a novel route to cyclopentane derivatives: a radical chain reaction

2
nal Aib CI3 atoms between a-helical alamethicin (AT, =250-290 ms, 298 K)[*'] and 12 (AT, =51 ms, 240 K) at comparable AS values (4.5 and 4.6 ppm, respectively) are strongly in favor of the 3,0-helix for 12. The exact eval- uation would require additional a-helical T1 data at 240 K. The energy barrier of the 3,,,-helix interconversion of 12 at T,=265 K (Fig. 3) could be estimated rather accurately by the coalescence method.['] The free energy of activation is AC' = 46 kJ mol - I, i. e., 4.6 kJ mol - per Aib residue. This value is much lower than the mean values determined for a-helices. 290 270 250 230 210 - TIKI Fig. 3. Temperature dependence of the "C-NMR of 12 170 mg/0.5 mL CD2C12; internal standards CD2C12 (6= 53.8) and tert-butyl alcohol (rBu- OH) (6=30.0) at room temperature; 50 MHz, Bruker MSL 2001. In the insert, spectrum in the region of the Aib-C, signals at three temperatures: T=203 K, 6=21.4, 26.7, A6=5.3 ppm, frozen 310-helix interconversion; T,(T,,,)=265 K, broad coalescence signal (from which AGC=46 kJ mol-' is derived): T=300 K, single Aib-C, signal at 6=25.1 due to fast 3',0*3;0 helix interconversion. The sharp signal at 6=28.0 corresponds to the methyl groups of the rerr-butyl ester protecting group (OrBu). A corollary comparison between results from high-reso- lution and solid-state 13C-NMR spectroscopy (CPMAS) gave further support to our interpretation. The effect of freezing the 3',0"c3 i0 interconversion at very low tempera- ture was found to be comparable to that of shorter Aib ho- mopeptides in the solid state such as Z-(Aib),-OH (A6=2.5 ppm) and 2-(Aib),-OtBu (4.0 ppm). On the other hand, the Aib residues between the protein amino acid re- sidues in the conformationally more stable a-helices show A6 values of 3-5 ppm already in solution at room tempera- ture (Fig. 2). The 3,,,-helix interconversion can be described as a fast monomolecular all-or-nothing process between enantio- meric P- and M-helical forms. A decision cannot be made temperature. Inter aha, this could be one reason for the burstlike pore formation of trichotoxin in currentholtage experiments in lipid bilayer membranes," 'I in contrast to the stabile pore system of the a-helical and rigid alamethi- tin."] In addition, the surprising experimental results for this 3to-helix enantiotopomerization, which indicate, e. g., 1200 interconversions per second at room temperature for 12, appear to be of particular interest for conformational energy calculations. Received: April 24, 1987 [Z 2220 IE] German version: Angew. Chem. 97(1987) 1180 [I] I. S. Richardson, Adu. Protein Chem. 34 (1981) 167. I21 a) E. Benedetti, A. Bavoso, B. Di Blasio, V. Pavone, C. Pedone, C. Ton- iolo, G. M. Bonora, Proc. Narl. Acad. Sci. USA 79 (1982) 7951; b) H. Briickner, H. Graf, Experientio 39 (1983) 528. [3] a) R. Bosch, G. Jung, H. Schmitt, G. M. Sheldrick, W. Winter, Angew. Chem. 96 (1984) 440; Angew. Chem. Inr. Ed. Engl. 23 (1984) 450, and references cited therein; b) C. Toniolo, G. M. Bonora, A. Bavoso, E. Benedetti, 8. Di Blasio, V. Pavone, C. Pedone, Biopolymers 22 (1983) 205; c) A. Bavoso, E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, C. Toniolo, G. M. Bonora, Proc. Natl. Acad. Sci. USA 83 (1986) 1988: d ) B. V. Venkataram Prasad, P. Balaram, CRC Crir. Rev. Biochem. 16 (1984) 307; e) M. Kokkonidis, D. Tsernoglou, H. Briickner, Biochem Biophys. Res. Commun. 136 (1986) 870; f) B. R. Malcolm, M. D. Walkinshaw, Biopolymers 25 (1986) 607. [4] a ) R. D. Fox, Jr., F. M. Richards, Nature (London) 300 (1982) 325; b) R. Bosch, G. Jung, H. Schrnitt, W. Winter, Biopolymers 24 (1985) 961, 979: c) I. L. Karle, M. Sukumar, P. Balaram, Proc. Null. Acad. Sri. USA 83 (1986) 9284. [5] G. Jung, R. Bosch, E. Katz, H. Schmitt, K.-P. Voges, W. Winter, Biopo- lymers 22 (1983) 241. I61 a) K.-P. Voges, G. Jung, W. H. Sawyer, Biochim. Biophys. Acra 896 (1987) 64; b) G. Jung, N. Dubischar, D. Leibfritz, Eur J. Biochem. 54 (1975) 395; c) G. Esposito, J. A. Carver, J. Boyd, I. D. Campbell, Bio- chemisrry 26 (1987) 1043. [7] a) G. Boheim, W. Hanke, G. Jung, Biophys. Strucr. Mech. 9 (1983) 181: b) G. Menestrina, K.-P. Voges, G. Jung, G. Boheim, J. Membr. Biol. 93 (1986) 111. 181 a) H. Schmitt. G. Jung, Liebigs Ann. Chem. 1985, 345; b) R. Bosch, G. Jung, K:P. Voges, W. Winter, ibid. 1984. I 117; c) G. Jung, H. Schmitt in U. Ragnarsson (Ed.), Peptides 1984. Almquist & Wiksell, Uppsala 1984, S. 569; d) the chiral 2-trideuteriomethylalanine (R)-[D,]Aib, which is particularly suitable for NMR studies, has been synthesized by T. Weih- rauch and D. Leibfriitz (Liebigs Ann. Chem. 1985. 1917), but not yet intro- duced into peptides. 191 a ) H. Kessler, Angew. Chem. 82 (1970) 237; Angew. Chem. Int. Ed. Engl. 9 (1970) 219; b) G. Binsch, H. Kessler, ibid. 92 (1980) 445 and 19 (1980) 411. [lo] C. Toniolo, G. M. Bonora, V. Barone, A. Bavoso, E. Benedetti, B. Di Blasio, G. Grimaldi, F. Lelj, V. Pavone, C. Pedone, Macromolecules 18 (1985) 895. 1111 W. Hanke, C. Methfessel, H.-U. Wilmsen, E. Katz, G. Jung, G. Boheim, Biochim. Biophys. Acra 727 (1983) 108. A Novel Route to Cyclopentane Derivatives: A Radical Chain Reaction** By Klaus Weinges* and Wolfgang Sipos Dedicated to Professor Hermann Schildknecht on the occasion of his 65th birthday Dienes whose double bonds exhibit variable reactivity because of substituent effects can undergo an intramolecu- lar cyclization when subjected to solvornercuration and subsequent reduction with complex boron or tin hy- dride~.~'-~] We have now found that a mixture of the cyclo- pentane derivatives cis4a and trans-4a in the ratio 8 :2 is so far whether measurable amounts of other conforma- 1'1 Prof. Dr. K. Weinges, DipLChem. W. Sipos tions exist at and above the melting temperature T,,, (= TJ. Our findings may be of relevance for short 310-helicalseg- Organisch-chemisches Institut der Universitat Im Neuenheimer Feld 270, D-6900 Heidelbere. 1 (FRG) - . , merits of peptaibols particularly rich in Aib, e.g., tricho- [**I This work was supported by the Land Baden-Wiirttemberg (FRG) (For- toxin,["l which could be conformationally labile at room 1152 schungsschwerpunkt No. 35). 0 VCH Verlagsgesells~ha$mbH. 0-6940 Weinherm. 1987 0570-0833/87/1111-11SZ $ 02.50/0 Angew. Chem. In/. Ed. Engl. 26 (1987) No. 11

Upload: prof-dr-by-klaus-weinges

Post on 06-Jun-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Novel Route to Cyclopentane Derivatives: A Radical Chain Reaction

nal Aib CI3 atoms between a-helical alamethicin (AT, =250-290 ms, 298 K)[*'] and 12 (AT, =51 ms, 240 K) at comparable AS values (4.5 and 4.6 ppm, respectively) are strongly in favor of the 3,0-helix for 12. The exact eval- uation would require additional a-helical T1 data at 240 K. The energy barrier of the 3,,,-helix interconversion of 12 at T,=265 K (Fig. 3) could be estimated rather accurately by the coalescence method.['] The free energy of activation is AC' = 46 kJ mol - I , i. e., 4.6 kJ mol - per Aib residue. This value is much lower than the mean values determined for a-helices.

290 270 250 230 210 - TIKI

Fig. 3. Temperature dependence of the "C-NMR of 12 170 mg/0.5 m L CD2C12; internal standards CD2C12 (6= 53.8) and tert-butyl alcohol (rBu- OH) (6=30.0) at room temperature; 50 MHz, Bruker MSL 2001. In the insert, spectrum in the region of the Aib-C, signals at three temperatures: T=203 K, 6=21.4, 26.7, A6=5.3 ppm, frozen 310-helix interconversion; T,(T,,,)=265 K, broad coalescence signal (from which AGC=46 kJ mol- ' is derived): T=300 K, single Aib-C, signal at 6=25.1 due to fast 3',0*3;0 helix interconversion. The sharp signal at 6=28.0 corresponds to the methyl groups of the rerr-butyl ester protecting group (OrBu).

A corollary comparison between results from high-reso- lution and solid-state 13C-NMR spectroscopy (CPMAS) gave further support to our interpretation. The effect of freezing the 3',0"c3 i0 interconversion at very low tempera- ture was found to be comparable to that of shorter Aib ho- mopeptides in the solid state such as Z-(Aib),-OH (A6=2.5 ppm) and 2-(Aib),-OtBu (4.0 ppm). On the other hand, the Aib residues between the protein amino acid re- sidues in the conformationally more stable a-helices show A6 values of 3-5 ppm already in solution at room tempera- ture (Fig. 2).

The 3,,,-helix interconversion can be described as a fast monomolecular all-or-nothing process between enantio- meric P- and M-helical forms. A decision cannot be made

temperature. Inter aha, this could be one reason for the burstlike pore formation of trichotoxin in currentholtage experiments in lipid bilayer membranes," ' I in contrast to the stabile pore system of the a-helical and rigid alamethi- tin."] In addition, the surprising experimental results for this 3to-helix enantiotopomerization, which indicate, e. g., 1200 interconversions per second at room temperature for 12, appear to be of particular interest for conformational energy calculations.

Received: April 24, 1987 [Z 2220 IE] German version: Angew. Chem. 97(1987) 1180

[I] I. S . Richardson, Adu. Protein Chem. 34 (1981) 167. I21 a) E. Benedetti, A. Bavoso, B. Di Blasio, V. Pavone, C . Pedone, C. Ton-

iolo, G. M. Bonora, Proc. Narl. Acad. Sci. USA 79 (1982) 7951; b) H. Briickner, H. Graf, Experientio 39 (1983) 528.

[3] a) R. Bosch, G. Jung, H. Schmitt, G. M. Sheldrick, W. Winter, Angew. Chem. 96 (1984) 440; Angew. Chem. Inr. Ed. Engl. 23 (1984) 450, and references cited therein; b) C. Toniolo, G. M. Bonora, A. Bavoso, E. Benedetti, 8. Di Blasio, V. Pavone, C. Pedone, Biopolymers 22 (1983) 205; c) A. Bavoso, E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, C. Toniolo, G. M. Bonora, Proc. Natl. Acad. Sci. USA 83 (1986) 1988: d) B. V. Venkataram Prasad, P. Balaram, CRC Crir. Rev. Biochem. 16 (1984) 307; e) M. Kokkonidis, D. Tsernoglou, H. Briickner, Biochem Biophys. Res. Commun. 136 (1986) 870; f) B. R. Malcolm, M. D. Walkinshaw, Biopolymers 25 (1986) 607.

[4] a) R. D. Fox, Jr., F. M. Richards, Nature (London) 300 (1982) 325; b) R. Bosch, G. Jung, H. Schrnitt, W. Winter, Biopolymers 24 (1985) 961, 979: c) I . L. Karle, M. Sukumar, P. Balaram, Proc. Null. Acad. Sri. USA 83 (1986) 9284.

[ 5 ] G. Jung, R. Bosch, E. Katz, H. Schmitt, K.-P. Voges, W. Winter, Biopo- lymers 22 (1983) 241.

I61 a) K.-P. Voges, G. Jung, W. H. Sawyer, Biochim. Biophys. Acra 896 (1987) 64; b) G. Jung, N. Dubischar, D. Leibfritz, Eur J . Biochem. 54 (1975) 395; c) G. Esposito, J. A. Carver, J. Boyd, I . D. Campbell, Bio- chemisrry 26 (1987) 1043.

[7] a) G. Boheim, W. Hanke, G. Jung, Biophys. Strucr. Mech. 9 (1983) 181: b) G. Menestrina, K.-P. Voges, G. Jung, G. Boheim, J . Membr. Biol. 93 (1986) 111.

181 a) H. Schmitt. G. Jung, Liebigs Ann. Chem. 1985, 345; b) R. Bosch, G. Jung, K:P. Voges, W. Winter, ibid. 1984. I 117; c) G. Jung, H. Schmitt in U. Ragnarsson (Ed.), Peptides 1984. Almquist & Wiksell, Uppsala 1984, S . 569; d) the chiral 2-trideuteriomethylalanine (R)-[D,]Aib, which is particularly suitable for NMR studies, has been synthesized by T. Weih- rauch and D. Leibfriitz (Liebigs Ann. Chem. 1985. 1917), but not yet intro- duced into peptides.

191 a) H. Kessler, Angew. Chem. 82 (1970) 237; Angew. Chem. Int . Ed. Engl. 9 (1970) 219; b) G. Binsch, H. Kessler, ibid. 92 (1980) 445 and 19 (1980) 411.

[lo] C. Toniolo, G. M. Bonora, V. Barone, A. Bavoso, E. Benedetti, B. Di Blasio, G. Grimaldi, F. Lelj, V. Pavone, C. Pedone, Macromolecules 18 (1985) 895.

1111 W. Hanke, C. Methfessel, H.-U. Wilmsen, E. Katz, G. Jung, G. Boheim, Biochim. Biophys. Acra 727 (1983) 108.

A Novel Route to Cyclopentane Derivatives: A Radical Chain Reaction** By Klaus Weinges* and Wolfgang Sipos Dedicated to Professor Hermann Schildknecht on the occasion of his 65th birthday

Dienes whose double bonds exhibit variable reactivity because of substituent effects can undergo an intramolecu- lar cyclization when subjected to solvornercuration and subsequent reduction with complex boron or tin hy- d r i d e ~ . ~ ' - ~ ] We have now found that a mixture of the cyclo- pentane derivatives cis4a and trans-4a in the ratio 8 :2 is

so far whether measurable amounts of other conforma- 1'1 Prof. Dr. K. Weinges, DipLChem. W. Sipos tions exist at and above the melting temperature T,,, (= TJ. Our findings may be of relevance for short 310-helical seg-

Organisch-chemisches Institut der Universitat Im Neuenheimer Feld 270, D-6900 Heidelbere. 1 (FRG) - . ,

merits of peptaibols particularly rich in Aib, e.g., tricho- [**I This work was supported by the Land Baden-Wiirttemberg (FRG) (For- toxin,["l which could be conformationally labile at room

1152

schungsschwerpunkt No. 35).

0 VCH Verlagsgesells~ha$ mbH. 0-6940 Weinherm. 1987 0570-0833/87/1111-11SZ $ 02.50/0 Angew. Chem. In / . Ed. Engl. 26 (1987) No. 11

Page 2: A Novel Route to Cyclopentane Derivatives: A Radical Chain Reaction

formed in 90% yield upon reaction of ethyl 8-methoxy-2,7- octadienoate 3 with mercury acetate in the presence of cal- cium oxide and methanol and subsequent reduction with NaBH, (Scheme 1).

CH=CH-CO2C2H5 b OH 5 6 -C C H X H OCHj

H = C H - C O Z C ~ ~

a,R=CH,OH, b,R=CHO

' ~

d.e 1 4a,R-C0,C2H, 5

b.R=CH,OH

Scheme I . a) (C,Hs)xP=CH-COIC2HS in DMF, 9 0 T , 12 h; 65% 2a. b) pyH"CICrO? in CH2Cl2, room temperature, 2 h ; 95% 2b. c) [(CSH5),P-CH20CH3]CI with tBuOK in T H F added dropwise to the solu- tion of 2b in THF, reflux, 1 h ; 68% 3. d) Hg(OAc)* and CaO in MeOH, room temperature, 2 h ; NaBH4, O"C, 5 min; 90% 4a. e) LiAlH4 in THF, reflux, I h ; 72% 4b. f ) 2 N HCI, extraction with ether; 70% 5 .

As starting material for the preparation of 3 we used the commercially available 2-hydroxytetrahydropyran 1, whose hemiacetal reacts with ethoxycarbonylmethylenetri- phenylphosphorane in a Wittig reaction to give 2a. Oxida- tion of the initially formed CH20H group of 2a with py- ridinium chlorochromate affords aldehyde 2b. Reaction of 2b with methoxymethylenetriphenylphosphorane in a sec- ond Wittig reaction affords 3 in good yield. Under identi- cal conditions optically active, C-3, C-4- or C-5-substituted 2-hydroxytetrahydropyrans furnish optically active, substi- tuted ethyl 8-methoxy-2,7-octadienoates. These are of spe- cial interest, since the chiral centers should influence the stereoselectivity of the subsequent cyclization.

Under the reaction conditions given for the cyclization in Scheme 1 the methanol attacks as intermolecular nu- cleophile during the mercuration step in such a way that the acetal 6 is formed (Scheme 2). Reaction of 6 with NaBH,, in accord with previous studies on intermolecular C-C affords the alkylmercury hydride 7, which is converted by loss of a hydrogen atom into the reactive alkylmercury radical 8. The radical 8 decomposes spontaneously into the carbon radical 9 and mercury. In- tramolecular C-C coupling in 9 leads to formation of 10. The function of the hydrogen donor, which traps the radi- cal 10 as 4a before a polymerization can take place, is as- sumed by the alkylmercury hydride 7. The reactive alkyl- mercury radical 8 is thereby set free and a radical chain

Hg@ t 8 9 I 10

Scheme 2. Mechanism of the radical chain reaction leading to the formation of 4a. R=CO2C2HS.

reaction takes place. It can be concluded from the 'H- NMR spectrum of 4a that the reaction proceeds with 80% cis-stereoselectivity.

The cyclization reaction is of interest for many reasons. The cis- 1 -hydroxyoctahydrocyclopenta[c]pyran 5 , which represents the basic carbon skeleton of the natural iridoids, can be obtained directly from 4a by LiAIH,-reduction of the ester group to give 4b, followed by acid hydrolysis in order to free the aldehyde group.I8] Accordingly, it should be possible to prepare enantiomerically pure iridoids from appropriate optically active starting compounds. Further- more, 4a contains already useful potentialities for the con- struction of a new diene by simple reactions. Further cycli- zations would then lead to polycyclopentanes, a class of compounds to which naturally occurring di- and triqui- nanes belong.[']

Received: June 19, 1987 [Z 2303 IE] German version: Angew. Chem. 99 (1987) 1177

CAS Registry numbers: 1, 694-54-2; 2a, 110935-49-4; 2b, 59612-36-1; 3, 110935-50-7; 4a (cis isomer), 110744-16-6; 4a (trans isomer), 110744-17-7; 4b, 110935-51-8; 5, 110744-18-8.

[ I ] Y. Matsuka, M. Kodarna, S . Ito, Tetrahedron Lett. 1979. 4081. 121 S . Danishefsky, S. Chakalamannil, B.-J. Uang, J . Org. Chem. 47 (1982)

[3] Review: B. Giese, Angew. Chern. 97 (1985) 555; Angew. Chem. lnt . Ed.

[4] G. M. Whitesides, J. San Filippo, J. Am. Chem. SOC. 92 (1970) 661 I . [5] C. L. Hill, G. M. Whitesides, J . Am. Chem. Soc. 96 (1974) 870. [6I M. Devaud, J . Organornet. Chem. 220 ( 1981) C27. [7] B. Giese, G. Kretzmar, Chem. Eer. 117 (1984) 3160. IS] Review: J. M. Bobbitt, K:P. Segebarth in A. R. Battersby, W. 1. Taylor

(Eds.): Cyclopenranoid Terpene Derrvatiues. Vol I . Dekker, New York 1969, p. 1.

2331.

Engl. 24 (1985) 553.

191 Review: L. A. Paquette, Top. Curr. Chem. 119 (1984) 84.

I(qs-CsMes)2Ti~P61, a Distorted Dimetallaphosphacubane** By Otto J . Scherer, * Herbert Swarowsky, Gotthelf Wolmershauser, Wolfgang Kaim. and Stephan Kohlmann

Conceptual replacement of the diagonally opposite corner atoms of the unknown cubic P, A"] by two transi- tion-metal complex fragments M gives the cubane-like M2Pb structure type B.

Cothermolysis of 1 and white phosphorus (P,) affords 2 in ca. 20% yield. Complex 2 was obtained in the form of red-brown crystals, which could be handled in the air and

[*] Prof. Dr. 0. J. Scherer, DipLChem. H. Swarowsky, Dr. G. Wolmershauser ['I Fachbereich Chemie der Universitat Erwin-Schrodinger-Strasse, D-6750 Kaiserslautern (FRG) Priv.-Doz. Dr. W. Kaim, DipLChem. S . Kohlmann lnstitut fur Anorganische Chemie der Universitat Niederurseler Hang, D-6000 Frankfurt am Main 50 (FRG)

1'1 X-ray structure analysis [**I This work was supported by the Fonds der Chemischen Industrie (doc-

toral fellowship for H.S.).

Angew Chem. Int . Ed. Engl. 26 (1987) No. I 1 0 VCH Verlagsgesellschafr rnbH. 0-6940 Weinheim. 1987 0570-0833/87/1111-1153 $ 02.50/0 1 153