a practical meso-scale polycrystal model to predict dislocation...

68
Center for Advanced M aterials and M anufacturing of A utomotive C omponents A Practical Meso-Scale Polycrystal Model to Predict Dislocation Densities, Lattice Curvatures, and the Hall-Petch Effect R. H. Wagoner 1 , H. Lim 1 , J. H. Kim 2 , M.G. Lee 3 , B. L. Adams 4 1 Ohio State University, 2 Korean Institute of Materials Research 3 Pohang University of Science and Technology 4 Brigham Young University April 23, 2012 Dept. Mat. Sci. and Eng. Seoul National University

Upload: others

Post on 27-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

Center forAdvancedMaterials andManufacturing ofAutomotiveComponents

A Practical Meso-Scale Polycrystal Model to Predict Dislocation Densities, Lattice

Curvatures, and the Hall-Petch EffectR. H. Wagoner1, H. Lim1, J. H. Kim2,

M.G. Lee3, B. L. Adams4

1Ohio State University, 2Korean Institute of Materials Research

3Pohang University of Science and Technology4Brigham Young University

April 23, 2012

Dept. Mat. Sci. and Eng. Seoul National University

Page 2: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Acknowledgements

Funding– National Science Foundation

– Air Force Office of Scientific Research

Discussions– J. P. Hirth, C. S. Hartley

– BYU: E. Homer, C. Landon, J. Kacher, J. Parker

2

Page 3: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Highlights

3

Practical meso-scale method linking disloc, slip, gbobstacles, back stress.

disloc - based single crystal constitutive equations without tacit gb effects.

Formulation of gb slip transmission stress.

First prediction of H-P slopes with realistic model. Agreement with experiment, pure Fe.

First prediction of disloc(x. Agreement with experiment, Fe-3%Si.

Page 4: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Outline

• Background

• Two- Scale Model- Grain-Scale Simulation (GSS)- Meso-Scale Simulation (MSS)

• Multicrystal Testing

• Hall-Petch Tests

• Conclusions

4

Page 5: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Goals

Objective: Prediction of the Hall-Petch effect w/o arbitrary length scales or unrealistic basis

Approach: Two- scale model

5

• Fewest arbitrary parameters (simplest model)

• Predictive (no arbitrary length scales) (stra

• No unrealistic basis (pileup)

• Computational efficiency (≥ 100 grains)

• Local / real grain boundary properties

Page 6: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Hall-Petch Models

6

Dislocation pileup model[Hall, 1951; Petch, 1953]

-Generally not observed-Dimensionality, disloc. density?

Composite model[Kocks, 1970; Meyers, 1982]

-GB area/thickness (arb. Length) -Disloc. density?

1/21/2

0obsbM D

k

BULKf

GBff ff )1(

Page 7: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Hall-Petch Models (2)

7

Work hardening model[Conrad, 1961; Li. 1963)

[Evers et al. 2002]-Arbitrary division of crystals-Grain structure not considered

[Arsenlis et al., 2002, 2004]-Computationally intensive-Idealized single crystal-Simplified single slip geometry

Strain gradient approach[Fleck et al., 1994; Gurtin, 2000, 2002)

1/ D Mb -Arbitrary length scale-Ignore crystal structure, gb structure, slip systems

Page 8: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Experimental Hall- Petch Slopes

8

FCC BCCMaterials ky (MN/m3/2) Reference Materials ky (MN/m3/2) Reference

Cu 0.15 Hansen (1982) Mild Steel 0.74 Meyers (1998)

Cu-30% Zn 0.22 Phillips (1972) Fe-3% Si 1.08 Hull (1975)

Al 0.11 Abson (1970) Spheroidized Steel 0.41-0.58 Anand (1976)

Ag 0.07 Meyers (1998) Carbon Steel (0.03%) 0.81 Chang (1985)

Ni 0.30 Suits (1961) Carbon Steel (0.07%) 0.88 Chang (1985)

HCP Carbon Steel (0.17%) 1.21 Chang (1985)

Materials ky (MN/m3/2) Reference Carbon Steel (0.23%) 1.58 Chang(1985)

Zn 0.22 Meyers (1998) Fe-3% Si 0.70 OSU

Mg 0.28 Meyers (1998) Stainless Steel 439 0.44 OSU

Ti 0.40 Meyers(1998) Minimum alloy steel 0.88 OSU

Page 9: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Dislocation Transmission: SWC Criteria

9

• SWC1: Livingston and Chalmers’ criterion

•SWC2: Intersection line and slip direction criterion

•SWC3: Stress criterionSlip system chosen which the force on the head dislocation is maximized

•SWC4: Combined geometric and stress criterionSlip plane chosen by SWC2 + slip direction by SWC3

))(())(( 11111 iiii eggeggeeN

)()( 112 ii ggLLN

Z. Shen, R. H. Wagoner, and W. A. T. Clark: Dislocation and Grain Boundary Interactions in Metals, Acta Metall., 1988, Vol. 36, pp. 3231-3242.

Page 10: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Two-Scale Model

10

M. G. Lee, H. Lim, B. L. Adams, J. P. Hirth, R. H. Wagoner: A Dislocation Density-Based Single Crystal Constitutive Equation, Int. J. Plasticity, 2010, Vol. 26, pp. 925-938

H. Lim, M. G. Lee, J. H. Kim, B. L. Adams, R. H. Wagoner: Simulation of Polycrystal Deformation with Grain and Grain Boundary Effects, Int. J. Plasticity, 2011, vol. 27, pp. 1328-1354.

Page 11: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Two-Scale Simulation Procedure

11

Texture Analysis

Two-Scale Model

2nd level: Meso-Scale Simulation (MSS)

1st level: Grain-Scale Simulation (GSS)

,b

, ,ij FE, output:

Dislocation based, output:

Taylor, Sachs, etc.:

Page 12: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Two-Scale Model

Grain-Scale Simulation (GSS)

12

M. G. Lee, H. Lim, B. L. Adams, J. P. Hirth, R. H. Wagoner: A Dislocation Density-Based Single Crystal Constitutive Equation, Int. J. Plasticity, 2010, Vol. 26, pp. 925-938

Page 13: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Peirce, Asaro, Needleman (“PAN”) Framework

13

• Deformation gradient

• Rate of change of deformation gradient by dislocation glide

• Slip activities

peFFF

ppp FLF )(0

1

)(0

)(

nsL

NS

p

)(

1

)(

)(

0)( sign

m

g

Page 14: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Constitutive Eqns.: SCCE-T (“PAN”) vs. SCCE-D

14

Hardening Law(Asaro, 1985)

Hardening of slip systems(Peirce, 1982; Brown, 1989)

αβhg

SCCE-T: Single Crystal Constitutive Equations - Texture

4 arbitrary parameters (g0, gs, h0 ,a

β 0 βs

gh h 1g

SCCE-D: Single Crystal Constitutive Equations – Dislocation densityn

ααβ

β 1

g hb

α βαβh n ξ

αb

a

1 k γk

n

b

Evolution of dislocation density

(Kocks, 1976)

Hardening Law

3 arbitrary parameters (ka, kb, ρ0

αβ β

1 1.4h =h

. 1sym

0.4

Lee IJP 2010

Page 15: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Constitutive Equations: SCCE-D

15

l

)()(

lbg

)(

)(

1

l

Effective forest dislocation density

)()()()()( cos ξn

h

Orowan model [ E. Orowan, 1948]

Forest dislocation

Active (moving) dislocation

Slip plane

n()

( ) ( ) ( )

1h

nαg μb

Page 16: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

SCCE-T vs. SCCE-D: Copper Single Crystal

16

Engineering Strain

0.00 0.02 0.04 0.06 0.08 0.10

Engi

neer

ing

Stre

ss (M

Pa)

0

50

100

150

200

250

Measured SCCE-T (Fit)SCCE-D (Fit)

Cu [001] (Takeuchi, 1975)(8 equal slip systems)

Engineering Strain

0.00 0.02 0.04 0.06 0.08 0.10

Engi

neer

ing

Stre

ss (M

Pa)

0

50

100

150

200

250Cu [-111] (Takeuchi, 1975)(6 equal slip systems)

SCCE-D

SCCE-T

Measured

Engineering Strain

0.00 0.02 0.04 0.06 0.08 0.10

Engi

neer

ing

Stre

ss (M

Pa)

0

50

100

150

200

250Cu [-112] (Takeuchi, 1975)(2 equal slip systems)

SCCE-D

SCCE-T

Measured

Engineering Strain

0.00 0.02 0.04 0.06 0.08 0.10

Engi

neer

ing

Stre

ss (M

Pa)

0

50

100

150

200

250Cu [-123] (Takeuchi, 1975)(single slip system)

SCCE-D

SCCE-T

Measured

Fit Predicted

PredictedPredicted

Page 17: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Comparison: SCCE-T and SCCE-D

17

Fit direction Tensile axis direction

SCCE-T SCCE-D

Cu[001]

[111] 8 (6%) 23 (16%)[-112] 54 (150%) 13 (35%)[-123] 58 (451%) 10 (79%)

Fe [001] [011] 5 (8%) 7 (11%)[-348] 31 (66%) 15 (31%)

Avg. (Multiple slip fit) 31 (136%) 14 (34%)Cu

[-123][001] 62 (82%) 38 (50%)[111] 113 (78%) 79 (55%)[-112] 19 (54%) 7 (20%)

Fe [-348] [001] 30 (42%) 23 (32%)[011] 24 (36%) 20 (30%)

Avg. (Single slip fit) 50 (58%) 33 (37%)

2error percentage(%) = standard deviation/averaged flow stress×100

Standard deviations1 and error percentage2 between predicted and measured stress-strain curves

1standard deviation = 2( ( ) )measured

n ( 0,0.01,...,0.1)

Page 18: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Polycrystal Simulation: Texture Evolution

18

50% Compression

50% Tension

SCCE-T SCCE-D

Initial Random Orientations

{110} {111}

SCCE-T SCCE-D

Cu {110} Fe {111}

SCCE-T SCCE-D SCCE-T SCCE-D

Cu {110} Fe {111}

Initial Mesh

Page 19: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Two-Scale ModelMeso-Scale Simulation (MSS)

19

H. Lim, M. G. Lee, J. H. Kim, B. L. Adams, R. H. Wagoner: Simulation of Polycrystal Deformation with Grain and Grain Boundary Effects, Int. J. Plasticity, 2011, vol. 27, pp. 1328-1354.

Page 20: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

MSS Assumptions, Simplifications

• Dislocation glide only

• Superdislocation lumping

• No elastic image effects, all gb effects into obs

• Edge dislocations only

• Dislocations interact within 1 slip system, 1 grain

20

Page 21: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

MSS Overview

21

Steps

1) Redistribution of dislocations

2) Back stress calculation (τb)

3)Transmission criterion (τobs)

Superdislocation Lumpingα-th slip plane

, B

n

s

( ) ( ) ( )( ) ( ) ( )

( )

V bB n bL

Page 22: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

1) Redistribution of Dislocations

inid out

id

1id id 1id

1il il 1il

netid

1

1( )in i ii

i i

d ddb l l

1

1( )out i ii

i i

d ddb l l

in outi i id d d

1passd d

bl

md b dx Orowan’s Equation (Orowan, 1940)

22

Net dislocation density for i-th element

Net dislocation density that passes through the element

Page 23: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

2) Back Stress Calculation

ith superdislocation

jth superdislocation

r1

r2

r3dlj

dli

ith superdislocation

Y

X

Z slip direction

slip normal direction

y2

y1x2

x1

Bi

Bj

jth superdislocation

ˆjξ

2 2 22 1 2

2 21 2

2 2 21 2

( )

( )

ij j ijij

ij i j

r r rg x RR r r

R r r y x

111 22 12 212 2

2 1 1 2

F 1F4 (1 ) ( )

glide i jij

i

B B r g g g gdl x x r r

23

1

1 FN

bi ij

jij i

b

Back Stress:

where

Page 24: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

3) GB Obstacle Stress

24

)()( 112 ii ggLLN (SWC-2 Model)

• Obstacle strength with slip transmissivity

*)1( Nobs

yN 5*10

stress obstacle minimum:1stress obstacle maximum:0

NN

• Dislocation and grain boundary interactions

iL

ig

: intersection lines between grain boundary and slip plane

: slip directions

Boundary (MPa) Transmissivity (N)1 380 0.5882 280 0.9153 870 0.4724 400 0.785

obs

Measured τobs for SS304 (Shen et al., 1986) and calculated transmissivity.

(Shen et al., 1986)

Page 25: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

MSS-GSS Update

25

1/

0 ( )m

b obsb obssign

g

For non-GB elements,

1/

0 ( )m

bbsign

g

For GB elements,

b obs 0

b obs

Page 26: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Test: 1-D Stressed Pileup

26

122(1 )( ) v l xn x

b x

ˆ 0i ij i ij

F F B

Page 27: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Predicted Evolution of Dislocation Densities

27

Test geometry

Mises stress at 10% strain

Page 28: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Predicted Evolution of Dislocation Densities

28

Dislocation densities w/ strain

Dislocation densities for two slip systems

2( )m 2( )m

211 111 112 111

Page 29: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Accumulated Absolute Strain

0.00 0.02 0.04 0.06 0.08 0.10

Abs

. Tru

e St

ress

(MPa

)

0

50

100

150

200 Compression

Tension

Compression-Tension

Predicted Bauschinger Effect

29

Compression- tension test

Page 30: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Predicted Bauschinger Effect

Accumulated Absolute Strain

0.00 0.02 0.04 0.06 0.08 0.10

Abs

. Tru

e St

ress

(MPa

)

0

50

100

150

200

Compression

Tension

Tension-Compression

Accumulated Absolute Strain

0.00 0.02 0.04 0.06 0.08 0.10

Abs

. Tru

e St

ress

(MPa

)

0

50

100

150

200 Compression

Tension

Compression-Tension

30

Tension-compression test Compression- tension test

Grain φ1 Φ φ2

A 56.7 63.0 185.4

B 130.7 35.2 10.3

C 259.9 25.3 357.5

D 353.9 131.7 271.8

Initial grain orientations

Page 31: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Multicrystal Testing

31

Page 32: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Multicrystal Testing

32

3mm

15.42

62.00

0.00

R16.00

2.00

10.00

Page 33: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Material Selection

33

Stress- strain curves (as received) Hall-Petch slopesD-0.5 (m-0.5)

0 50 100 150 200 250

Eng.

Str

ess

(MPa

)

0

100

200

300

400

500

600

0.88 MN/m3/2

0.70 MN/m3/2

Minimum Alloy Steel

Fe-3% Si

Eng. Strain

0.0 0.1 0.2 0.3 0.4 0.5

Eng.

Str

ess

(MPa

)

0

100

200

300

400

Fe-3% Si

Minimum Alloy Steel

Grain size: 10m-30mm

Grain size: 60m-1.4mm

Page 34: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Tensile Tests: MAS

Grain map (9-39 grains)

34

Eng. Strain

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Eng.

Str

ess

(MPa

)

0

20

40

60

80

100

120

140

160

180

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Minimum alloy steelStrain rate=5x10-4s-1

Measured stress-strain response

Page 35: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Meshing Procedure

35

Measured OIM figure in bitmap data

Discretized into elements

Grain information assigned for each element from bitmap data

Page 36: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Eng. Strain

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Eng.

Str

ess

(MPa

)

60

80

100

120

140

160

180

Measured Two- scalePANTaylor (SCCE-T)Taylor (SCCE-D)

Sample 6

Fit Procedure

36

Two-scale(SCCE-D)

PAN(SCCE-T)

Taylor(SCCE-T)

Taylor (SCCE-D)

1.1 1.1 2.3 0.9

Std. error of fit (MPa)

Fitted: Sample 6: 39 grains

SCCE-T: 4 fitting parameters (g0, gs, h0 ,a

SCCE-D: 3 fitting parameters (ka, kb, ρ0

Page 37: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Predicted Hardening, Sample 1 (9 grains)

37

(9 grains)

Page 38: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Prediction Summary: Multicrystal Hardening

Standard deviations between predicted and measured hardening curves (Unit: MPa)

38

Samples # of grains

Taylor (PAN)

Taylor(SCCE-D)

CPFEM(PAN)

CPFEM(SCCE-D)

Two-scale (SCCE-D)

Sample 1 9 22.6 18.6 19.8 4.9 4.6

Sample 2 12 16.8 13.6 16.3 11.1 3.7

Sample 3 18 6.6 19.1 6.0 12.1 4.4

Sample 4 32 25.1 9.5 22.3 8.0 4.2

Sample 5 34 21.8 25.3 18.4 9.2 11.1

Average 18.6 17.2 16.6 9.1 5.6

Page 39: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Lattice Curvature, Fe-3% Si

39

Inverse pole figure Surface image (optical)

Measured lattice curvature Predicted lattice curvatureMax= 9.2×10-3 rad/μm Avg.= 7.3×10-5 rad/μm

Max= 9.5×10-3 rad/μm Avg.= 5.8×10-4 rad/μm

Page 40: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Hall-Petch Tests

40

Page 41: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Size-Dependent Simulation

41

32 grains 64 grains16 grains

L=1mm

4 grains

8 grains 16 grains 64 grains 125 grains

L=1mm

L=1mm

2D grain assemblies

3D grain assemblies

Page 42: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Size-Dependent Simulation

42

Measured and simulated Hall-Petch slopes (0.2% offset, MN/m3/2)Measured H-P model Two-scale (2D) Two-scale (3D)0.9 ± 0.1 0.2

(4.5×)1.2 ± 0.3

(1.3×)1.5 ± 0.3

(1.7×)

D-0.5 (m-0.5)

0 20 40 60 80 100 120 140

Yiel

d St

ress

(MPa

)

40

60

80

100

120

140

160

180

200

220

240

Measured

Two-scale model (2D)Two-scale model (3D)

ky(YS)=0.9 0.1 MN/m3/2

Minimum Alloy Steel

ky(YS)=1.2 0.3 MN/m3/2ky(YS)=1.5 0.3 MN/m3/2

Pileup model (2D)ky(YS)=0.03 0.01 MN/m3/2

Page 43: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Effect of τ* on ky

43

Effect of τ* on Hall-Petch slope for 3D grain arrays.* (MPa)

0 200 400 600

Hal

l-Pet

ch S

lope

, ky (

MN

/m3/

2 )

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Measured ky (YS)

*=375 MPa (5 x YS)

Minimum alloy steel3D grain assemblies

Page 44: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Conclusions

1. First realistic, quantitative prediction of Hall-Petch.

2. First quantitative prediction of distributions with- , - gb interactions.

3. New practical meso-scale method for , strain. Enable new dimension of material design (gb)?

4. Extension of SWC gb transmission criterion to predict obs.

44

Page 45: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Thank you!

45

Page 46: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Additional Slides

46

Page 47: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. WagonerEngineering Strain

0.00 0.05 0.10 0.15 0.20

Engi

neer

ing

Stre

ss (M

Pa)

0

50

100

150

200

250

kb=20bkb=30bkb=40b

Engineering Strain

0.00 0.05 0.10 0.15 0.20

Engi

neer

ing

Stre

ss (M

Pa)

0

50

100

150

200

250

300

350

ka=10 ka=20 ka=30

Engineering Strain

0.00 0.05 0.10 0.15 0.20

Engi

neer

ing

Stre

ss (M

Pa)

0

50

100

150

200

0=109m-2

0=1011m-2

0=1013m-2

SCCE-D: Effect of Variables

47

Increasing ρ0

Increasing ka

Increasing kb

Page 48: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. WagonerEngineering Strain

0.00 0.02 0.04 0.06 0.08 0.10

Engi

neer

ing

Stre

ss (M

Pa)

0

50

100

150

200

250Cu [-112] (Takeuchi, 1975)(2 equal slip systems)

SCCE-D

SCCE-T

Measured

Engineering Strain

0.00 0.02 0.04 0.06 0.08 0.10

Engi

neer

ing

Stre

ss (M

Pa)

0

50

100

150

200

250Cu [-111] (Takeuchi, 1975)(6 equal slip systems)

SCCE-D

SCCE-T

Measured

Engineering Strain

0.00 0.02 0.04 0.06 0.08 0.10

Engi

neer

ing

Stre

ss (M

Pa)

0

50

100

150

200

250

Measured SCCE-T (Fit)SCCE-D (Fit)

Cu [-123] (Takeuchi, 1975)(single slip system)

SCCE-T vs. SCCE-D: Copper Single Crystal

48

Engineering Strain

0.00 0.02 0.04 0.06 0.08 0.10

Engi

neer

ing

Stre

ss (M

Pa)

0

50

100

150

200

250Cu [001] (Takeuchi, 1975)(8 equal slip systems)

SCCE-D

SCCE-T

Measured

Parameters fit to measured Cu single crystal [-123]

Page 49: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. WagonerEngineering Strain

0.00 0.02 0.04 0.06 0.08 0.10

Engi

neer

ing

Stre

ss (M

Pa)

0

50

100

150

200Fe [011] (Keh, 1964)(2 equal slip systems)

SCCE-D

SCCE-T

Measured

Engineering Strain

0.00 0.02 0.04 0.06 0.08 0.10

Engi

neer

ing

Stre

ss (M

Pa)

0

50

100

150

200Fe [-348] (Keh, 1964)(single slip system)

SCCE-DSCCE-T

Measured

SCCE-T vs. SCCE-D: Iron Single Crystal

49

Engineering Strain

0.00 0.02 0.04 0.06 0.08 0.10

Engi

neer

ing

Stre

ss (M

Pa)

0

50

100

150

200

Measured SCCE-T (Fit)SCCE-D (Fit)

Fe [001] (Keh, 1964)(4 equal slip systems)

Parameters fit to measured Fe single crystal [001]

Page 50: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. WagonerEngineering Strain

0.00 0.02 0.04 0.06 0.08 0.10

Engi

neer

ing

Stre

ss (M

Pa)

0

50

100

150

200Fe [011] (Keh, 1964)(2 equal slip systems)

SCCE-D

SCCE-T

Measured

Engineering Strain

0.00 0.02 0.04 0.06 0.08 0.10

Engi

neer

ing

Stre

ss (M

Pa)

0

20

40

60

80

100

120

140Fe [001] (Keh, 1964)(4 equal slip systems)

SCCE-D

SCCE-T

Measured

SCCE-T vs. SCCE-D: Iron Single Crystal

50

Engineering Strain

0.00 0.02 0.04 0.06 0.08 0.10

Engi

neer

ing

Stre

ss (M

Pa)

0

50

100

150

200

Measured SCCE-T (Fit)SCCE-D (Fit)

Fe [-348] (Keh, 1964)(single slip system)

Parameters fit to measured Fe single crystal [-348]

Page 51: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Polycrystal Simulation: Texture Evolution

51

50% Compression

50% Tension

SCCE-T SCCE-D

Initial Random Orientations

{110} {111}

SCCE-T SCCE-D

Cu {110} Fe {111}

SCCE-T SCCE-D SCCE-T SCCE-D

Cu {110} Fe {111}

Initial Mesh

Page 52: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Superdislocation lumping

52

Slip plane

ElementDiscrete dislocation pileup

Continuous pileup

Finite element discretization into superdislocations

Dislocation density, ρ

( ) ( ) ( )( ) ( ) ( )

( )

V bB n bL

Page 53: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Dislocation Transmission: SWC Criteria

53

• SWC1: Livingston and Chalmers’ criterion

• SWC2: Intersection line and slip direction criterion

• SWC3: Stress criterionSlip system chosen which the force on the head dislocation is maximized

• SWC4: Combined geometric and stress criterionSlip plane chosen by SWC2 + slip direction by SWC3

))(())(( 11111 iiii eggeggeeN

)()( 112 ii ggLLN

Comparison of the predicted and observed slip systems in five experiments

exp1 exp2 exp3 exp4 exp5

SWC1 0/5 X X X X XSWC2 3/5 X O O O XSWC3 3/5 O O X X OSWC4 5/5 O O O O O

Page 54: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Crystal Orientations vs. Dislocation Densities

Total dislocation density at 10% strainφ1=15° φ1=30° φ1=45°

6×1012

2( )m

4.5×1012

3×1012

54

Misorientation ( ) Stress at 10% (MPa)

0° 111.90

15° 111.60

30° 112.77

45° 113.65

A B y

xz

xy

zGrain A

Grain B

11

Page 55: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Material Selection

55

Desired material properties

• High Hall- Petch Slopes• Good Ductility / Hardening• Grain Size• Good OIM imaging/polishing

0

100

200

300

400

0 5 10 15 20 25 30

Eng.

Stre

ss (M

Pa)

Eng.Strain (%)

Fe-Si 3%

Stainless Steel 439

Minimum Alloy Steel

Stress- strain curves (as received) Hall-Petch slopes

Material ky [MN/m3/2] Ductility Grain sizeFe-Si 3% 0.70 8% 10µm~30mm

SS 439 0.44 13% 30µm~70µm

Minimum Alloy Steel 0.88 25% 60µm~1.4mm

D-0.5 (m-0.5)

0 50 100 150 200 250

Yiel

d St

ress

(0.2

% o

ffset

) (M

Pa)

0

100

200

300

400

500

600

0.44 MN/m3/2

0.88 MN/m3/2

0.70 MN/m3/2

Minimum alloy steel

Stainless steel 439

Fe-3% Si

100D (m)

500 50 30 202000

Page 56: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Heat Treatment of Minimum Alloy Steel

56

50um

1 mm

As received (D~60 µm)

1000ºC 5h (D~140 µm)

Strain annealing1000ºC 1h → 1~ 2.5% straining→ 1250ºC 10h (D~1350µm)

1250ºC 5h (D~620 µm)

C Mn P S Si Cu Ni Cr Mo Sn Al Ti N Nb0.001 0.13 0.006 0.005 0.004 0.023 0.007 0.014 0.003 0.002 0.038 0.001 0.003 0.001

Composition (wt%)

Eng. Strain

0.0 0.1 0.2 0.3 0.4 0.5

Eng.

Str

ess

(MPa

)

0

50

100

150

200

250

300

D=1350 m

D=620 m

D=140 m

D=60 m50um

Minimum Alloy SteelStrain rate =5x10-4 s-1

Grain Size: 60 ~ 1350mm

Page 57: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Tensile Tests MAS Specimens

15.42

60.00

10.00

R16.00

1.00

8.00

15.42

62.00

10.00

R16.00

2.00

10.00

Type I

Type II

Type III

Thickness=2.1 mm

Thickness=2.1 mm

Thickness=0.4 mm

15.42

62.00

10.00

R16.00

2.00

10.00

Sample 1, Sample 2

Sample 3, Sample 6

Sample 4, Sample 5

Dimensions of tensile samples (unit: mm) OIM grain map

57Eng. Strain

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Eng.

Str

ess

(MPa

)

0

20

40

60

80

100

120

140

160

180

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Minimum alloy steelStrain rate=5x10-4s-1

# of grains  Sample type Davg. (mm)  YS (MPa)  UTS (MPa) 

Sample 1  9 I 0.53 84 ‐

Sample 2  13 I 0.38 96 167

Sample 3  18 II 0.82 63 167

Sample 4  32 III 0.09 94 144

Sample 5  34 III 0.11 90 159

Sample 6  39 II 0.46 74 ‐

Measured stress-strain response Material properties for six tensile samples

Page 58: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Simulation of MAS tensile specimens

Shear modulus (G)

80 242 150 112

C11 C12 C44

PAN model Taylor (SCCE-T)

h0(MPa) 423 402

gs(MPa) 162 240

g0(MPa) 38 40

a 2 2

Two-Scale model Taylor (SCCE-D)

ρ0(mm-2) 9.4×1011 1.1×1012

ka 63 16

kb 7b 25b

Shear modulus and anisotropic elasticity constants (GPa)

Fitting parameters

Meshing procedure

58

Measured OIM figure in bitmap data

Discretized into meshes

Grain information assigned for each element from bitmap data

Page 59: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

0.00 0.02 0.04 0.06 0.08 0.10 0.120

20

40

60

80

100

Eng. Strain

y (M

Pa)

Sample 1

PAN modely= 83 MPastd.dev.=19.8 MPa

Two-scale modely= 72 MPastd. dev.=4.6 MPaMeasured

y= 86 MPa

Taylor Model (SCCE-T)y= 81 MPastd.dev.=22.6 MPa

Taylor Model (SCCE-D)y= 80 MPastd. dev.=18.6 MPa

Prediction of hardening of MAS

59

Sample 1 (9 grains)

0.00 0.02 0.04 0.06 0.08 0.10 0.120

20

40

60

80

100

Eng. Strain

y (M

Pa)

Sample 2 Taylor Model (SCCE-T)y= 78 MPastd.dev.=16.2 MPa

Taylor Model (SCCE-D)y= 77 MPastd. dev.=12.6 MPa

PAN modely= 80 MPastd. dev.=16.3 MPa

Two-scale modely= 69 MPastd. dev.=3.7 MPaMeasured

y= 101 MPa

Sample 2 (13 grains)

Page 60: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Prediction- Continued

60

0.00 0.02 0.04 0.06 0.08 0.10 0.120

20

40

60

80

100

Eng. Strain

y (M

Pa)

Sample 4 Taylor Model (SCCE-T)y= 82 MPastd.dev.=24.5 MPa

Taylor Model (SCCE-D)y= 80 MPastd. dev.=8.7 MPa

Two-scale modely= 73 MPastd. dev.= 4.2 MPa

Measuredy= 95 MPa

PAN modely= 82 MPastd. dev.= 22.3 MPa

0.00 0.02 0.04 0.06 0.08 0.10 0.120

20

40

60

80

100

Eng. Strain

y

(MPa

)

Sample 5

Iso-strain (SCCE-T)y= 81 MPastd.dev.=21.2 MPa

Iso-strain (SCCE-D)y= 79 MPastd. dev.=24.2 MPa

PAN modely= 81 MPastd. dev.= 18.4 MPa

Two-scale modely= 75 MPastd. dev.= 11.1 MPa

Measuredy= 90 MPa

Sample 4 (32 grains)

Sample 5 (34 grains)

0.00 0.02 0.04 0.06 0.08 0.10 0.120

20

40

60

80

100

Eng. Strain

y (M

Pa)

Sample 3 Taylor Model (SCCE-T)y= 76 MPastd.dev.=6.0 MPa

Taylor Model (SCCE-D)y= 75 MPastd. dev.=18.0 MPa

PAN modely= 81 MPastd. dev.=6.0 MPa

Two-scale modely= 70 MPastd. dev.=4.4 MPaMeasured

y= 74 MPa

Sample 3 (18 grains)

Page 61: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Fe-3% Si Sample Preparation

61

C Mn P S Si Cu Ni Al N0.004 0.09 0.01 0.025 2.95 0.02 0.01 0.03 0.015

Chemical composition (wt.%)

Grain φ1 Φ φ2

1 61 38 2822 266 41 813 74 41 2654 248 30 88

Initial grain orientations (Bunge’s Euler angles, degrees)

Inverse Pole Figure

Page 62: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Lattice Curvature Calculation

j

i

dxd

ij (Nye, 1953; Sun et al., 2000)

3

1

2

1

3

1

2

1 61

61

i j j

i

i jij dx

d (Adams and Field, 1992; Sun et al., 2000;

El-Dasher et al., 2003)

62

eljkijkkkijijij e ,2

1

NS

s

sss

1

)()()( zbα

NS

s

sj

si

sij zb

1

)()()(or

Page 63: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Effect of crystal orientations vs. grain orientations

Uniaxial tension (~10%), strain rate=10-3s-1

Crystal orientation Stress at 10%

0° 119.04

15° 119.20

30° 118.94

45° 116.75

Δσ 2.45

x

y

z

0 15

30 45

Crystal orientation Stress at 10%

0° 115.01

15° 115.96

30° 116.73

45° 116.75

Δσ 1.74

Rotation around z axis

Crystal orientation Stress at 10%

0° 115.01

15° 115.25

30° 115.39

45° 115.35

Δσ 0.38

Rotation around x axisGrain A: (φ1,Ф,φ2) = (45,0,0)

Grain B: (φ1,Ф,φ2) = (0,0,0)

63

Page 64: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Measured Hall-Petch Slope

D-0.5 (m-0.5)

0 20 40 60 80 100 120 140

Stre

ss (M

Pa)

50

100

150

200

250

300

ky(UTS)=0.98 0.13 MN/m3/2

ky(YS)=0.88 0.08 MN/m3/2

ASTM E8 Subsize specimens

Undersizedspecimens

Minimum Alloy Steel

64

Page 65: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Hall- Petch Slopes for Various Materials

65

FCC BCCMaterials ky (MN/m3/2) Reference Materials ky (MN/m3/2) Reference

Cu 0.15 Hansen (1982) Mild Steel 0.74 Meyers (1998)

Cu-30% Zn 0.22 Phillips (1972) Fe-3% Si 1.08 Hull (1975)

Al 0.11 Abson (1970) Spheroidized Steel 0.41-0.58 Anand (1976)

Ag 0.07 Meyers (1998) Carbon Steel (0.03%) 0.81 Chang (1985)

Ni 0.30 Suits (1961) Carbon Steel (0.07%) 0.88 Chang (1985)

HCP Carbon Steel (0.17%) 1.21 Chang (1985)

Materials ky (MN/m3/2) Reference Carbon Steel (0.23%) 1.58 Chang(1985)

Zn 0.22 Meyers (1998) Fe-3% Si 0.70 OSU

Mg 0.28 Meyers (1998) Stainless Steel 439 0.44 OSU

Ti 0.40 Meyers(1998) Minimum alloy steel 0.88 OSU

Page 66: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Predicted Hall-Petch Slope Using Pileup Model

Material Measured ky Calculated ky

FCC Al 0.11 0.06Cu 0.15 0.12-0.30Ni 0.30 0.23-0.49

HCP Mg 0.28 0.05-0.09Ti 0.40 0.16-0.25

BCC Fe 0.74 0.18-0.23

1/21/2

0obsbM D

k

1/2obs

ybk M

k

Measured and calculated Hall-Petch slope (Unit: MN/m3/2)

66

Page 67: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Effect of Grain Boundary Strength on ky

67

* (MPa)

0 200 400 600

Hal

l-Pet

ch S

lope

, ky (

MN

/m3/

2 )

0.0

0.5

1.0

1.5

2.0

2.5

Measured ky (YS)

Measured ky (e=0.1)

Simulated ky (e=0.1)

Simulated ky (YS)

Effect of τ* on Hall-Petch slope for 3D grain arrays.

Page 68: A Practical Meso-Scale Polycrystal Model to Predict Dislocation …li.mit.edu/Stuff/RHW/Upload/SeoulSNUH-Pviewg2012.pdf · 2012-04-18 · Center for Advanced Materials and Manufacturing

R. H. Wagoner

Slip activity (FEM) vs. Schmid factor

Specimens # of grains PredictionFeSi sample 1 2 2/2 (100%)FeSi sample 2 12 10/12 (83%)FeSi sample 3 22 20/22 (91%) MAS sample 1 9 5/9 (56%)MAS sample 2 13 8/13 (62%)MAS sample 3 18 11/18 (61%)MAS sample 4 32 26/32 (81%)MAS sample 5 34 24/34 (71%)MAS sample 6 39 24/39 (62%)

Comparison between most active slip systems by(1) FEM (slip activity) and (2) Schmid factor calculation

68