a mixed problem for weakly hyperbolic equations of second order

28
This article was downloaded by: [University of Kiel] On: 26 October 2014, At: 05:06 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Communications in Partial Differential Equations Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lpde20 A mixed problem for weakly hyperbolic equations of second order Kimura Kyoko a a department of Mathematics , University of Toronto , Toronto, Ontario, Canada Published online: 08 May 2007. To cite this article: Kimura Kyoko (1981) A mixed problem for weakly hyperbolic equations of second order, Communications in Partial Differential Equations, 6:12, 1335-1361, DOI: 10.1080/03605308108820213 To link to this article: http://dx.doi.org/10.1080/03605308108820213 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http:// www.tandfonline.com/page/terms-and-conditions

Upload: kimura

Post on 01-Mar-2017

216 views

Category:

Documents


3 download

TRANSCRIPT

This article was downloaded by: [University of Kiel]On: 26 October 2014, At: 05:06Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,37-41 Mortimer Street, London W1T 3JH, UK

Communications in Partial Differential EquationsPublication details, including instructions for authors and subscription information:http://www.tandfonline.com/loi/lpde20

A mixed problem for weakly hyperbolic equations ofsecond orderKimura Kyoko aa department of Mathematics , University of Toronto , Toronto, Ontario, CanadaPublished online: 08 May 2007.

To cite this article: Kimura Kyoko (1981) A mixed problem for weakly hyperbolic equations of second order, Communicationsin Partial Differential Equations, 6:12, 1335-1361, DOI: 10.1080/03605308108820213

To link to this article: http://dx.doi.org/10.1080/03605308108820213

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) containedin the publications on our platform. However, Taylor & Francis, our agents, and our licensors make norepresentations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of theContent. Any opinions and views expressed in this publication are the opinions and views of the authors, andare not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon andshould be independently verified with primary sources of information. Taylor and Francis shall not be liable forany losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoeveror howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use ofthe Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematicreproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in anyform to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

A M I X E D PROGLEM FOR WEAKLY HYPERBOLIC EQUATIONS

Kyoko Klrnura > e 2 z r t ~ e n t nf M a t h e m a t i c s

i _ i n i v n r c i nf T o r o n t o

T o r o n t o , O n t a r i z , Canada

$1 I n t r o d u c t i o n

I n t h i s p a p e r we s t u d y a mixed p r o b l e m f o r h y p e r -

b o l i c e q u a t i o n s o f s e c o n d o r d e r w i t h d e g e n e r a c y on t h e

i n i t i a l s u r f a c e .

L e t S? be a domain i n R" w i t h compac t smoo th

b o u n d a r y a R = S . W e c o n s i d e r a m i x e d p r o b l e m f o r t h e

e q u a t i o n

Copyright O 198 1 by Marcel Dekker, Inc.

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

d e f i n i t e quadratic fo rm w i t h r e a l c o e f f i c i e n t s i n

The Cauchy p r o b l e m f o r e q u a t i o n s o f t h e t y p e ( 0 . 1 )

h a s b e e n s t u d i e d by many a u t h o r s . I n p a r t i c u l a r

O l e i n i k i7] showed t h a t t h e C a u c h y p r o b l e m f o r e q u a t i o n s

w i t h more g e n e r a l d e g e n e r a c y i n t i s w e l l - p o s e d u n d e r

c e r t a i n c o n d i t i o n s on t h e c o e f f i c i e n t s . The mixed

p r o b l e m f o r d e g e n e r a t e e q u a t i o n s h a s b e e n a l s o

c o n s i d e r e d , f a r e x r m p l e , by K r a s n = v [ 4 ] a n d G l e i n i k M, - a n d t h e y o b t a i n e d t h e e x i s t e n c e t h e o r e m s a n d t h e

u n i q u e n e s s t h e c r e m s i n t h e s e n s e o f "a g e n e r a i i z e d

s o l u t i o n " u n d e r some c o n d i t i o n s on t h e coefficients

a n d t h e d a t a . I t i s o u r p u r p o s e h e r e t o f i n d a

s o l u t i o n u ( t , x ) o f t h e m i x e d p r o b l e m ( 0 . 1 ) , (0.2) , a n d

( 0 . 3 ) i n a b e t t e r s e n s e , n a m e l y s o t h a t

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

HYFERSOfTC EQUATIONS OF SECOND ORDER

Our aim is to obtain a unique solution

n i t , x ) E Too

rt in 9 of the problem

that u(t,x) is k-times continuously differentiable

conditions in Oleinik [71 for the Cauchy problem it

seems to be naturai to impose a t K-l t e r m on the

coefficients of the first derivatives in x in case

the coefficients of the second derivatives in x have

t2K term of degeneracy. Furthermore, we shall

impose a compatibility condition of infinite order upon

the data.

The essential point of the problem is to establish

rhe energy estimate. T h e device u s e d for this purpose

is that of ~ z r d i n g [21, but modifications are necessary

to get the estimate near the boundary. (See SakamotO

[8].) In fact, both u and its boundary values can be - estimated using integration by parts.

This paper consists of two sections. In the first

section the existence and uniqueness theorem is derived

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

from an energy i n e q u a l i r y . The succeeding sect$on is

devoted to a proof of this inequality.

51 Statement of Results

with the conditions

I1.2) B[UJ = o on [O,T] x S,

(1.3) u(0,x) = Dtu(O,x) = 0 in R,

where 0 5 E < 1. L is identical with L when E

E = 0; otherwise LE is regularly hyperbolic because

of the assumption (0.4).

The following lemma will be established in the

latter section.

Lemma. Let m be a non-negative integer. Then there

exists some integer N(>m) such that for any solution

u (t,r) s E : ( H ' ~ + ~ (a)) n.. .n E:'~ (IL2 (5-2)) of the nixed E

problem (1.1) , (1.21, and (1.3) the estimate

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

h o l d s

o f i l

f [ c ; %

R e r c

- - w e now g i v e t h e d e f i n i t i o n o f the compatibility

c o n d i t i o n o f B r d e r m ( 2 O ) f o r mixed p r o b l e m i P ! .

L e t u s d e f i n e u < x > 9 , - recursively by ~ + 2

t h e f o r m u l a

w h e r e

a (t,x;Dj i s a d i f f e r e n t i a l = p e r a t o r of order j with j

r e s p e c t to x [ j=1,2) , and

W e s a y t h e d a t a [uo (x) ,ul ( x ) ; f (t , X I 1 satisfy t h e

compatibility condition of order rn when

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

From the above lemma we can prove:

Proposition- Let m be a non-negative integer.

- v ~ n e n we can find some integer N ! > m ] such that for sny

Proof. Choose N so that for a solution u of the E

problem (1,l) , (1,2) and (1.3) the estimate

hoids for t E [ O , T j when f(t,x) e E~[H-(R))

satisfies D F ~ ( 0 , X I = 0 !p=O,1,. . . ,N) . Here we note - that the right hand side of (1.7) is independent of E .

When E > 0, the existence of the solution

E0 y, m+3 sE (t , x ) . E is) 1 r ~ . . . n E:+~ ( L ~ i n , ) is assured,

since L E is regularly hyperbolic and the compatibility

condition is satisfied. (See Ikawa [31) .

Thus, integrating (1.7) over [O,T], we have a

bounded set {uE (t ,x) }E,O in Eim-t3 ( ( 0 , ~ ) x R ) . That is,

for some constant M > O

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

- . < ... . - - - .

i l { t i u ! 6 B ( i o , T i x G j such t h a t ii- + ti w e a K l y L > - . 2.

"' 9- i R-" - ( ( 0 , ~ j x 2 j w h e n k + = -

it i s e a s y t o s e e t h a t

( 1 . 9 ) ~ [ u ] ( t , x ) = f [ t , x j i n t h e s e n s e o f P' ( ( 0 , ~ ) " n j r

( 1 . 1 0 ) ~ [ u j ( t , s i = 0 i n (0 ,TI x S ,

In f a c t , f r o m L - [u 1 = f we c a n w r i t e ik Ck

P a s s i n g t o t h e l i m i t a s k + m , we o b t a i n

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

Uere n R: = { : x x I E R ; > o j .

n

It suffices to prove that for a11 j

or, equivalently,

where we use m7 i t p y ) = T u ( t ,mi (xi) to denote i 3

-4 c P j u ( t , x ) for x 6 U . n S L . We set v = @ . u and take

3 m

3

X { X ] E 2 ( g l j which is equai t o 1 in a n e i g h b ~ r = n

hood of y,= 0 and v a n i s h e s wher? y,>1 .

Since

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

P a s s i n g to t h e limit a s 6 + 0 shows that

r 1 pi ( t r y 1 ) = - / D ~ ~ X V ) (t,y:y,j%

- -

J 0

Similarly, if we set v = -

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

Thsref ore

Since (1.11) follows from the same argument as that of

Mizohata [41, pp. 332-334, we omit the proof. We note

that

D'U ( 0 , ~ ) = 0 (p=O,l, . . . ,m+2) imples that D'U ( 0 , ~ ) = 0 &k

t

(p=O,. , . . . ,m+2) because D'U + DPu in D ' ( ( o , T ) x R) Ek

t

when k -t !p=O ,I,. . - ,m+3) .

Next, by changing the value of u(t,x) on a sat

with measure O in IO,T1 r R if necessary, we shall

see that u(t,x: is the solution of iP,i in u

E ( R ) ) . . . E ( L ) . (See Mizohata 1 4 1 1 .

Let P + jal < m + 2 . Then we can write

J t '

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

i n Hm+ 2 -p

D P ~ ( T , X ) = f i m ~ : u ( t , x ) t

(R) . t'T

Then t h e mapping t + ~ ' u ! t , x ) t H m+2-P , ,n\ i s s t r o n g l y t

c o n t i n u o u s on [O,T] , w h i c h p r o v e s

O ( R ~ + ~ (0.1 ] n . . . n E ~ + ~ ( L ~ ( 5 2 ) ) . The e s t i m a t e U ! t ,X) 6 ft \-- c

( 1 . 4 ) when E = G a s s u r e s t h e u n i q u e n e s s o f t h e

s o l u t i o n o f ( P o ) . Q . E . D .

Theorem. F o r g i v e n d a t a

mixed p rob len ; (P) p r o v i d e d t h a t t h e d a t a s a t i s f y a

c o m p a t i b i l i t y c o n d i t i o n o f i n f i n i t e o r d e r .

P r o o f . FOX any f i x e d n o n - n e g a t i v e i n t e g e r m , t a k e

an N a s i n the p r o p o s i t i o n . L e t u (XI (p== ,.,..., N) P+ 2

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

5 2 Energy inequality; Proof of Lemma.

We shall convert our problem into the one in a

n half space R+ = {x= (x l,...,~n); x > 01 by means of a

partition of unity and a local coordinate change. W e

begin by considering the mixed problem with zero

initial data:

n where V is a small neighbsrhood of X = 0 in R .

Let A and be positive pgrameters. We write

t = t + E and define the operators E P E and QE by

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

Then ( s e e S a k a m o t o [81)

where a c t u a l c o m . p u t a t i o n g i v e s

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

2348

and

The constant Ci depends only on the supremum of

a 1 , a 1 , iokaij (i.j.k=l.--- .n). ! b 1 . ! c ! A J 0

and 2 depends only on the supremem of 2

1b.l [j=18--.,nl. 1

We shall denote by c and C (j=O,l,. - - 1 j j

positive constants depending only on the supremum of

n the coefficients of L in [ O , T ] x v n R + .

It folLows from the assumption (0.2) in

Io,T] x V n R~ that for a sufficiently large ?, , + -

G t i u , u ) is equivalent to the term Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

for a suf f i c ien t iy large h . 14oreover,

- . -,- , - c '>'-!n !II oi2 !

Now we i n t r o d u c e t h e n o t a t i o n

where 8 i s a p o s i t i v e p a r a m e t e r .

m L e t 4 E C O ( V ) and l e t E be a s o l u t i o n of (2.1).

We s e t v = $uE. We s h a l l f i r s t o b t a i n t h e e s t i m a t e E

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

t i f n N

G ~ \ D ; D ; V ~ . D > ) ~ ) ( t . ~ : o ) . - ~ ~ ~ dx'

j vn Rn-I

w h e r e R = R1.+ R 2 + R 3 a F i r s t o f a l l we w a n t t o

e s t i m a t e a l l t h e b o u n d a r y t e r m s w h i c h c o n t a i n t h e

a n o r m a l d e r i v a t i v e D n ( a =1, . . . , k+l) . To d o t h i s we n n

c o n s i d e r t h e f o r m

cinr,. 1 7 0 \ with p o s i t i v e unkown constants .M: ,,,,,, , L . U , ci n

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

2-3 ( 2 . l! i n p l i e s v t u = 0 , we have

e : : 1 . 1 sc that the ~ 3 5 0 ~ ~ a j u l , i ~ i s u i ; r ---,- .- . = -. - 2 rnF--

i ( 2 - 6 j and ;;. ; ; a r e u u r n v ; l ~ ~ = . A A A - A ~ - - -

,- ,,ing ,- t h e inequalities ( - 2 . 5 1 ( 2 - 6 ) , and ( 2 . 7 ) for

= D F c Z - J ~ , we obtain

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

-.L--- -.- 3. - - L n r l l r r . . - r . c . r , '-zr -...a,--- d J c,;~- ( ~ 1 1 a form estimated as

C 3

fo l ;ows:

On the o t h e r hacd, y e "ave

Hence (2.10) and ( 2 . 1 2 ) y i e l d

(2.13) ~ ~ G ~ f u ~ ( t ) l E -

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

- * _ . - - w, .... ,,* - - - l i = , & j - j [ k = Q r l , > * r ' x & : i . i a A l u - k

=,,- nn the estimates ( 2 . 1 3 ) f o r k = O , . , . . . , m + l . ?has - -... -.=

we get f o r any lJ > O

I n a d d i t i o n , w e have

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

C o I i e c t i n g the ii.l4j a n d (2.i51, we c a n

= a a + b = + + = ?.*... +.,L.., ::-- - - - m u - - - - - - - - - - - . - - - = = LGRI i i : ~ : 2 a i f i n i e L e r s 6 arid u i a r g e

w e c a n n e g l e c t t h e l a s t t w o t e r m s i n t h e r i g h t h a n d

s i d e o f (2.14). T h e r e f o r e , t a k i n g a c c o u n t o f t h e

estimate

We o b t a i n t h e e s t i m a t e f o r v = $ u E : E

i2.i6; " "t"Lq,uE:t) P ' A . . I $ + C S I l l i I i Y *,2 (+, ' - , I l l ' 1 ' 8 *

f o r 8 s u f f i c i e n t l y l a r g e . H e r e

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

I n t a g r a t i n g (2-16) o v e r [O:t] y i e l d s

T o j u s t i f y t h i s i n t e g r a t i o n e v e n i n t h e case E = 0 ,

r e must assume t h a t

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

L e t ! $ . ( X I > j=l, be a p a r t i t i o n o f u n i t y 3 . . . ,J

s u b o r d i n a t e t o a c o v e r i n g { u j ) o f S . W e may

assume t h a t t h e r e exists a s m o o t h t r a n s f o r m a t i o n

Y . x , . . ) f r o m U o n t o V i n Rn I j 1 J n 3 j

s u c h t h a t

Then t h e p r ~ b l e m ( P o l E i s converted i n t o t h e p r o b i e m

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

where

Then it i s e a s i l y s e e n t h a t

and

- A p s r j - =.c r i 2 - T h e z e f o r e , we can apply the p r e v i o u s e s t i m a t e (2.18)

ta t h e problem ( P ~ ) ~ ~ ~ (j=1,2,...,J) . S i n c e t h e

- - C I - . - - - ~ . , i O q d nnlv harmless t e r m s , we h a v e C 0 0 r u ~ I l c i L ~ b,,Cz"y,kL 1 ---- ----'

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

we set m o = 1 - mj . Since @3 vanishes in a j=1

neighborhood of S , we can find

under the same assumption as in (2.19). Thus

collecting the estimates (2.19) and (2.201, we

obtain

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

xhen we take 9 sufficiently large, we can neglect the

i a s t - term in the right-hand side of (2.21). Hence we

nave

sufficiently large N . To complete the proof we note that D'£ t (0.x) = 0

ip=O,l, ..., N) implies

by virtue of Taylor's formula. Using Schwarz's

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

which c o n c l u d e s t h e p r o o f .

ACKNOWLEDGEMENTS

I s h o u l d l i k e t o e x p r e s s my g r a t i t u d e t o P r o f e s s o r

T . X a k i t a f o r p r o p o s i n g t h i s p r o b l e m and f o r s o many

v a l u a b l e s u g g e s t i o n s .

REFERENCES

[ I ] G . Darboux , "Lecons s u r l a t h g o r i e g g n g r a l e d e s s u r f a c e s " , T . 11, G a u t h i e r - V i l l a r s , 1 9 1 5 .

1 2 1 L . ~ Z r d i n ~ , " S o l u t i o n d i r e c t e du p r o b l s m e d e Cauchy p o u r l e s i q u a t i o n s h y p e r - boliques", Colloques i n t e r n a t i e n a u x du C . N . R . S . ( 1 9 5 6 ; , p p . 70-90 .

[33 M. I k a w a , mu: -..A - - - % , - - - r * r * s u p ~ u ~ ~ e m b f o r h y p e r b o l i c

e q u a t i o n s o f s e c o n d o r d e r " , J. Math. Soc . J a p a n , 20 ( 1 9 6 8 1 , pp . 580-608.

[ 4 ] M.L. K r a s n o v , "The mixed b o u n d a r y p r o b l e m f o r d e g e n e r a t i n g l i n e a r d i f f e r e n t i a l e q u a t i o n s o f s e c o n d o r d e r " , Mat. S b . , 49 (91) ( 1 9 5 9 1 , pp . 29- 84. ( R u s s i a n )

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4

" Z e probline de C s u c h y 5 caracteristiques multiples", Ann. Scuola Norm. Sup. Pisa 4 - 4 (1977!, E D . 7 5 7 - 8 0 5 . -

"On the C a u c h y problem for weakly L ilyrsrbslic equations", Comm- P u r e

~ p p l . Math. 23 (1970f, p p - 5 6 9 - 586.

. P I A P ~ ~ . p L V d I C , -,.C, =3.2 for hyperb~?lic

equations I", J, Math. Kyoto U n i ~ . 10-2 (19721, pp. 349-373.

Rece ived A p r i l 1961

Dow

nloa

ded

by [

Uni

vers

ity o

f K

iel]

at 0

5:06

26

Oct

ober

201

4