a non-local model for liquid crystal elastomers

60
5/25/2005 Modeling the Dynamics of LCEs IMA 1 P. Palffy-Muhoray Liquid Crystal Institute, KSU L. Malacarne Dept of Physics University of Maringa, Brazil H. Finkelmann Institute für Macromoleculare Chemie Albert-Ludwigs Universität, Freiburg M. Shelley CIMS New York University, NY work supported by NSF DMR & DMS A non A non - - local model local model for for liquid crystal liquid crystal elastomers elastomers

Upload: others

Post on 18-May-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

1

P. Palffy-Muhoray Liquid Crystal Institute, KSU

L. Malacarne Dept of PhysicsUniversity of Maringa, Brazil

H. Finkelmann Institute für Macromoleculare ChemieAlbert-Ludwigs Universität, Freiburg

M. Shelley CIMSNew York University, NY

work supported by NSF DMR & DMS

A nonA non--local modellocal modelforfor

liquid crystal liquid crystal elastomerselastomers

Page 2: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

2

OutlineOutline

• liquid crystal elastomers (LCE)

• effects of illumination on shape

• curious phenomena

• modeling

• summary & prospects

Page 3: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

3

Liquid Crystal Liquid Crystal ElastomersElastomers

• key feature: coupling between orientational order and mechanical strain

• free energy:order parameter tensor

( , )f f Qαβ αβε=strain tensor

Page 4: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

4

BackgroundBackground

Page 5: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

5

Liquid Crystal Liquid Crystal ElastomersElastomers: Behavior : Behavior

• monodomainLCE

• 5cm x 5mm x 0.3mm

• lifts 30g wt. on heating, lowers it on cooling

• large strain!

(H. Finkelmann)

nematic

(400%)

Page 6: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

6

NematicNematic liquid crystalsliquid crystals

• order parameter:• symmetric traceless

tensor• measure of mean

squared projection of mesogen axes on principal directions

ilil

1 ˆˆ(3 )2

=< − >Q ll I

• eigenvectors: – direction of alignment:

nematic director

• eigenvalues:– degree of alignment:

order parameter

n

S

1 ˆ ˆ(3 )2

S= −Q nn In 0.8S =

Page 7: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

7

NematicNematic free energy densityfree energy density

2 3 2 21 1 1( 1) ( ) ..2 3 4o

c

Ta b cT

= − − + +Q Q QF

• minimizing the free energy with respect to the order parameter:

Page 8: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

8

NematicNematic free energy densityfree energy density

• minimizing the free energy with respect to the order parameter:

2 3 2 21 1 1( 1) ( ) .. 2 3 4

12o

c

Ta b cT

ε= − − + + − ΔQ Q Q QEEF

• free energy is minimized if molecules/director align with field

Page 9: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

9

Elastic solids:Elastic solids:

• position of a material point before deformation:

• position of a material point after deformation:

• displacement vector:

• strain tensor:

r

+r R

12

RRex x

βααβ

β α

⎛ ⎞∂∂= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

R

Page 10: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

10

Elastic solids:Elastic solids:

• for incompressible materials, the free energy density is

• where is Young’s modulus, and is the external stress.

212

extη= −σ eeF

η

Theory of Elasticity, L.D. Landau and E.M. Lifshitz

extσ

Page 11: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

11

Liquid Crystal Liquid Crystal ElastomersElastomers

• free energy density*:

• sum of free energies of liquid crystal + elastic solid,plus new coupling term !!

• effect of strain on LC order is same as external field• effect of LC order on strain is same as external stress

*P.G. de Gennes, C.R. Seances Acad.Sci.218, 725 (1975)

Qe

2 21 1.. 122 2

exta Uε η− Δ= + − + −QEE ee σQQ eF

Page 12: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

12

Free energy: another look Free energy: another look

2 3 4 21 1 1 1 ' ...2 3 4 2

extoa b c U Uη= − + − + − −Q Q Q Qe e σ e Q eF

• can also write

2 3 241 1 1 ( )2

'3

..12 4

a b c Uηη

− + +−= + e QQ Q QF

SOFT ELASTICITY!

1442443

Page 13: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

13

LCE SamplesLCE Samples

Page 14: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

14

director

If orientational order increases,

expansion contraction

If orientational order decreases,

expansioncontraction

StructureStructure

Page 15: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

15

Appearance of Appearance of nematicnematic LCE samples LCE samples

50mm x 5mm x .3mm

birefringent sample betweencrossed polarizers

Page 16: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

16

Consequences of coupling between Q and eConsequences of coupling between Q and e

• changing Q changes the shape of the sample

• can change Q with

– temperature

– E & H fields

– light

– impurities

Page 17: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

17

OptomechanicalOptomechanical effects in effects in nematicnematic LCE LCE

-light induced deformations

Page 18: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

18

Mechanisms of Mechanisms of OptomechanicalOptomechanical Effects in LCEEffects in LCE

• optomechanical coupling:

light

orientational order

mechanical strain

shape change

Page 19: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

19

Effects of light on order parameterEffects of light on order parameter• optical field changes order parameter via:

– direct heating– absorption

– disruption of order – photoisomerization

– direct optical torque– angular momentum transfer from light

– indirect optical torque• Landauer’s blowtorch• orientational Brownian ratchet

– no angular momentum transfer from light; – light drives molecular motor

laserray

table

_hp = λlaser

ray

table

_hp = λ

Page 20: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

20

Experimental Results (Warner Experimental Results (Warner et alet al.).)

• azo-dye incorporated in network

H. Finkelmann, E. Nishikawa, G. G. Pereira and M. Warner, Phys. Rev. Lett. 87,015501 (2001)

Page 21: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

21

Experimental Results (Warner Experimental Results (Warner et alet al.).)

Page 22: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

22

Experimental Results (Ikeda et al. )Experimental Results (Ikeda et al. )Yanlei Yu,Makoto Nakano, Tomiki

Ikeda, Nature 425, 125 (2003)

timescale: 10 s

LC + diacrylate network+ functionalizedazo-chromophore

Yanlei Yu,Makoto Nakano, Tomiki Ikeda, Nature 425, 125 (2003)

Page 23: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

23

Our experimental resultsOur experimental results

Sample

ArLaser

Sample

ArLaser

sample: nematic elastomer EC4OCH3+ 0.1% dissolvedDisperse Orange 1 azo dye

5mm

300 mμ

Page 24: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

24

Force measurementsForce measurements

• schematic of setup

Sample

ArLaserENTRAN

sensor

1.5mm

Computer

Page 25: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

25

Dynamic ResponseDynamic Response

0 100 200 300 400 5000.0

0.5

1.0

1.5

2.0

2.5

time (ms)

forc

e (m

N)

50 100 150 200 250 300-3

-2

-1

0

1

time (ms)lo

g (fo

rce)

τ=75ms

0 100 200 300 400 5000.0

0.5

1.0

1.5

2.0

2.5

time (ms)

forc

e (m

N)

50 100 150 200 250 300-3

-2

-1

0

1

time (ms)lo

g (fo

rce)

τ=75ms

0.6P W=3d mm=

5 5mm mm×

Page 26: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

26

Curious PhenomenaCurious Phenomena

Page 27: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

27

Experimental SetupExperimental Setup

• floating nematic LCE sample illuminated from above

Laser beam

container

waterElastomer

Page 28: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

28

Experimental Results Experimental Results

• nematic LCE sample floating on water • illuminated from above

Page 29: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

29

OscillatorOscillator

• CW illumination • irregular sample shape

Page 30: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

30

Experimental Results Experimental Results

• nematic LCE sample floating on ethylene glycol• illuminated from above

Page 31: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

31

the Puzzle:the Puzzle:

energy transfer:- how is light energy converted to kinetic energy?

momentum transfer:- where does momentum come from???

• what is the mechanism of propulsion?

Page 32: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

32

Motor!Motor!

motion is caused by the transfer of energy,but not momentum:

FF

LASE

RLA

SER

myosinactin

ATP

myosinactin

ATP

myosinactin

myosinactin

ATP

Page 33: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

33

Novel aspect: information transfer Novel aspect: information transfer

• light carries energy + information to system.

FF• energy source attached to car:

no problem.

LAS

ER

LAS

ER

• laser attached to LCE:no motion!

Page 34: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

34

the Puzzle:the Puzzle:

• what is the mechanism of propulsion??

light provides energy, but not momentum!

• where does momentum come from??

Page 35: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

35

laserlaser

director

smalldisplacement

laserlaser

force on water

force on elastomer

laserlaserlaserlaserlaser

what happens:what happens:

Page 36: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

36

Locomotion in Locomotion in batoidbatoid fishesfishesAtlantic stingray.

Swims by propagating waves down the pectoral fins from anterior to posterior.

L.J. Rosenberger, J. Exp. Biol. 204, 379-394 (2001).

Page 37: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

37

Swimming dynamicsSwimming dynamics

• elastomer– swims like a fish– intrinsic instability propagates wave-like deformation in

elastomer

• system is a motor• light provides energy + information

M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, M. Shelley, Nature Mat. 3, 307, (2004)

Page 38: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

38

Modeling light induced Modeling light induced deformationsdeformations

Page 39: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

39

Modeling:Modeling:• want dynamic description:

Jeremy Neal, KSU

Page 40: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

40

Modeling the dynamics of Modeling the dynamics of nematicnematic LCEsLCEs

• Order parameters:

– Displacement:

– Orientation:

( )Rα r

( )Qαβ r

r

R 'R

'r

Page 41: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

41

StrategyStrategy

• specify free energy density– nematic + elastomer

• specify dissipation – nematic + elastomer

( , )β α= aQ RF F

( , )ααβ

β

∂=

&& RQ

xR R

Page 42: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

42

StrategyStrategy

• obtain dynamics from

3 0KEd ddt R R Rα α α

δ δδ δ

⎡ ⎤+ + =⎢ ⎥∂⎣ ⎦

∫ r& &

E F R

3 0αβ αβ

δ δδ δ⎡ ⎤

+ =⎢ ⎥⎢ ⎥⎣ ⎦∫ & d

Q QrF R

momentumconservation:

non-conservedorder parameterdynamics:

Page 43: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

43

Free energy: Free energy:

• mean field theory

• order parameters and vary in space

• use symmetry allowed squared gradient terms

( , ) ?β α =aQ RF

squared gradient terms may be a problem!

βaQ αR

Page 44: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

44

KK1313 problem: problem:

• for nematics, usual Landau-de Gennes free energy density is

• if and is constant, then

2 3 2 2 2 21 2

1 1 1 1 1( ) .. ( ) ( )2 3 4 2 2

αβ αβ

α γ

∂ ∂= − + + + +

∂ ∂Q Q

a b c L Lx x

Q Q QF

1 ˆ ˆ(3 )2

= −SQ nn I S

Page 45: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

45

KK1313 problem:problem:

• Frank-Oseen free energy for nematics:

• Saupe1: include symmetry allowed terms

• Oldano2: free energy is unbounded!

2 2 21 2 3

1 1 1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )2 2 2

K K K= ∇ ⋅ + ⋅∇× + ⋅∇×n n n n nF

2 C. Oldano and G. Barbero, Phys. Lett., 110 A, (4), 213, (1985)1 J. Nehring and A. Saupe, J. Chem. Phys., 64, (1), 337, (1971)

13 24ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )K K∇⋅ ∇ ⋅ + ∇ ⋅ ∇ ⋅ − ⋅∇n n n n n n

Page 46: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

46

KK1313 problem:problem:

• in index notation

• problem generated great deal of activity– experiments– alternative approaches (2nd order elasticity…)– many papers– saga still continues……..

13 , , , 24 , , , ,( ) ( )K n n n n K n n n nα α β β α β αβ α α β β α β β α+ + −

second derivative

13K

Page 47: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

47

ResolutionResolution

• non-local free energy is bounded

• problem is due to gradient expansion

• one solution: don’t use expansion!

Avoid gradients;∇

use fully non-local description !

Page 48: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

48

Elastic free energy Elastic free energy

– for isotropic polymers, distribution of separation of connected crosslinks is

where is the chain length, and is the step length

– the free energy of the polymer chain between the crosslinks is

23( ) ~ exp( )2

ss

RPL

−RL

ln ( )skT P= − RF

L L

Page 49: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

49

Elastic free energy* Elastic free energy*

– for anisotropic polymers, distribution of separation of connected crosslinks is

– the matrix of effective step lengths is anisotropic, – for nematic LCEs

– while initially,

13( ) ~ exp( )2

−⎡ ⎤− ⎣ ⎦T

s s sP R R L RL

L

o ol l= + ΔL I Q

* Liquid Crystal Elastomers, M. Warner and E. Terentjev (Cambridge, 2003)

l l= + ΔL I Q

Page 50: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

50

NonNon--local elastic free energylocal elastic free energy

– is Lagrangian coordinate,

2 3 31 ( , ') ( , ' ') '2el o oP g d dρ= + +∫∫ r r r R r R r rF

r

( , ' ') ln ( , ' ')g kT P+ + = − + +r R r R r R r R

' ' 1 ' '3 ( ) ( )2 α α αβ β β β β

−= + − − + − −a akTg r R r R L r R r RL

( , )α αβ=el el R QF F

( )=R R r

Page 51: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

51

NonNon--local local nematicnematic free energyfree energy

2 3 4

3 36

1 1 1 1[ ( ) ( ) ( ) ..2 2 3 4

( )( ( ) ( ')) ] '

( ' ' )

LC

a

aQ bQ cQ

Q Q QU d dβ αβ αβαρ

= − + +

−+

+ − −

∫∫ r r r

r r rr r

r R r R

F

( , )α αβ=LC LC R QF F

Page 52: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

52

RayleighRayleigh dissipation functiondissipation function

• viscosities depend on .

(1)

(2)

(3)

2

( )

TS Q Q

RR Q Qx x

RRx x

αβγδ αβ γδ

γααβγδ γδ αβ

β δ

γααβγδ

β δ

ν

ν

ν

= = +

∂∂+ +

∂ ∂

∂∂∂ ∂

& & &

&&& &

&&

R

( , )α αβ= &&LC R QR R

αβγδναβQ

Page 53: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

53

Dynamics Dynamics

• for material points

• for nematic order parameter

2(2) (3)γδ γ

α αβγδ αβγδα β β δ

δρ ν νδ

∂ ∂= − + +

∂ ∂ ∂

& &&& Q RR

R x x xF

(1) (2) γαβγδ γδ γδαβ

αβ δ

δν νδ

∂= − −

&& R

QQ xF

R. Ennis, L. Malacarne, P. Palffy-Muhoray, M. Shelley, http:www.e-lc.org/docs/2004_12_11_00_45_55

Page 54: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

54

DynamicsDynamics

• for the surrounding fluid:

• boundary conditions:

on

( 2 )D pDt

ρ η= ∇⋅ − +v I D

0∇⋅ =v

fl el⋅ = ⋅σ n σ n

fl el= =V v v∂Ω

Page 55: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

55

Discrete ModelDiscrete Model

-10

-5

0

5

10

-5

0

5-2

0

2

4

-10

-5

0

5

-10 -5 5 10

1

2

3

4

5

-7.5 -5 -2.5 2.5 5 7.5

1

2

3

4

5

-10

-5

0

5

10

-5

0

50

2

4

-10

-5

0

5

Rectangular Plate: Rectangular Plate: Uniform illumination from belowUniform illumination from below

Cross-section

Page 56: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

56

Discrete ModelDiscrete Model

10 20 30 40

-6

-4

-2

2

4

10 20 30 40

0 10 20

-5

0

5

10 20

10 20 30 40

0

10

20

-5

0

5

10

20

illumination

5 10 15 20 25 30 35

0.2

0.4

0.6

0.8

1

Intensity distribution

Rectangular Plate: Gaussian Rectangular Plate: Gaussian illumination from belowillumination from below

Page 57: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

57

Discrete ModelDiscrete ModelRectangular Plate: Rectangular Plate: Gaussian illumination from belowGaussian illumination from below

10 20 30 40

-10

-7.5

-5

-2.5

2.5

5

10 2030

40 010

20

-10

-5

0

5

10 2030

5 10 15 20 25

-12

-10

-6

-4

10 20 30 40

0

10

20

-10

-5

0

5

10

20

Page 58: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

58

DynamicsDynamics

0.0 0.50.0

0.5

1.0

1.5

2.0

2.5

3.0

Dis

plac

emen

t (m

m)

Time (s)

experiment

Field OFF

0.0 0.50.0

0.5

1.0

1.5

2.0

2.5

3.0

Dis

plac

emen

t (m

m)

Time (s)

experiment

Field OFF0 10000 20000 30000 40000 50000 60000 70000

0.0

0.5

1.0

1.5

2.0

2.5

Dis

plac

emen

t

Time

simulation fit

Field OFF

0.0 0.50.0

0.5

1.0

1.5

2.0

2.5

3.0

Dis

plac

emen

t (m

m)

Time (s)

experiment

Field OFF

0.0 0.50.0

0.5

1.0

1.5

2.0

2.5

3.0

Dis

plac

emen

t (m

m)

Time (s)

experiment

Field OFF0 10000 20000 30000 40000 50000 60000 70000

0.0

0.5

1.0

1.5

2.0

2.5

Dis

plac

emen

t

Time

simulation fit

Field OFF0 10000 20000 30000 40000 50000 60000 70000

0.0

0.5

1.0

1.5

2.0

2.5

Dis

plac

emen

t

Time

simulation fit

Field OFF

Page 59: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

59

-7.5-5

-2.52.5

57.5

-6 -4 -2 2 4 6

10

20

10

20

1

2

3

4

5

10

20

10

20

Saddle shapeSaddle shape

Page 60: A non-local model for liquid crystal elastomers

5/25/2005 Modeling the Dynamics of LCEsIMA

60

Summary:Summary:

• fast and large photoinduced deformations in dye doped nematic LCEs

• novel swimming phenomena: – mechanism: swims like a fish – motor: requires energy + information

• modeling: – developed non-local continuum model– agreement with existing results – numerics: under construction

-10 -5 5 10

123456