh

O

OEt

Ph

BrT.M

Example.2.11

H

OO

δ+

δ−

Me

O

Me+

H

O

O

MeEtO H

O

Synthesis:

O

Me

EtO H

O

+base

NaOEtT.M

Page 26: A primer to designing organic synthesis

- 26 -

** 1,5-dicaronyl compounds:

O O

δ+δ−δ+ δ+

δ− δ−

δ− δ− δ−

Michael addition

PhPh

O

H

αPh 1

2

O

3

4

5

HPh

O

Ph

O

HPh

O

H

+EtO

R R`

OO

Example.2.12

β

α

a b b

R`

O

R

O

H

+ R

O

R`

O

+

a

R

O

R`

O

+

Example.2.13

OCO2Et

O

1

2

3

45

O

CO2Et

+

O

H

O

CO2Et

+

O

Example.2.14

EtO

OO

CN

Ph

a b EtO

O

CN

Ph O+

EtO

O

CN

Ph O+

H

b

a

EtO

O

CN

OPh+

EtO

O

CN

OPh+

Page 27: A primer to designing organic synthesis

- 27 -

Example.2.15

Ph Ph

CO2Et

O

β

α

Ph Ph

CO2Et

O

HO1

2

3

45

Ph

CO2Et

O

OCO2Et

O

+ Ph

O

Example.2.16

O

Oαβ

1 2

3 4

5

O

OO

O

O

+O

12

3

45

OO

OMe

O

OMe

+

O

Example.2.17

Example.2.18

OO

O

H

O

O

H

+

Page 28: A primer to designing organic synthesis

- 28 -

Mannich reaction:

R CH3

O

+ C

O

H H

formaldehyde

+ R'2NHH

R N

O

R'

R'

mechanism:

R'2NH

H

H OH

R'

N

R'

CH2 OH2H

R'

N

R'

CH2

R CH2

O

C

O

RCH2CH2N

R'

R'

I Me

C

O

RCHCH2N

R'

R'

Me HR

O

was attacked by N thus N bearing +ve charge make easy removeI Me N

R'

R'

Me

Application for mannich reaction

O

+ R'2NH+ CH2OH

O

N R'

R'

O

mechanism:

R'2NH

H

H OH

R'

N

R'

CH2 OH2H

R'

N

R'

CH2

O

CH2N

R'

R'

I Me

CH2N

R'

R'

Me

O

OH O

Page 29: A primer to designing organic synthesis

- 29 -

** αααα-Hydroxy carbonyl compounds

Example.2.19

O

Ph 1O

2

345

O

Ph

O

Ph +

O

O O

+ CH2O

remember Mannich reaction

O

NR3

Example.2.20

O

NR2

O

+ NR2CH2

O

+ CH2

OH

CH2 NR2HO

H

CH2 NHR2HO

O

+

O

+

O

+ CH2O + R2NH

NR2

Ph

Ph

C

O

OH

OH

α

Ph

Ph

O + COOH

or CN

Synthesis:

Ph Me

OCN

H

Ph

Ph

OH

CN

NaOH

H2O

Ph

Ph

C

O

OH

OH

T.M

Page 30: A primer to designing organic synthesis

- 30 -

C

EtO2C

OHO

OH1

2

C3

O

H +COOH

or CN

OEtO

O

HCOEtO

COEtO

+

+ EtO H

O

COEtO

Br+ CH2COOEt

Example.2.21

Synthesis:

OEtC

H2CC

O

O

OEt

OEt

C

H2CC

O

O

OEt

OEt

OEt

EtO OEt

O

+C

H2C

OOEt

C

H2C

OOEt Br

CO2Et

H

CO2Et CO2Et

HH C

O

OEt

O

CN

HO/H2OC

EtO2C

OHO

OH

OEt

Page 31: A primer to designing organic synthesis

- 31 -

Example.2.22

PhOH

OH

Ph OH

OH

OH

O

EtO+ 2PhMgBr

OH

O

H + CN

Synthesis:

CHO

CH2 O

C

O

H

OH

K2CO3

CNC

CN OHHO/H2O

HO

OH

OH

O

HO

EtOH/HOH

OH

O

EtO2PhMgBr

PhOH

OH

Ph OH

T.M

H

RCHO R CH

NH2

CN R CH

NH2

COOH

mechanism:

R C HNH3

NH3

R C

OH

H

NH2

R C H

NH

CNR

HC CN

NH2

HO/H2O RHC COOH

NH2

O

NH3

CN

Reminder:

HOOC NH

H

NHH

+ CN

Example.2.23

OH

+ NH3

Page 32: A primer to designing organic synthesis

- 32 -

Reminder:

O

C

OH

HLiAlH4

Example.2.24

Ph

Ph

Ph

Ph

Ph

Ph

Ph

Ph

HO

HO

OPh

Ph O

+

Ph

Ph

OO

FGI

Ph

Ph

OHEtO H

O

+2PhCH2MgBr

Synthesis:

Ph C H

OCN

Ph H

OH

C

OHO

HO/H2O

Ph MgBrOHPh

Ph O

CrO3OPh

Ph O

H C

O

OEt + 2PhCH2MgBr

Ph

Ph

OHCrO3

Ph

Ph

O

OPh

Ph O

Ph

Ph

O

Ph

Ph

Ph

Ph

HO

HO

H

acid

heat

Ph

Ph

Ph

Ph

O

T.M

+

Page 33: A primer to designing organic synthesis

- 33 -

** 1,2-diol

KMnO4

or OsO4

OHHO

hydration

OH

OH

OH

OH Al2O3

Reminder:

One useful radical reaction is the pinacol reduction:

OMg - Hg

benzene

OHHO

OHHO FGIO

+PPh3

remember Witting reaction

Example.2.25

Ph

OHOH

PhO +

Ph3P

Ph

Example.2.26

O

O

H

H

CO2Me OHO

HO

H

H

CO2Me

+

CO2Me CO2Meα

β

α−β unsaturated carbonyl

+

Page 34: A primer to designing organic synthesis

- 34 -

rearrangementPinacolone -** The Pinacol

R1

R2

R4

R3

OHHOH

R1

R4

R3

O

R2

mechanism:

R1

R2

R4

R3

OHHOH

R1

R2

R4

R3

OH2HOR1

R2

R4

R3

HO

R1

R4

R3

O

R2

Example.2.28

OOH OH

OH

reverse -pinacol

rearrangement

pinacol

reduction

2

O

OMg - Hg

benzene

OH OH

H+OH2 OH

Synthesis:

T.M

Example.2.27

CO2H C

O

H + Ph3P CH2 CO2H

+ C

O

β

OH

OH

FGI

Page 35: A primer to designing organic synthesis

- 35 -

(CH2)n

CO2Et

CO2Et

Na

Xylene(CH2)n

C O

CHOH

A closely allied reductive linking of carbonyl groups is an intramolecular version with esters, called the acyloin reaction, which again gives a 1,2-dioxygenated skeleton:

Example.2.29

O

OH

CO2Et

CO2Et

2 +

CO2Et

CO2Et

acyloin Diels–Alder

Mechanism of Acyloin Condensation

R OMe

O

2+ 2Na0

R OMe

O

R OMe

O

+OO

R R

OMeMeO-2NaOMe

OO

R R

Na+ Na+ Na+ Na+

OO

R R

2Na0OO

R R

Na+Na+ OO

R R

Na+ Na+ H2O

-2NaOH

OHHO

R R

tautomerismOHO

R R

Page 36: A primer to designing organic synthesis

- 36 -

Example.2.30

OMe

CO2Et

CO2Et

OMe

CO2Et

CO2Et

OMe

+

C

C

CO2Et

CO2Et

Synthesis:

CH3

OH

Br2/light

CH2Br

OH

Me2SO4

CH2Br

OMe

i) Ph3P

ii) Base

iii) PhCHO

HC

OMe

Ph3P

Ph

C

O

H

OMe

OMe

C

C

CO2Et

CO2Et

OMe

CO2Et

CO2Et

T.M

OMe OMe

HO

CH2Br

OH

+

Ph

CO H

Page 37: A primer to designing organic synthesis

- 37 -

:Robinson reaction-** Allan

Synthesis of flavones

Example.2.31

CO2Et

CO2Et

O

CO2Et

CO2Et

O O +C

C

CO2Et

CO2Et

Synthesis:

OC

C

CO2Et

CO2Et

CO2Et

CO2Et

O

T.M

O

OH

R

R' O R

O O

R'CO2Na

O R'

R

O

mechanism:

O

OH

R

H R'CO2Na

O

OH

R

R' O R

O O

O

OH

R

R'

O

O

O

HO

R'

H

R

O

O

R'

R

Page 38: A primer to designing organic synthesis

- 38 -

&apieralski reaction-chler** Bi

Synthesis of dihydro isoquinoline from β-phenylethylamide using phosphorus oxychloride.

HN

RO

POCl3N

R

mechanism:

HN

RO

Cl2P

O

Cl HN

ROPOCl2

N

R OPOCl2

HN

HR OPOCl2

H

N

RExample.2.32

H2C

FGI

H3COH

O

+ Ph3P CH2

Synthesis:

Br CH3i) Ph3P

ii)basePh3P CH2

O PPh3

CH2

O PPh3

CH2

Page 39: A primer to designing organic synthesis

- 39 -

** Bartoli Indol synthesis

Synthesis of 7-substituted indol from Ortho-substituted nitro benzene and vinyl Grignard

reagent.

Example.2.33

N N

HOH

N

O H

+

Synthesis:

N

O H

+

N

HOH acid

heat

N

mechanism:

N

O

O

MgBr

N

O

O

MgBr

N

O

MgBr

NO

MgBr

NO

H

MgBr

NO

H H

H

MgBr

H HO

N

H

NO2

R

N

H

MgBri)

ii) H3O

Page 40: A primer to designing organic synthesis

- 40 -

** Benzilic acid rearrangement

Rearrangment of Benzil to Benzilic acid via aryl migration.

** Benzoin condensation It's a cyanide-catalyzed condensation of aryl aldehyde to Benzoin.

ArC Ar

O

OKOH Ar

C OH

OH

O

Ar

mechanism:

ArC Ar

O

O

OH

ArC O

O

ArOH

ArC OH

O

O

Ar

ArC O

OH

O

Ar

acidic

workup

ArC OH

OH

O

Ar

a proton transfer leads to formation of carboxylate anion

Benzil Benzilic

HAr

O

CN ArAr

O

OH

Benzoinaryl aldehyde

mechanism:

HAr

O CN

Ar

CN

H

O

Ar

CN

HOH

Ar

CN

OH Ar H

O ArAr

O

OH

CN-H+H

Proton

transferAr

Ar

OH

O

CNAr

Ar

O

OH

Reminder:

Ar

CN

H

OH

such H bond to Carbon connect with two electron withdrawal groups thus this H is Acidic.

Page 41: A primer to designing organic synthesis

- 41 -

** Birch reduction

The reduction of aromatic substrates with alkali metal, alcohol in liquid ammonia

, known as “Birch reduction”

.Benzene ring with an electron donating substituent 1)

Benzene ring with an electron withdrawing substituent: 2)

W

W=CO2H,CO2R,COR,CONR2,CN,Ar

Na,liq,NH3

+e-

W W W

HH NH2

W

H H

+e-

W

H H

H NH2

W

Radical anion

W

X

Na,liq,NH3

ROH

X

X=OR,R,NH2

Single Electron Transfere

SET

X X

H

H

Radical anion

H OR

H

H

H

X

+e-

X

H

H

H

X

H OR

X

Page 42: A primer to designing organic synthesis

- 42 -

References:

1) Stuart G. Warren; designing organic synthesis , John Wiley,1978

2) CM3001 Dr.Alan Ford (lab 415) ,text :Willis&Wills organic Synthesis (OUP)