a mathematical model for predicting fire spread in wildland fuels

Upload: saksham-agarwal

Post on 07-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    1/48

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    2/48

    USDResearc

    MATHEMATICALMOD

    FOR PREDICTING

    FIRE SPREAD

    IN WILDLAND FUEL

    RichardC

    Rothermel

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    3/48

    PREF

    Forest managers as well as those engaged in research involvinests, brush fields, and grasslands need a consistent method for pspread and intensity in these fuels. The availability of the mmodel of fire spread presented in this paper offers for the method for making quantitative evaluations of both rate of sprintensity in fuels that qualify for the assumptions made on the

    and weather parameters  measurable in the field are featured as model. It is recognized that this model of the steady -state fireonly a beginning in modeling wildland fires, but the initial apthe National Fire-Danger Rating System and to fuel appraisal

    wide applicability.The introduction of this model will permit the use of syst

    techniques to be applied to land management problems. As a rdimension is offered to land managers for appraising the cons proposed programs. Questions can be answered such as: What is

    fuel hazard when thinning is done in overstocked areas? Can ltices be modified to reduce the potential fire hazard of the fuduce? How much slash should be left on the ground to produc

    site treatment for the next crop of trees? How long after cutticessful bum still be achieved? What is the hazard buildup in chafields of the Los Angeles Basin in years subsequent to the last bu

    Systems analysis can be applied not only to these broader asptative manipulation activities, but also to traditional activities,suppression planning and prescribed burning. As we learn mo

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    4/48

    burning conditions, if sufficient heat is generated, the fire can grow into the treetops causing a crown fire to develop. The nature andisms of heat transfer in a crown fire are considerably different than

    a ground fire. Therefore, the model developed in this paper is not ato crown fires. An exception can be made for brush fields. Brushchamise, is characterized by many stems and foliage that are reason

    tiguous to the ground, making it suitable for modeling as a ground fiContributions to the spread of the fire by firebrands have not

    cluded. At first this may seem to be a serious limitation to the mcause everyone who has been on a large fire (most investigators gofires, the fires not presently being modeled) knows the importanceting. However, seeing firebrands in the air and landing ahead of the

    does not mean that they are effective in advancing the fire. Berlahas shown that not all firebrands have a significant effect in spreadi

    To be significant, firebrands must release sufficient heat when the

    ignite the adjacent fuels, and they must do so before the fire wo

    overrun the descent point as a result of conventional heat transfer meFurthermore, the model has been designed to simulate a firestabilized into a quasi-steady spread condition. Most fires begin fromsource and spread outward, growing in size and assuming an elliptiwith the major axis in the direction most favorable to spread. Wheis large enough so that the spread of any port ion is independent of icaused by the opposite side, it can be assumed to have stabilized ifire. A line fire behaves like a reaction wave with progress that is ste

    time in uniform fuels.

    All input parameters can be determined from knowledge of the cistics of fuels in the field. This does no t imply that all the parameter

    and environment are readily available or can easily be measuredhowever, delineate what parameters should be cataloged and eliminathat are not needed. A convenient method of cataloging input para

    through the concept of fuel models tailored to the vegetation pattein the field. The companion fuel models are thus a set of input pthat describe the inherited characteristics that have been found i

    fuel types in the past. The environmental parameters of wind, sloppected moisture changes may be superimposed on the fuel models. model concept has already been incorporated into the National Fir

    Rating System (Deeming and others 1972).The mathematical model produces quantitative values of sprea

    tensity that should be regarded as appraised or mean values for the

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    5/48

    THE

    Richard C. Rothermel is a Research Engineer stationed atNorthern Forest Fire Laboratory in Missoula, Montana. H

    the Research Project Leader for the Fire Physics research wunit. Rothermel received his B.S. degree in Aeronautical Eneering at the University of Washington in 1953. He servethe U. S. Air Force as a Special

    eap~ns

    Aircraft DevelopmOfficer from 1953-1955. Upon his discharge, be was emplo

    at Douglas Aircraft Company as a troubleshooter in the Arment Group. From 1957 to 196 1 Rothermel was employedthe General Electric Company in their Aircraft Nuclear Pro

    sion Department at the National Reactor Testing StationIdaho. In 1961, Rothermel joined the staff at the Northern est Fire Laboratory, where he has been engaged in research

    the mechanisms of fire spread. He received his master's dein Mechanical Engineering at the University of Colorado in FCollins in 1971.

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    6/48

    ABSTRA

    The development of a mathematical model for predicting rate

    spread and intensity applicable to a wide range of wildland fuels is pfrom the conceptual stage through evaluation and demonstration oto hypothetical fuel models. The model was developed for and is noused as a basis for appraising fire spread and intensity in the Natio

    Danger Rating System. The initial work was done using fuel arra

    posed of uniform size particles. Three fuel sizes were tested overange of bulk densities. These were 0.026-inch-square cut excelsior,

    sticks, and 112-inch sticks. The problem of mixed fuel sizes was

    solved by weighting the various particle sizes that compose actual fuby either surface area or loading, depending upon the feature ofbeing predicted.

    The model is complete in the sense that no prior knowledge ofburning characteristics is required. All tha t is necessary are inputs d

    the physical and chemical makeup of the fuel and the environmenttions in which i t is expected to burn. Inputs include fuel loading, fufuel particle surface-area-to-volume ratio, fuel particle heat cont

    particle moisture and mineral content, and the moisture content extinction can be expected. Environmental inputs are mean wind and slope of terrain. For heterogeneous mixtures, the fuel prope

    entered for each particle size. The model as originally conceived wasfuels in a uniform stratum contiguous to the ground, such as l itterIt has been found to be useful, however, for fuels ranging from pinlitter to heavy logging slash and for California brush fields

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    7/48

    CONTE

    HOW FIRE SPREADS

    CONCEPTION OF MATHEMATICAL MODEL

    Heat Required for Ignition

    Propagating FluxReaction Intensity

    Effect of Wind and Slope

    Approximate Rate of Spread Equation

    EVALUATION OF PARAMETERS.NO WIND

    OR SLOPE

    HeatSink

    Heat SourceExperimental Design

    Experimental Results

    EVALUATION OF WIND AND SLOPE COEFFICIENTS

    Wind Coefficient

    Slope Coefficient

    SUMMARY OF FIRE SPREAD EQUATIONSTHE FIRE SPREAD MODEL

    Formulation of Fire Spread Model

    APPLICATION TO THE FIELD

    Fuel Models and Applications

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    8/48

    HOW FIRE SPR

    Early work i n f i r e spre ad rese arch conducted by th e USDA Fores t Sepr i mari ly a imed a t developing relat io ns hi ps between burning condit i ons var i able s t h at would ai d fo re st managers t o cope with f i r e problems. Sf ue l moi s tu re , f ue l l oad ing , wind ve loc i ty , r e l a t i ve humidi ty, s l ope , a

    were a l l r ecognized as producing important e f fe c t s on f i r e . These e f feand corr el at ed t o some form of f i r e behavio r. The work was prim ari ly dsome very good results were obtained, consider ing the complexit ies of th

    the va r i ab i l i t y o f wea the r , pa r t i cu l a r ly w ind. Much of t h e pre se nt dayr a t i n g , f u e l c l a s s i f i c a t i o n , and o t h e r u s es o f f i r e r e se a rc h a r e b as ed

    ing work.

    W. R. Fons (1946) was th e f i r s t t o a t tempt t o descr ibe f i r e spreadmat ica l model. Fons focused h i s a t te nt io n on the head of th e f i r e whe

    car ry the f i re and where there i s ample oxygen t o sup port combustion. t h a t s u f f i c i e n t h e a t i s n eed ed t o b r i n g t h e a d j o in i n g f u e l t o i g n i t i o n the f i r e f r on t . T he re f o r e, Fons r easoned tha t f i r e sp r ead i n a f u e l be

    i zed a s p r oceed ing by a se r i e s o f success ive i gn i t i ons and tha t i t s r a tp r imar i ly by the i gn i t i o n t ime and the d i s t ance between p a r t i c l e s .

    Fon s ea r l y ide as have been conf irmed by rec ent work i n f lame spreT a r i f a and T or ra lbo ( 1967) s t a t e t h a t :

    Heat ing of the fuel ahead of the f lame as i t pr ogr e sse s i s t hand most e s s en t i al proces s of th e flame propaga tion mechanismf o r e , it i s very imp orta nt t o know t h e flame pro paga tion mechfrom f lame t o f ue l and t o s tudy t he t ime consumed f or th e heapr ocess s ince i t may con tro l propa gati on speed i n many cas es.t h e l e s s , t h e r e i s l i t t l e i n f o r ma tion on the se p roblems.

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    9/48

    Heading fire- 5 m p h

    -g=Temperature of air

    T s =

    Temperature f surface

    Distances from fire

    I I I I I I I

    Time since beginning of fire , minutes

    Figurs 1.-- el temperature hi stor y prior t o ig ni ti on for heading, n

     f ires.

    Considering f i r e as a ser ie s of ig ni ti on s helps i n breaking dowana lysi s . Heat i s suppl ied from the f i r e t o the poten t ia l fue l , thedehydrated, and fur t her hea t ing ra is es th e surface temperature un t i lpyrolyze and re lea se combustible gases. When th e gas evolution r a t efuel i s su ff ic ie nt t o support combustion, the gas i s ig nited by the fadvances t o a new pos it i on. Finall y, a constant r at e of spread i s aca l led the "quasi-steady state" where in the f i r e advances a t a ra te

    of a l l the e lemental r a te s .

    T hi s pr oc es s i s i l l u s t r a t e d i n f i gu re 1, which i s based on a lawhich we monitored t h e su rf ac e temper ature of a f i ne f ue l element ant o i t ahead of an advancing f i r e . In t he no-wind f i re and backing temperature ros e slowly un t i l t he f i r e was within 1 o r 2 inches of thwhere i t suddenly rose t o igni t ion . During the  preheating phase, th

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    10/48

    CONCEPTI

    MATHEMATICAL M

    The model was developed from a s t r o n g t h e o r e t i c a l b a s e t o make i tw id e a s p o s s i b l e . Th i s b a s e was s u p p l i ed b y Frandsen (1971) who ap pl i e

    t i o n o f e n er gy p r i n c i p l e t o a u n i t v ol um e o f f u e l ah ead o f an ad van c i n

    homogerieous f u e l b e d . H i s a n a l y s i s l e d t o t h e f o ll o w in g :

    R =

    be ig

    where :

    I = q u a s i - s t e a d y r a t e o f s p re a d, f t . / m i n .

    I . = h o r i z o r l t a l h e a t f l u x ab s or b ed b y a u n i t v olume o f f u e l a t t h ex1g

    ~ . t . u . / f t . ~ - m i l l .

    = e f f e c t i v e b ul k d e n s i ty ( t h e amount o f f u e l p e r u n i t vo lume o fr a i s e d t o

    i g n i t i o n a h e a d o f t h e a d v a ~ l c i n gf i r e ) , l b . / f t .

    Q. = h e a t o f p r e i g n i t i o l l ( t h e h e a t r e q u i r e d t o b r i n g a u n i t w ei gh tl

    i g n i t i o n ) ,B . t . u . / l b .

    = t h e g r a d i e n t o f t h e v e r t i c a l i r l t e n s i t y e v a l ua t e d a t a p l a n e a

    (2 ) d e p t h ,zc ,

    o f t h e f u e l b e d ,B . t . u . / f t . 3 - m i n .

    zC

    T h e h o r i z o n t a l and v e r t i c a l c o o r d in a t e s a r e x and z , r e s p e c t i v e l y .

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    11/48

    Heat Required for Ignition

    The he a t r e qu i re d f o r i gn i t i oni s

    dependent upon (a) ig ni t i on temois ture content of th e fue l , and (c ) amount of f ue l involved i n the

    The energy per uni t mass requi r ed f o r ign i t io n i s t h e h e a t o f p r

    where:

    M = r a t i o o f f u e l m oi st ur e t o ovendry weightf

    = i g n i t i on t e mpe ra ture .g

    The amount of fu e l involved i n th e ign i t io n process i s t h e e f f e c t i v e To a id i n t e r pr e ta t io n and ana ly s is , an e ff ec t i ve hea t ing number i s deo f t h e e f f e c t i v e bu lk d e n s i t y t o t h e a c t u a l b u lk d e n s i t y .

    be

    E E -

    b

    The effect ive heat ing number i s a dimensionless number t h a t w i l l b e nfu e l s and decrease toward ze ro a s fu e l s i z e inc reas es . There fore ,

    be

    = f ( bu lk d e n s i t y , f u e l s i z e )

    Propagating Flux

    The propagat ing flux i s th e numera tor of t heRHS ( r ight-ha nd s id

    (1) and ha s t he un i t s o f he a t pe r un i t a r e a , pe r un i t t ime . The proprepresented by I .

    P

    The propagat ing flux i s composed of two terms, th e hor i z o n ta l f lo f t h e v e r t i c a l f l u x i n t e g r a t e d from minus i n f i n i t y t o t h e f i r e f r o n tcan be char acte rize d a s shown i n fi gu res 2, 3 , and 4. The f i g u r e s i n

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    12/48

    Figure 2 . --Schematic of

    no-wind fire.

    Wind

    Figure 3. --Schematic ofwind -driven f ire .

    Solid mass tra

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    13/48

    E q u a t i o n (6) p e r m i t s I p ) o t o b e e v a l u a t e d fr om e xp e ri m e nt s w i t h s p r et h e no-wind co nd i t i on by measur ing o o v e r a wid? r an ge o f f u e l c o n d i

    t h e p r op ag at i ng f l u x oc c ur s a t t h e f r o n t o f t h e f i r e ; t h e r e fo r e I p ) o

    be c l o s e l y r e l a t e d t o t h e f i r e i n t e n s i t y of t h e f r o n t :

    Reaction rrtensity

    The e ne rg y r e l e a s e r a t e o f t h e f i r e f r o n t i s p r od u ced b y b u r n i n gf r o m t h e o r g a n i c m a t te r i n t h e f u e l s . T h e r e f o r e , t h e r a t e o f ch an g e m a t t e r from a s o l i d t o a g as i s a good approximat ion o f t h e su bs e qu en

    of t h e f i r e . The h e a t r e l e a s e r a t e p e r u n i t a r e a o f t h e f r o n t i s c a

    i n t e n s i t y

    and i s d e f i n e d a s :

    where :

    - mass l o s s r a t e p er u n i t a r e a i n t h e f i r e f r o n t , l b . / f t . 2 -md t

    h = h e a t c o n t e n t o f f u e l , B . t . u . / l b .

    'The r e a c t i o n i n t e n s i t y i s a f u n c t i o n o f s uc h f u e l p a ra m et e rs a s t h e pd en s i t y , m o i s t u r e , an d ch em i ca l co m p o s i t i o n .

    T h e r e a c t i o n i n t e n s i t y i s t h e s o u r c e o f t h e no-wi nd p r o p ag a t i n g imp or ta nt concept upon which th e model i s b as ed t h a t ( I ) o and I R c a n

    d ep en d en t l y and co r r e l a t e d . Knowing t h e co r r e l a t i o n , ?p)o can be de

    r e a c t i o ~ i n t e n s i t y ,

    which i s i n t u r n d e pe nd en t on f u e l p a r a m e t er s o b tfuel bed complex.

    I f t h i s c on ce pt i s k ep t i n m in d, i t w i l l a i d i n u n d e r s t a nd i n g t h e d ev

    model .

    Effect of Wind and Slope

    Wind a nd s l o p e c h an ge t h e p r o p a g a t i n g h e a t f l u x b y e x p os i n g t h e

    a d d i t i o n a l c o n ve c t i v e and r a d i a n t h e a t ( f i g s . 3 and 4 ) .

    Let and@ s

    r e p r es e n t t h e a d d i t i o n a l p r o p a g a t i n g f l ux p roduced

    T h ey a r ed i m e ~ ~ s i o r l l e s so e f f i c i e r l t s

    t h a t a r e f u n c t i o n s of w in d, s l o p e

    m e t e r s . T hey m us t b e ev a l u a t ed f ro m ex p e r i m en t a l d a t a . The t o t a l p

    r e p r e s e n t e d b y t h e e x p re s s i o n,

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    14/48

    EVALUATION OF PARAM

    NO -W I ND OR

    The c o nc e iv e d f u n c t i o n a l r e l a t i o n s h i p s n e c e s s a r y f o r e v a l u a t i n g ed i v i d e d a nd c on s i d er e d f i r s t as t h o s e f o rm i ng a h e a t s i n k and s eco nd

    a s a h e a t s o u r c e .

    Heat Sink

    Heat of Preignition

    The h e a t o f p r e i g n i t i o n and t h e e f f e c t i v e b ul k d e n s i t y a r e t h e tw

    t o be ev a l u a t e d b e f o r e t h e p r o p ag a t i n g f l u x co u l d b e com pu ted. Qig wa

    a n a l y t i c a l l y f o r c e l l u l o s i c f u e l s b y cons ider i r l g t he change i n s p e c i f i

    t o i g n i t i o n t e m p e r a t u r e a n d t h e l a t e n t h e a t o f vapo r i za t i o r l o f t h e m o

    where :

    C = s p e c i f i c h e a t o f d r y w o d dpd

    AT. = t em p e r a t u r e r ange t o igr l i t ior l18

    b = f u e l m o i st u r e , l b . wa t e r / l b . Try wcof

    C = s p e c i f i c h e a t o f w a te rPw

    ATB = t e m p e r a t u r e rarlge t o b o i l i n g

    h f

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    15/48

    Figure 5. Instrwnentation  fordetermining the ef fect ivebulk densi ty.

    Moisture i s the primary independent v a r ia b l e i n t h e e v a l u a t i o n of

    i s r ecognized tha t o ther parameters should eventual ly be inc luded i n ther i t i~ lg

    r a t e ,i n o r g a n i c

    impur i t i e s , and nonpyro ly t i c vo la t i l e s .

     Ef fect ive Bulk Dens ity

    To evaluate th e ef fe c t iv e bulkdens i ty pbe) ,

    weneeded

    t o dete rmi

    ofh e a t i n g

    a s afunct io i l

    of pa rt ic le s i ze . This was evaluated by plac

    with in s e c t i o n s of two s t i ck s th at were locat ed on the upper surfa ce 3

    end

    of st an da rd wood c r i b s . Thei n s t r u men ted s ec t i o n s

    were or ien ted

    g i t u d i n a l

    and l a te r a l d i r e c t io ns ( f ig . 5 ) . The t empera ture d i s t r i bu t io

    st ic ks was analyzed t o determine th e amount of heat absorbed by the s t

    t ime of igni t ion .

    Resul ts of the anal ys is ar e show11 i n f i g u r e 6. An exponent ia l f i

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    16/48

    Figure 6 . - - E f f ec t ive heatingnumber versus Z/a a i sthe s urface-area- to-volumera t i o o f the par t i c l e ;

    E

    i s a measure of the fractionof the potent ial fuel thatust be rai sed t o ign i t io n .

    Heat Source

     Reac tion In tens i t y

    The most complex f u n c t i o n eva l ua te d was r ea c ti or i i n t e n s i t y using

    t ha t e vo l ve d byd e r i v i n g

    f i r ei n t e n s i t y

    f rom th e we ight los sd a t a . 4

    was made from a s e r i e s o f experimerlts u t i l i z i n g an i~ is t rumer l ts ys t e m tw ei gh t o f a p o r t i o n o f t h e f u e l b ed d u ri n g f i r e s p r ea d .

    Equat ion (7) can b e r e a r ra n g e d t o e x p r e ss r e a c t i o n i r l t e ~ i s i t y n t

    where :

    dx = R t h e q u a si - s t e ad y r a t e o f s p r e a d .d t

    T he r e f o r e ,I dx = -Rh dw.R

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    17/48

    This gives

    I D Rh w W ) .R n r

    where:

    D = r eac t ion zone dep th ( f r on t t o r ea r ) , f t .

    w = n e t i n i t i a l f u e l l o ad in g, ~ b . / f t . ~n

    w = res idue loading immediately a f t e r passage of th er

    rea ct io n zone, l b./ f t

    The ne t i n i t i a l fue l loading was cor rec ted fo r the presence of noncomband minerals.

    The t ime t aken f o r t he f i r e f r on t t o t r ave l a d i s t ance equ iva len t one reaction zone i s t he r eac t ion t ime

    R

    Subs t i t u t ing the r ea c t ion t ime in to equa t ion (18) g ive s

    We now def i ne a maximum rea ct io n in te ns i t y where th ere i s no loading rea f t e r t he r eac t ion zone i s passed and where the r e a c t i o n time remains umaximum react ion intensi ty i s represen ted by

    The reac t ion zone e f f ic iency i s then def ined as

    IR wn-wr)Q =I-

    Rmax

    WI1

    Repl acin g (w -wr) i n equa t ion 201, we : ~ v c i n terms of measurable fI1

    parameters.t

    Th t f l l di f t i (23) b bt i d f

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    18/48

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    19/48

    Figure 7 Determination of

    moisture damping coeffi

    c i e n t

    from ponderosa

    pine needle fuel beds.

    I)

    .

    6

    I)

    Fuel moisture

    t may vary between 0 .10 and 0 . 4 0 . ~

    Kecent f i e l d experiments i n loggi

    1972) ind ic a te tha t x may be between 0.10 and 0.15 for logging slash,

    p or ou s t h an l i t t e r .

    The e q ua t io n f o r t h e c u rv e i n f i g u r e 7 i s

    The mois ture damping coe f f ic ie nt accounts fo r th e decrease i n in t en s i t

    combust iorl o f f ue l s th a t i n i t i a l l y c on ta ined m ois tu re . The exa c t e f f e

    tu r e has no t bee n a dequa te ly exp laine d i n t er m s o f r e a c t ion k i ne t i c s .

    Q i g s i nc luded im pl i c i t ly i n th e developmen t o f nM I f f u r t h e r

    r e v e a l

    ~t

    t o be non l in e a r , t hen t he c u rve form o f nM

    w i l l

    change.

    Mineral Damping Coefficient

    The miner al damping coe ff ic ie nt was eval uat ed from thermogravime

    d a t a o f n a t u r a l f u e l s b y P h i l p o t 1 96 8) . I n t h i s s t u d y, t was assum

    of t he normal ized decomposi t ion r a t e would be t he same as th e normaliz

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    20/48

    Figure 8 . --Mineral . damping

    c o e f f i c i e n t o f n a t u r a l

    f u e l s , d e r i v e d from t h e

    w ork o f P h i l p o t

    1 9 6 8 ) .

    Effective mineral con

    Phys ica l Fue l Parameters

    Two v a r i ab l e s r emai n t h a t h ad t o be co n s i de red i n ev a l u a t i n g t h e

    in te ns i ty - - fu e l bed compactness and fue l p a r t i c l e s i z e . Both a r e kno

    can t e f f ec t s upon co m b u s t i b i l i t y , b u t t o d a t e , i n t eg ra t ed r e s ea rch h a

    ed t o s ep a r a t e and q u an t i fy t h e e f f e c t s o f t h e s e v a r i ab l e s o n t h e dyn

    f i r e .

    I t s h y po t hes i zed t h a t low v a l ues o f f i r e i n t en s i t y and r a t e o f

    th e two ex t remes o f compactness loose and dense) . In dense beds , t h

    t o low a i r - t o - f u e l r a t i o and t o p oo r p en e t r a t i o n o f t h e h ea t beyond t

    o f th e fue l a r ra y . In loose beds a t th e o th er ex t reme], low in te ns i

    a r e a t t r i b u t e d t o h ea t t r a n s f e r l o s s e s b et ween p a r t i c l e s and t o l a ck

    th es e two extremes, th er ef or e, th er e must be an optimum arrangement o

    p ro du ce t h e b e s t b a l ance o f a i r , f u e l , and h ea t t r a n s f e r f o r b o th max

    and reac t io n ve lo c i ty . I t i s no t expec ted th a t t he optimum ar rangeme

    f o r d i f fe r e n t s i z e f u e l p a r t i c l e s .

    The compact ness o f t h e fu e l b ed i s q u an t i f i ed by t h e p ack i ng r a t

    d e f i n ed a s t h e f r ac t i o n o f t h e fu e l a r r ay v olume t h a t

    s

    occupied by

    r a t i o c an b e e a s i l y c a l c u l a t e d by e v a l u a t i n g t h e r a t i o o f t h e f u e l a r

    t o t h e f u el p a r t i c l e d e ns i ty ,

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    21/48

    T he s u r f a ce - a r e a- t o - vo l ume r a t i o i s u se d t o q u a nt i fy t h e

    f u el p a r t i

    L e t a = t h e f u e l p a r t i c l e s ur fa ce -a re a- to - vo l um e r a t i o . F or f u e l s

    w it h r e s pe c t t o t h e i r t h i c k n e s s ,

    a

    = f t 1

    d

    where

    d

    =

    d i a me t e r o f c i r c u l a r p a r t i c l e s o r e dg e le n gt h o f s qu a re p a r t i c l

    Th e p a ck i ng r a t i o o f t h e f u e l a r r a y ,

    8

    and t h e s u r f a c e- a r e a -t o - v o l u

    t h e f u e l p a r t i c l e ,

    a ,

    a r e t h e p r i m ar y i n d ep e n de n t v a r i a b l e s u s ed t h r o ug h

    r em ai n de r of t h e p a p e r f o r e v a l u a t i n g c o r r e l a t i o n e q u a t i o n s .

    Exper imenta l e s ign

    To e v a l u a t e t h e r e a c t i o n v e l o c i t y , a w ei g hi n g p l a t f o r m was c o n s t r u

    t h e f u e l s u p p o r t s u r f a c e f o r t h e ex p e ri m e nt a l f u e l b ed s . T h i s w ei g hi n g

    was 18 i nc h e s s q ua r e , was s uppo r t e d by f ou r l oa d c e l l s , wh ic h w er e p r o t e

    h e a t by a s e r i e s o f b a f f l e s a nd c er am i c c y l i n d e r s . A l l f o u r s i g n a l s fro

    c e l l s we re e l e c t r o n i c a l l y summed, a m p l i f i ed , and s p l i t i n t o tw o e q u i v a l e

    One s i g n a l was r e c o r d e d d i r e c t l y ; t h e s ec o nd w s e l e c t r o n i c a l l y d i f f e r e n

    b e i n g r e c or d e d . T h i s d u a l a r ra n g em e nt ga ve c o n t i n u o u s r e c o r d s o f t h e w

    or1 t h e p l a t f o r m a s w e l l a s t h e t i m e r a t e o f c ha ng e o f t h e w e i g h t .

    T he e x c e l s i o r f u e l b e d s w er e f e e t w i d e, 8 f e e t l ong , a nd 4 - 1/ 2 i n

    f r o n t o f t h e we i gh i ng p l a t f o r m was p l a c e d f e e t f rom t h e f r o n t o f t h e

    c e n te r ed l a t e r a l l y . T h i s a rr an ge me nt p e r m i t te d t h e f i r e t o re a ch a q u a

    o f s p r e a d b e f o r e b u r n i n g o n to t h e p l a t f o r m . I n co n s is t en c i es i n b ur ni n g

    edges were minimized by a l lowing 9 i n c he s o f f u e l on e i t h e r s i d e of t h e

    c r i b s we re c o n s t r u c t e d u s i n g 1 / 4 - i nc h an d 1 /2 - in c h s t i c k s

    ;

    c r i b s w er e a

    f e e t l o ng , f e e t w i d e, and

    5

    t o 6 i nc he s de e p . T he same s i z e w e i gh i n

    u se d f o r bo t h t h e s t i c k c r i b s and t h e e x c e l s i o r b e d s ,

    Th e c o n ce p t o f a r e a c t i o n z o ne an d a r e a c t i o n t i m e can b e v i s u a l i z e

    t h e f u e l - r e a c t i o n z on e i n t e r f a c e a s m ovi ng t h r ou g h t h e f u e l on t h e w e ig

    ( f i g .

    9 ) .

    When t h i s i n t e r f a c e r e a c h ed t h e f u e l be i n g w ei gh ed , t h e s t r i

    i n d i c a t e d t h e ti m e o f a r r i v a l by t h e s t a r t o f w ei gh t l o s s .

    As

    t h e f i r e

    c ee de d i n t o t h e ~ i e i g h e d u e l , t h e we ig ht l o s s r a t e c on t in u ed t o i n c r e a s

    o f t h e we i gh i ng p l a t f o r m was l o n g e r th a n t h e d e pt h o f t h e r e a c t i o n z o ne

    r a t e o f w e ig h t l o s s s t a b i l i z e d when t h e f i r e a dv an ce d o n t o t h e p l a t f o r m

    c cl ui va le nt t o t h e de p th o f t h e r e a c t i o n z o ne . The l a p s e d t i m e from i n i

    t o t h e o ns et o f s t a b i l i z a t i o n i s t h e r e a c t i o n t i m e,

    T R .

    R e a c t i on t i m e

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    22/48

    Figure 9 Fire fue interf ace

    moving through weighed fu e l .

    I

    Fire fuel

    arrives a

    I

    Fire interface approachin

    [We igh t lo

    continues

    Fire burning into weighed

    Depth of

    W

    b

    Steady weight loss rate a

    T he mass l o s s r a t e ,

    h

    o b t a i n e d fr om t h e w ei g ht l o s s d a t a , was r e

    lowi rl g phy s i c a l f e a t u r e s :

    where I V e q u a l s t h e w id t h o f t h e w ei g hi n g p l a t f o r m . The e f f i c i e n c y o f

    f i r e s can now be expresse d as

    C ombi ni ng t h e e f f i c i e n c y w i t h t h e r e a c t i o n t i m e , T a s i n d i c a t e d by e

    t a k e r fro m t h e w e i g h t l o s s d a t a , f i g u r e l o ), g i v e s t h e e x p e r i m e n t a l l y d

    v e l o c i t y ,

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    23/48

    Figure 1 . I l l u s t ra t i o n

    of mass lo ss and i t s

    der i va t i ve .

    I

    I

    Mass los

    m

    dm

    - E d

    xperim ental R esults

    Reaction Velocity

    The r e s u l t s o f t h e e xp er im e nt s u t i l i z i n g t h e d e r i v a t i v e o f t h e w e

    determine r e ac t i on ve lo c i ty ar e shown i n f i g u r e 1 1 . s ex pe ct ed , t h e r

    p ac k in g r a t i o f o r e ac h o f t h e 1 / 4- in ch and 1 /2 -i nc h f u e l s . I t was n o t

    i d e n t i f y a dr op i n r e a c t i o n v e l o c i t y a t v e ry low pa c ki ng r a t i o s w i th t

    b ec a us e o f a ) t h e d i f f i c u l t y i n c o n s t r u c t i n g a f u e l be d h a v i n g o nl y a

    e x c e l s i o r p e r sq u a r e f o o t , and

    b)

    t h e l ack o f s e n s i t i v i t y on t h e w e ig

    ex t remely l i g h t fue l load in gs . t iowever, t i s e v id e nt t h a t t h e r e a c t i

    d ro p t o z er o i f t h e r e

    s

    no fue l to suppor t combus tion, j us t

    a s

    t

    doe

    f u e l s

    L

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    24/48

    Figure 2 2 --Determination of

    corre la t ions for maximum

    reaction velocity and

    optimum packing ratio.

    Fuel surface are a

    to volume ratio

    -U

    t

    The r e a c t i on v e l o c i t y f o r f i ne f c e l s e xc e l s i o r ) i s much g r e a t e r n

    p a ck in g r a t i o t h a n t i s f o r t h e l a r ge r 1 / 4 -i nch and 1 / 2 -i nch s t i c k s

    e x p ec t ed , t h e optimum p a ck in g r a t i o i s n o t t h e same f o r a l l f u e l s and s

    r i g h t as t h e fu e l s i n c re a se i n t h i c k ~ ~ e s s .

    ote a l s o t h a t t i g h t l y p ack e

    a c t ua l l y have l ow er r e a c t io r l ve l o c i t i e s t han do l a r ge r f ue l s a t t he sam

    T he l o s s o f r e a c t i on ve l oc i t y o f f i ne f ue l call be s ee r] i n t h e f i e l d by

    t h e d i f f e r e nc e i n f l am i ng v i go r bet we en p i ne ne e d l e s - on a b roke n t r e e t o

    above t h e g round and com pacted p i n e ne e d l e l i t t e r ; t he l a t t e r bu rns w i t

    The d a t a p o i n t s i n f i g u r e s

    11 th rough 16 a r e th e average of th re e

    t i o n s i n t h e e x c e l s i o r , a nd two o r more i n t h e s t i c k c r i b s .

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    25/48

    Figure 1 4 - -D e t edna t i on o f

    propagating flux ratio 5

    -

    -

    7

    -

    i

    C

    Le

    -

    0 .02 .04 .06 .08

    Packing ratio

    Legend

    Excelsior

    - 'h Cribs

    A 'hw

    ribs

    l l l \ ~ l

    C

    **

    r

    -

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    26/48

    Figure

    16 -

    C o n f i r n a t i o n o f

    r a t e o f s p r e a d e q u a t i o n

    w i t h

    o r i g i n a l d a t a .

    Packing ratio

    The ma the m at i ca l f i t t o the da ta o f f ig u r e 11 was assumed to bk a

    a P oi sson d i s t r ib u t io n . To de te r mine th e ge ne r a l e qua t io r ~as a fun cti

    a , t h e equa tio ns f o r the maximum valu e of r and th e optimum be ta ,

    s i ze were found as a func t io n of a ( f ig . 12) .

    max ~ . ~ / ( 4 9 5 0 . 0 5 9 4 a ~ - ~ )

    These were then combined with an a rb it ra ry va r i ab le ,

    A

    t o g iv e:

    where

    :

    The e q ua t io n s t h a t r e l a t e r e a ct i o n v e l o c i t y , r e a ct i o n i n t e n s i t y ,

    and r a t e o f sp r e a d wer e de ve lope d a s a s e t t o f i t no t only the depende

    a l so th e da ta shown in f ig ure s 11 through 16 . Note a ls o t h a t equa t ion

    and (39) w l l p r e d i c t r e a c t i o n v e l o c i t y f o r any c omb in at io n o f f u e l p a

    and any packing ra t io , 8

    The form of t he eq ua t ion s has been chosen t

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    27/48

    The c o r r e l a t i o n eq u a t i on s t h a t p r e d i c t t h e r e a c t i o n v e l o c i t y - - 3 6

    3 9 ) - -a r e combined w i th e q u at i on 27 ) t o p r e d i c t r e a c t i o n i n t e n s i t y f o

    s i z e s u se d i n t h e e x pe r im e nt s . The c ur ve s from t h e s e e q u a t io n s a r e a l

    f i g u r e 1 3 , where t h e f i t can b e compared t o t h e o r i g i n a l d a t a .

    D i r e c t c ompar ison o f r e a c t ion in t e n s i ty be twee n t h e f ue l s u se d i n

    i s no t in t e nde d , no r c an

    i t

    be made because fu el loading was not hel d

    s tudy da ta we re on ly in t e nde d t o a id i n t h e developme nt o f e qua t ions t

    to p r e d ic t r e a c t ion in t e ns i t y a nd , subse que n t ly , r a t e o f sp r e a d ove r a

    fu el and environmental combinations

    P r o p a g a t i n g LUX

    The no-wind propag a t ing f lu x i s ca lc ul a te d from equa t ion 6),

    A

    r a t i o ,

    5

    i s now computed;

    i t

    r e l a t e s t h e p ro pa ga ti ng f l u x t o t h e r e

    The valu es computed f o r

    5

    a r e p l o t t e d i n f i g u r e 14 as a f u nc t io n o f

    s i z e s . The f o l lowing c o r r e l a t io n e qua t ion was f ound f o r 5 as a fun cti

    The f i t o f t h e d a t a t o t h i s e qu a t i o n can b e se en i n f i g u r e 1 4.

    The f i t o f t h i s e q ua t io n t o t h e o r i g i n a l v a l ue s o f p r op a ga t in g f l

    from equa t ion 6) can be seen in f ig ur e 15 . The da t a show th a t Ip) ,

    i n c r e a s i n g

    0

    b u t a t a d e c re a s i ng r a t e . E x t r ap o l a ti o n o f e q u a ti o n 4 1

    i n d i ca t e s t h a t

    i t

    would ac tu al ly reach a maximum and th en decr eas e. T

    r e a sona b le p r e d ic t ion , c ons ide r ing the

    f a c t t h a t t h e f ue l a r r a y i s bec

    t h a t t h e i n t e n s i t y h as a l s o d ec re as ed f i g . 1 3) .

    R a t e

    o

    S p r e a d

    Combining t h e hea t source and hea t s in k terms produces t h e f i n a l

    sp r e a d e qua t ion

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    28/48

    EV LU TIO N O F

    N D S LO P E C O E F FIC

    To in t rod uce wind and s lop e i n t o th e model , we must eva lua te th e

    4 and $s . Rearranging equat ion (9) with $s 0 :

    I f t h e f u e l p a ra m e te r s i n e q ua t i o n ( 6) a r e a ssumed c o n s t a n t , t h e p r o p a

    prop or t ion al t o th e r a t e o f sp rea d and equat ion (44) becomes

    where :

    R r a t e o f s p r ead i n t h e p r e s ence o f a h ead in g w in d

    S i m i l a r l y

    where

    R r a t e o f s p r ead up a s l o p e .

    s

    For exped ie~lcy t was assumed t ha t no in t er ac t i on ex is te d between wind

    W i n d C o e f f i c i e n t

    Rate of spread measurements

    i n

    th e p resence o f wind or on s l ope s

    amenable t o th e no-wind model a re needed t o eval ua te equ at i ons (45) a

    Wind Tunne xperiments

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    29/48

    Figure 17.--Double

    tr ip od Sue bed used

    i n wind tunne

    experiments.

    a t t h e cen t e r . T hese d o ub l e t r i p o d s were a rr an ged a t v a r i o u s s p ac i n

    d e s i r e d

    p ack i ng r a t i o ( f i g s . 1 7 and 1 8 ) . For v e ry low p ack i n g r a t i o

    i s f a r s u p e r i o r t o t h e t r a d i t i o n a l c r i b c o n s t r uc t i o n b ec au se c r i b s w

    s t ic ks co l l ap se when t h e c r oss members bum o u t .

    E x ce l s i o r f u e l b ed s must be ca re f u l l y co n s t ru c t ed t o achi ev e t h

    o r t h e b u lk d e n s i ty w l l be a l t e r e d w it h d r a s t i c e f f e c t s on t h e r a t e

    Field Data

    M cA rt hu rl s ( 1969) d a t a on r a t e o f s p r e a d f o r he a d in g g r a s sl a n d

    a re show11 i n f i g u re 1 9 . However, n o d a t a a re a v a i l ab l e on t h e p a r t i

    l o ad i ng of t h e v a r i o u s a r e a s b u rn ed ; t h e r e f o r e ,

    t

    was assumed th a t

    s i m i l a r t o t h o s e o f a t y p i c a l a r i d g r a s s a r e a i n t h e W estern U ni te d

    a

    3 , 5 0 0 f t . -

    W o

    0 . 75 t o n / ac re , and d ept h 1 . 0

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    30/48

    Figure 19. --Reproduction of

    McArthur s (1969) ra te o f

    spread data fo r grass .

    Average wind velocity at

    33

    in the open , m.p.h

    Ana Zysis

    10.0

    Before a co r r e l a t io n could be found between wind ve lo c i ty and th e

    f a c t o r f o r wi nd ,

    t

    was ne c e ssa r y to f in d an in t e r r e l a t io ns h i p betwe en

    fue l pa ramete r , a and 6/Bo To do t h i s , th e exc e ls io r and 1 /4- inch s

    wind tunne l were p l o t te d aPong wi th McArthur ts f i e l d da ta . Ha lf - inch s

    n o t c o r r e l a t e a nd had t o b e d i s c ar d e d . A pp ar en tl y t h e e f f e c t i v e b ul k

    by th e r a p id he a t ing c aused by a he ad ing f i r e ;

    thus the assumpt ion of

    e r t i e s need ed f o r o b t a i n i n g e q ua t io n 45) i s n o t v a l i d f o r f u e l s a s l a r

    inc h .

    -

    Kon

    Another p l o t o f t he f u e l par a m ete r s and m ul t ip l i c a t io r l f a c t o r v s .

    p roduce d th e f i na l c o r r e l a t i on g ive n by e qua t ion 47 ). F igu re 20 show

    pa r am e ter s u s ing the o r i g i na l da ta .

    8.0

    -

    x Gee

    4

    Long

    4

    o

    Tasm

    2

    6 . 0

    E

     5,

    g

    4.0

    -

    3

    z

    -

    -

    2.0

    -

    -

    S

    a

    4

    4

    where:

    c =

    7.47 e x p - 0 . 1 3 3 ~ * ~ ~ )

    = 0 . 0 2 5 2 6 ~ * ~ ~

    E = 0.715 exp -3.59 x 1 0 - ~ a ) .

    Legend

    8 0 - Gross

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    31/48

    Figure 21. --I nfl uen ce of packing

    r a t i o

    and

    part ic l e s i z e on wind

    coe f f i c i en t a t 12 m p h . I n t h e

    absence of wind th e fuel

    condit ion s for b es t burning

    would occur at B B o p =

    I

    I n

    th e presence of wind f i re s

    spread fas t er i n Zess dense

    fue l e . ~ a ~ ~Zess than

    I The wind co ef f i c i en t

    increases markedly

    s

    surface-

    area-to-voZwne r at i o incr ease s.

    The shape of t h e cu rves i s

    n

    good agreement with th e concept s

    Rothermel and Anderson 19 66 ). t t h a t t i m e , i t was s p e c ul a t ed t h a t

    f u e l , t h e s h a r pe r t h e r e s u l t i n g i n c r e a s e i n s p r e ad r a t e wi th w ind v e

    ex p ec t ed , fu e l s t h a t were t o o s p a r s e t o bu rn we l l i n t h e abs en ce o f

    a r ap i d f i r e s p read when wind i s ap p l i ed . I n e f f e c t , t h e optimum p a

    t ow ar d more l i g h t l y l oa de d f u e l s a s wind i n c r e a s e s . T h is e f f e c t i s

    f i gu re 21 and can be seen in th e f i e l d where spar se fue l s - -such as p

    cheat grass burr]

    poor ly without wind but become a f l ash y f ue l when w

    Slope oefficient

    The e f f e c t o f s l o p e was d e te rmi n ed f o r f i n e f u e l s by b ur rl in g ex

    on slo pe s of 25, 50, and 75 pe rc en t. The experimerits were conducted

    combust ion lab or ato ry under th e same envi ronm er~ talcond i t io ns used f

    win d t u n n e l f i r e s . Fue l was ex c e l s i o r co n s t ru c t e d a t fo u r p ack in g r

    0 .02 , and 0 . 0 4 . c o r r e l a t i o r ~o f t h e d a t a

    1 s

    shown i n f lgur e 22 . T

    l in e i s

    whe re t an i s t h e s l o p e of t h e fu e l b ed. The f i n a l form o f t h e r a t

    t io n i s

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    32/48

    SUM M

    FIR E SP R E D EQU

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    33/48

    Swmnary o f as ic Fir e Spread Equ at ions

    I ~ c ( 1 $w

     

    R

    =

    R at e o f s p r e a d , f t

    / m i l l .

    pbEQig

    I

    R

    = r 'wllh rlM'ls

    R e a c t i o n i n t e n s i t y ,

    B .

    t . u

    f t . min.

    where :

    r

    =

    ~ * m a x ( ~ / ~ o p ) A e ~ p [ ~ ( l -o p ) ] Optimum r e a c t i o n v e l o c

    min.

    l

    'max

    = 01.5(495 . 0 5 9 4 0 ~ ' ~ ) - ~

    aximum r ea ct io n ve lo c

    min . - l

    Bop = 3 . 3 4 8 0 - - ' ~ ' ~ Optimum p a c ki n g r a t i o

    A

    = 1 / ( 4 . 7 7 4 a . l - 7.27)

    P.1

    f

    h l f 2

    '1M

    =

    1 - 2.59

    Mf

    M

    x 5 .11 ( )

    -

    3.52 ( )

    >loi s tu re da-np ing co ef f i c i

    I I S = 0.174 Se- . I9 h l ineral damping coef f i c i

    € = (192 0 . 2 5 9 5 a ) - ~ e x ~ [ ( 0 . 7 9 2 0 . 6 8 1 0 . ~ ) B 0 . 1 ) ]

    P r op a g at i ng f l u x r a t i o

    w = cuB

    *)

    L

    Wind coef f i c i en t

    C = 7 .4 7 exp ( - 0 . 1 3 3 0 . ~ ~ )

    B =

    0.025260.

    54

    E

    = 0.715 exp ( -3 .59

    x

    1 0 - ~ 0 )

    W =

    w

    Net f u e l l o a d i n g , 1 b . / f t

    1

    +

    S = 5.275 tan $ j 2 S l op e f a c t o r

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    34/48

    Input Parameters for asic Equations

    w

    ovendry f ue l l oad ing , Ib . / f t .

    0

    8

    f u e l d ep th , f t .

    a ,

    f u e l p a r t i c l e su rf ac e- ar ea -t o- vo lu me r a t i o , l / f t .

    h , f u e l p a r t i c l e low h e at c o n t e nt , B . t . u . / l b .

    ovendry p a r t i c l e d e n s i t y , l b . / f t . 3

    M f

    fu e l pa r t i c l e m oi s tu re con t en t , l b . m o is ture

    lb. ovendry wood

    ST, fu e l pa r t i c l e t o t a l m inera l con t en t , l b . m in ,e ra ls

    lb. bvendry wood

    S e, f u e l p a r t i c l e e f f e c t i v e mi ne ra l c o n t e n t , l b . s i l i c a - fi-ee

    lb . ovendry woo

    U

    wind ve l oc i t y a t m id flame he ig h t , f t /min.

    t a n 4 , s l o p e , v e r t i c a l r i s e / h o r i z o n t a l d i s t a n c e

    Mx

    mois ture conten t o f ex t in ct i on . This t erm needs exper im

    de t e rmina t i on . We ar e p rese n t l y u s ing 0.30, t h e f i b e r s

    poi n t of many dead fu el s . For a er ia l fuel s B

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    35/48

    T H E F I R E S P R E D M ODEL

    Rate o f sp rea d and in t en s i ty p re d ic ted by th e model a re based on

    and 27)

    These equa t ions had t o be modified,however, t o acc ept

    f u e l s

    composed o f h e te ro gen eou s m i x t ure s o f f u e l t y p es and p a r t i c l e s i ze s .

    p i n e n e e dl e l i t t e r , g r a s s , b r u s h , a nd lo gg i ng s l a s h a r e t h e e a s i e s t t

    f u e ls - - ac c u mu l a ti o ns o f b r ok en b r a nc h e s, t r e e t o p s , s n a g s , f o l i a g e l i t

    o t h e r l e s s e r v eg e t a t i o n a r e more d i f f i c u l t t o model b ecau s e of t h e d i

    p a t t e r n s i n which t h ey a re fou nd . For t h e m od el , ho weve r, t h e s e v a r i o

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    36/48

    To a id i n the understanding of fu e l d i s t r ib ut ion . , we in t roduced t h

    u n i t f u e l c e l l . u n i t f u e l c e l l i s t h e sma lle st volume of fu el within

    dep th t h a t h as s u f f i c i e n t f u e l t o b e s t a t i s t i c a l l y r e p r e se n t at i v e o f t h

    en t i re f ue l complex. This concept pe rmi ts the mathematica l rep resen ta t i

    d i s t r i b u t i o n t o b e r e fe re n ce d t o a u n i t f u e l c e l l r a t h e r t h an t o t h e e n

    Primari ly t h i s concept a ids i n mathemat ica l ly weighting input para

    sequent ly , i t i s n o t n ec es s ar y t o s p ec i f y t h e s i z e o f t h e u n i t f u e l c e l

    under s tudy ; r a t he r t o p rov ide mean va lue s pe r u n i t fue l c e l l which the n

    fuel complex that i s being modeled. Representat ive inpu ts can be pre sel

    fue l models t ha t a re t a i l o re d fo r a na lys i s by t h e f i r e sp rea d model.

    The model

    i s

    based on the concept th a t a s in gul a r ch ar ac te r i s t ic p

    be

    found by proper ly weight ing the var ia t ion s in th e paramete r i n t he h

    mixture . To implement t h i s concept , we had t o consi der how each fu el p

    model exerts i t s e f f e c t on t h e t h r e e c h a r a c t e r i s t i c f e a t u r e s o f a sp r e a

    The energy source; 2 ) t h e e ne rgy s ink ; 3) the f low of

    air

    o r o f h e a t

    The processes tha t

    contr ol combustion ra te--evaporat ion of moisture

    t ran . s fe r of hea t in to th e fue l , and evolut ion of combust ib le gases by t h

    t hr ou gh t h e s u r f ac e o f t h e f u e l p a r t i c l e .

    The fue ls having the h ig hes t

    volume ra t i o f i ne fu e l s )

    w l l

    r es po nd t h e f a s t e s t ; t h e r e f o r e , t h e s e

    w

    i n t h e l ea di n g p o r t io n s of a f i r e . I t i s no r e ve la ti on . t o f i r e f i g h t e r s

    s c i e n t i s t s t h a t f i n e f u e l s m ig ht b e e xp ec te d t o r e a c t t h e f a s t e s t . H w

    r e a l i s t i c t o a r b i t r a r i l y s t a t e t ha t 90 percent of pa r t ic le s 1 /8 inch in .

    under a r e consumed and th a t some f ix ed r a t i o of t h e o the r s i z e c lass es

    Weighting by surf ace a rea e l imina tes t he problem of making a rb i t ra ry de

    which fue l s i ze s t o inc lude and which not t o inc lude .

    Mathematical ire Spread Mode Inputs

    Mean va lue s wi th in

    it

    category and

    jth

    s iz e c las s of fu e l complex

    wo)i j = ove ndry l oa d ing , l b . / f t . 2

    j = su r fa c e - a re a- to -volume ra t i o , f t / f t . 3

    F )

    =

    mineral con ten t , lb miner als/ l b wood)

    T

    l b . m in er al s l b , s i l i c a )

    Te) j = e f f e c t i ve minera l c on ten t

    l b . woodh) i j

    =

    low hea t va lue , B. t .u . / lb .

    Mf)i

    j

    = mois ture conte nt , lb mois ture ) / lb .wood)

    Fp)i

    =

    ov end ry p a r t i c l e d e n s i t y , l b . / f t . 3 ) .

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    37/48

      ormulations f ire Sp read M ode

    The model i s now formula ted f rom the ba s i c equa t i ons o f f i r e spr

    weight ing concept . The ba s i c equa t ions a re ava i la bl e on page 26. The

    weighting concept must be developed.

    Weigh ting pa r a me te rs ba se d on th e su r f a c e a r e a o f t he f ue l w i th i

    and cat eg ory a r e developed from in pu t pa rame ters a s shown on page 29 .

    Le t :

    -

    = mean t o t a l s u r f a c e a re a o f f u e l p e r u n i t f u e l c e l l .

    -

    i

    =

    mean t o t a l s u r f a c e a r e a o f f u e l o f

    ith

    c a te g or y p e r u n i t f

    . = mean to t a l su r f a c e a r e a o f f ue l o f j th c la s s a nd

    ith

    c a te g

    I u n i t f u e l c e l l .

    The mean t o t a l s u r f a c e a r e a p e r u n i t f u e l c e l l o f e ac h s i z e c l a s

    c a te gor y

    i s

    de termined f rom th e mean loading of t ha t s i z e c l as s and t

    volume r a t i o and pa r t i c ke de n s i ty .

    -

    3

    G o )

    i

    A..

    =

    i j

    The mean to t a l s u r f a c e a r e a o f t he ith c a te gor y pe r un i t f u e l c e

    t o t a l s u r f a c e a r e a p er u n i t f u e l c e l l a r e t h en o b t a i n ed by s ummation o

    each ca tegory and wi th in th e fu e l ce l l wi th equa t ion s 54) and 55) .

    Two weight ing paramete rs a re now c a lc ul a t ed t ha t a r e used throug

    of th e model

    -

    H

    i

    R a t i o o f s u r f a c e a r e a o f j

    t

    h

    f i j T

    s i z e c l a s s t o t o t a l s u r f ac e a re a

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    38/48

    React ion in te ns i t y becomes

    :

    where t h e ch a r ac t e r i s t i c p a ramet e rs w e ig ht ed by s u r f ace a r e a a r e

    :

    Net loading of

    it

    category

    (wnIij

    =

    Net loading of j th cl a ss wi t h in

    1 i t h ca t eg o ry

    j =n

    fii

    C

    f . . F . . Low hea t con ten t va lue o f

    i

    h

    j O

    ca tegory

    (Qi = 0. 174(Se)i--19

    Mineral damping coeff icient

    o f i t h ca t eg o ry

    j =n

    5 ) . = C

    f i j ( S e ) ij C h a r a c t e ri s t i c e f f e c t i v e

    e i

    j =1 mi n era l co e f f i c i e n t o f

    i

    h

    category

    Mois ture damping co ef f i ci en t

    of

    i t

    category

    Mo is tu r e r a t i o o f

    i

    h

    ca tegory

    j =n

    -

    (Mf)i

    =

    C

    f .

    .

    (Mf)ij Moisture con ten t of

    j = 1

    i t

    category

    To compl et e t h e ca l c u l a t i o n of t h e r ea c t i o n i n t e n s i t y , t h e p o t en

    v e l o c i t y ,

    I- ,

    must be calculated . A s i n g l e v a l u e of r e a c t i o n v e l o c i t y

    fo r the fue l complex .

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    39/48

    where

    C h a r a c t e r i s t i c s u rf a c e- a r e

    to-vo lume r a t i o of t h e fue

    complex

    C h a r a c t e r i s t i c s u rf a c e- a r e

    to-volume r a t i o of

    it

    u e

    category

    Mean packing r a t i o

    Mean bulk density

    Th i s com plet es t h e com pu ta t ions neces sa ry fo r ca l cu l a t i ng r e ac t

    The parameters wi th in the ba s i c ra te of spread equat ion

    a r e t r e a t e d s i m i l a r l y .

    The no-wind propaga t ing f lu x r a t i o , 5 ,

    s

    a fu nct io n of th e mea

    and ch a r ac t e r i s t i c su rface-a rea - to -volume ra t i o .

    In t h e hea t s i nk t e rm s , t h e bu lk dens i t y i s dependent upon bulk

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    40/48

    The model

    i s

    c om pl et ed b y i n c l u s i o n o f t h e w ind a n d s l o p e m u l t i p l

    f a c t o r s

    and

    where

    U = mean w i nd s pe e d a t m id fl am e h e i g h t , ( f t . / m i n . )

    I f 17 5, t h e w ei gh te d f u e l s i z e

    i s

    t o o l a r g e f o r t h e wind f a c t o r .

    f u e l s i z e i n c r e a s e s . ) We h av e n o t fou nd t h i s l i m i t a t i o n t o b e r e s t r i c

    t h e f u e l models t e s t e d t o d a t e . The r e a s o n, o f c o u r s e , i s t h a t w i l dl a

    composed p r i m a r i l y o f f i n e f u e l s w i t h c o n s e q ue n t l a r g e v a l u e s o f

    a

    An upp er

    l i m i t

    i s p l a c e d on t h e w in d m u l t i p l i c a t i o n f a c t o r . R ot h

    Ander son (1966) found th a t t h e ang l e o f f l ame

    t i l t

    c o ul d b e c o r r e l a t e d

    t h e e n e rg y of t h e wind a nd t h e e n e r g y o f t h e f i r e :

    q

    u

    I R ~

    where

    q = f r e e s t r e a m dy na mi c p r e s s u r e l b . / f t .

    J = 778 f t . l b ./ B . t . u .

    -

    m e ch a ni c al e q u i v a l e n t o f h e a t

    E v al u at i ng t h i s r a t i o a t t h e l i m i t i n g v al ue o f s p r e a d r a t e f ou nd by

    Mc

    ( f i g . 20) g i v e s :

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    41/48

      FFLIC TION TO

    TM

    FIELD

    The mathematipal mpdel has ap pl ic at io n to management problems i n

    1 The h ~ o t h e t i c a l i r e s i t u a t i o n i n which o p e r a t i on s ' r e se a r c

    u t i l i z e d f o r E ir e p l an n in g , f i r e t r a i n i n g , and f u e l a p p r a i s a l.

    2

    The poss ib le f i re s i tu a t io n fo r which advance p lann ing

    i s

    ne

    f i r e -d an g e r r a t i n g and p re s u p p re s s i o n p l an n i ng . P red i c t i o n s o f p o t en

    fo r pos s ib le management p ra c t i c es ( i . e . methods o f th in n in g , s l a sh t r

    p r e s c r i b ed b u rn i n g) h av e t h e p o t e n t i a l f o r be i ng t h e most v a l u ab l e co

    f i r e model ing can perform.

    A t h i r d s j t u a t i o n - - f o r e c a s ti n g t h e b e ha v io r o f e x i s t i n g w i l d f i r e s

    a g r ea t e r degree o f so ph i s t i c a t io n than t h i s model and our knowledge o

    m i t a t t h e p r e s en t t i me . V a r i a t i on s i n f u e l and w ea th e r cau s e d ep a r t u

    s p re a d and i n t e n s i t y t h a t p o se r i s k s u n ac c ep ta bl e i n f i r e s up p re s si on

    method f o r fo r ecas t i n g t h e b ehav io r o f a s p ec i f i c f i r e ev en t u a ll y

    w i l

    most

    l i k e l y ,

    t w i l l

    b e p a t t e r n e d on a p r o b a b i l i t y b a s i s s i m i l a r t o t h

    cas t in g weather . To accompl ish th i s , a t echn ique must be developed fo

    f u e l i n v e n t o r i e s on t h e t h r e a t e ne d s i t e .

    Choos ing inpu t parameters f o r th e model f rom th e i n f i n i t e var i e t y

    enviro nment al arran geme nts and combinations seems almost overwhelming

    i n t h e g rowth of v e ge t a ti o n e x i s t t h a t can b e u t i l i z e d t o g r e a t l y s i m

    p ro ces s . I t a l s o p ro ves h e l p fu l t o g roup t h e i n p u t s i n t h e fo l l o w i n g

    1

    F uel P a r t i c l e P r o p e r t i e s

    Heat Content

    Mineral Content

    Pa r t i c l e D en s i t y

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    42/48

    The fu e l p a r t i c l e p ro p e r t i e s a r e n o t exp ec ted t o v ary g r ea t l y w i t h

    ty pe s . Such values can be re ad i l y determined in th e labor atory and ass

    n e r t h a t s h o u l d h av e wide ap p l i c ab i l i t y .

    Fue l a r r ay a r rangement pa t t e r ns must be dete rmined i n th e f i e ld .

    t a s k s w l l be more d i f f i c u l t t han measur ing fu e l pa r t i c l e p rop er t i es .

    e x p e c t e d t h a t p a t t e r n s

    w l l

    b e fou nd t h a t a r e r ep ea t ab l e w i t h in t h e

    l m

    ca l cu l a t i n g p o t e n t i a l f i r e h azard u s i n g t h e model. The fu e l t y p e , ag e

    s u r e , s o i l s , r a i n f a l l p a t t e r n s , and f i r e h i s t o r y may b e u se d a s in de xe s

    fu e l a r rang emen t p a t t e r n s . B ro ad er c l a s s i f i c a t i o n by eco ty p e o r h a b i t a

    v a l u abl e f o r s o r t i n g o ut f u e l p a r ame t e r s .

    The en vi ro nmen ta l r e l a t ed p a rame te r s can b e i n s e r t e d t o i n v es t i g a t

    th e range o f wind, mois t u re , o r s lop e t ha t might be expec ted t o be impo

    being modeled.

    Fuel Models and pplication

    On-the-spot sampl ing of a l l inpu t parameters i s co st ly , t ime consw

    Ca t al o gi n g fu e l p ro p e r t i e s and r e l a t i n g them t o o b se rvab l e s i t e ch a r ac

    e l i mi n a t e t h e fu e l s amp li ng p ro ces s , b u t

    t w l l

    permit a wide appl i cat

    r e s u l t s . T hese r e s u l t s can b e fu r t h e r r e f i n ed fo r u s e i n t h e ma th ema t

    assembling them into

    fuel models

    t h a t r e p re s e nt t y p i c a l f i e l d s i t u a t i o n

    models con ta in a comple te s e t o f inp u t s f o r the mathematical f i r e sp rea

    Land managers can be t r ai ne d t o choose the f u e l model, th at i s mos

    t o t h e f u e l s and c l im a t e f o r t h e i r a r e as o f i n t e r e s t . I f fu r t h e r r e f i n

    i n t e r n a l p r o p e r t i e s e . g . , f u e l l oa di ng i n l o gg in g s l a s h , t h e r a t i o of

    fue l i n brush , and t h e amount and typ e of unders t ory i n t imber ) of each

    b e t a i l o r ed t o p ermi t t h e model t o more

    c l o s e l y match s p ec i f i c fu e l s .

    Work has al re ad y begun on f u e l models f o r t h e Na ti on al Fire-Danger

    Eleven f u e l models

    t ab l e 1) h av e b een a ss embl ed t h a t r ep re s en t a l a rg e

    fo re s t s , b rush f i e ld s , and g rass l ands found i n th e t empera te c l imates o

    The var i a t ion s in sp read and in te ns i t y be tween f ue l types

    as pr ed i

    may re ad il y be seen from r e s u l t s o bta ine d from computations with t h e 11

    i n p u t s .

    To a s s i s t i n u n de rs ta nd in g t h e s e n s i t i v i t y o f t h e i n p u t s , t h e

    p ro per t i e s have been he ld cons tan t and th e var i a t i ons among fue l types

    t o t h e l o ad i n g by s i z e c l a s s and f u e l d ep th s shown i n t a b l e I . The f

    l iv ing fuel

    category

    i s

    a l l t h a t

    i s

    assumed t o e n t e r i n t o t h e r e a c t i o n .

    r e a so n a bl e v a l u e s of r e a c t i o n i n t e n s i t y f o r f u e l models t h a t c o nt a in l i

    mo i st u re o f e x t i n c t i o n v a l u e f o r t h e l i v i n g fu e l must b e ad j u s t ed t o a

    th a t used fo r th e dead fu e l s . Very l i t t l e research has been done on th

    l i v i ng fue l s . Ph i lpo t and Mutch 1971) sugges t tha t c rowning po te n t i a l

    pin e and Dougla s-fir f o r e s t s of Montana may be dependent upon t h e hi gh e

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    43/48

    ;t:

    O L n O O Ln N

    O N O M

    N N d O d N

    P.

    1 I Ln Ln Ln

    I

    L n l I I

    I I I

    I I I

    ,+

    I 1

    I

    I I M M M M M M M

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    44/48

    Figure

    23

    - -Poten t ia l reac t ion

    ve Zocity o f ty pi ca wildland

    fue 2s. The two Zines re pre -

    sen t the ex treme va lues o f

    -

    a,

    one fo r sho rt grass the

    oth er fo r heavy logging

    s la sh .

    Closed timbe

    Black

    3 Pocking ra

    The e f f e c t o f t h e c ha ng e i n f u e l a rr an ge me nt on p o t e n t i a l r e a c t i o n

    shown i n f i g u r e 23 . The f l a s h y fu e l s (g ra s s and b ru s h) h ave t h e h i g h es

    c l o s e d t im be r l i t t e r h a s t h e l o we st . Note t h a t t h e g r a s s and b ru sh l i e

    t h e optimum packing r a t i o under no-wind co ndi t i ons . Inasmuch

    as

    one o f

    wind

    i s

    t o s h i f t t h e optimum p ac ki ng r a t i o t o t h e l e f t , t h e s e f u e l s w i l

    we1 under windy co ndi t i ons .

    The p r e d i c t i o n o f r e a c t i o n i n t e n s i t y f o r t h e f u e l mode ls

    i s

    sho

    f o r f u e l m o i s tu r e r a ng i ng f r om 0 t o e x t i n c t i o n .

    l l

    f u e l models e x t i n g

    which i s t h e v a l u e s e t by x f o r t h e d ea d f u e l . The h i g h e r o r d e r v a r i a

    fu e l m odels a r e cau s ed by t h e l i v i n g f u e l com po nent s i n ab i l i t y t o b u rn

    fu e l mois tu r e becomes h igh . Th is

    i s

    a t t r i b u t a b l e t o F os be rg a nd S c h r o

    Legend

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    45/48

    Figure 24. --Reac tion

    i n t e n s i t y of t y p i c a l

    w i dland fue 2s

    computed with

    heterogeneous

    formulations for

    the model from

    data i n t ab l e 1.

    ..

    .. .. S

    0 0 S

    -.--

    S

    0 0

    H

    . B

    m

    bead fuel moisture content (percent)

    Heavy logging s l as h has by f a r the h ighes t r eac t ion i n t en s i ty bu

    of sp read ; chapar r a l has bo th a h igh reac t ion in te ns i t y and a h igh ra

    i s gr at i f y i ng th at the model pred ict ion s a re h igh i n both values beca

    d esi g ned t o r ep r e s en t t h e b ru sh f i e l d s o f t h e So ut hw es t.

    These brush

    sev er e f i r e haz ard Countryman, Fosberg, Rothermel, and Schroed er 196

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    46/48

    F i gu r e 2 6. E f f e c t o f m o i s t u r e

    and m i nera l s

    on

    r a t e o f s p r e a d

    i n a h y p o t h e t i c a l f u el m od el .

    Effective min

    0 0 5 10 15

    Fuel moisture

    The pos i t i ons o f th e cu r ve s i n both f igu r e s

    4

    and

    25

    would b e r e f

    p a r t i c l e p r o p e r t i e s h , p Se ,

    hlx

    o f t h e a c t u a l f u e l s w e re s u b s t i t u t e

    va lues th a t we re use d i n P i e f ue l m odel s.

    To i l l u s t r a t e t h e r e l a t i v e e f f e c t o f m in e r a ls and m o i s tu r e on r a t e

    t y p i ca l homogenous fu el w s chosen and ra t e of sp read versus mois ture

    w

    26) . No a t te m pt o the r tha n t o d i sc oun t s i l i c a w s made t o d is t i ng ui sh

    e f f e c t s o f d i f f e r e n t m in e ra l s.

    F igu r e 27 i l l u s t r a t e s th e use f u lne ss o f t he m odel t o a ppr a i se f u e l

    de c i s io ns . Th i s f ig u r e shows th e change i n sp r e a d and in t e n s i ty th a t c

    i n lo gg in g s l a s h i f t were burned under no-wind and 10 pe rce nt moist ur

    v a ri o us s t a g e s i n d e c om po si ti on . The a b i l i t y o f t h e model t o p r e d i c t f

    r e f le c t ed i n f i g u r e

    7

    shou ld o f f e r new op por tun i t i e s f o r r e sour c e ma n

    f ue l m anagement i n t o r e sour c e p la nn ing a c t iv i t i e s .

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    47/48

    LITER TURE

    CITED

    Anderson, H. E .

    1968. Fi re spread and f lame shape. Fi re Tw hn ol . 4 1) :51-58.

    Anderson,

    H.

    E .

    1969. Heat t r a n s f e r and f i r e sp rea d. USDA Fo res t Ser v. Res.

    i l l u s .

    Ber lad ,

    A.

    L.

    1970. F i re spre ad i n s o l i d fu e l arr ay s. Combust . and Flame 1

    Brown,

    J K .

    1972.

    F i e ld t e s t of a ra te -of - f i re - spread model i n s l as h fu e l

    Serv. Res. Pap. INT-116, 24 p . , i l l u s .

    Countryman,

    C .

    M . M.

    A.

    Fosberg,

    R. C .

    Rothermel, and M .

    J

    Schro

    1968. F i r e we ather and f i r e be ha v io r i n the 1966 loop f i r e .

    126- 141, l u s

    Deeming,

    J

    E .

    J W .

    La nc a s te r , M. A . Fosberg, R.

    W .

    Furman, and M

    1972. The Na ti on al F i r e Danger Rocky Mountain Ra ti ng System

    Se rv . Res. Pap. RM-84, i l l u s .

    Fons,

    W .

    1946. A na ly si s of f i r e s p re a d i n l i g h t f o r e s t f u e l s .

    J

    Agr.

    i l l u s .

    Fosberg, Michael A. and Mark

    J

    Schroeder

    1971. Fine herbaceous fu el s i n f i re- da ng er ra t i ng . USDA For

    RM-185, 7 p .

    Frandsen

    W H

    1971. Fi r e spr ead through porous fue ls f rom th e con serv atio n

    and Flame 16:9-16, i l l u s .

    McArthur, A. G .

    1969. The Tasmanian bu sh fi re s of 7th February, 1967, and as so

    i o u r ch ar ac te r i st ic s . In The Technic al Co-operation P

    Symposium C an be rr a, ~ u x r a l i a 969) v . I . 23 p . Mar iby

    Defence Standards Laborator ies.

    P h i l p o t ,

    C . W .

    1968. Minera l conten t and py ro ly s i s of se le c t ed p l an t mat e r i

    Se rv . Res Note INT-84, 4 p.

    n

    w

    d

    4

     

    e

    a

    e

    o

    u

    a

    e

    b

    n

    n

    w

    d

    4

     

    e

    a

    e

    o

    u

    a

    e

    b

    n

  • 8/18/2019 A MATHEMATICAL MODEL FOR PREDICTING FIRE SPREAD IN WILDLAND FUELS

    48/48

    R

    H

    M

    E

    R

    C

    C

    1

    9

    7

    2

     

    A

    m

    h

    m

    c

    m

    o

    p

    e

    c

    n

    e

    s

    p

    e

    n

    w

    d

    l

    a

    u

    s

    U

    D

    F

    e

    S

    v

    R

    P

    N

    1

    4

     

    i

    u

    A

    m

    h

    m

    c

    e

    m

    o

    p

    e

    c

    n

    a

    e

    o

    s

    p

    e

    a

    i

    n

    e

    y

    h

    s

    a

    c

    e

    o

    a

    w

    d

    a

    o

    w

    d

    a

    u

    s

    a

    e

    r

    o

    m

    s

    p

    e

    e

    M

    e

    h

    o

    n

    p

    a

    n

    m

    i

    x

    u

    e

    o

    u

    s

    z

    a

    e

    n

    o

    b

    w

    g

    n

    n

    p

    a

    m

    e

    e

    b

    s

    u

    a

    a

    e

    T

    n

    p

    a

    m

    e

    e

    d

    n

    e

    e

    a

    p

    o

    k

    w

    e

    o

    h

    b

    n

    i

    n

    c

    a

    e

    s

    c

    o

    h

    u

    R

    H

    M

    E

    L

    R

    C

    C

    1

    9

    7

    2

     

    A

    m

    h

    m

    c

    m

    o

    p

    e

    c

    n

    e

    s

    p

    e

    n

    w

    d

    l

    a

    u

    s

    U

    D

    F

    e

    S

    w

    R

    P

    N

    1

    4

     

    i

    u

    A

    m

    h

    m

    c

    e

    m

    o

    p

    e

    c

    n

    a

    e

    o

    s

    p

    e

    a

    i

    n

    e

    y

    h

    s

    a

    c

    e

    o

    a

    w

    d

    a

    o

    w

    d

    a

    u

    s

    a

    e

    r

    o

    m

    s

    p

    e

    e

    M

    e

    h

    o

    n

    p

    a

    n

    m

    i

    x

    u

    e

    o

    u

     

    s

    z

    a

    e

    n

    o

    b

    w

    g

    n

    n

    p

    a

    m

    e

    e

    b

    s

    u

    a

    a

    e

     

    T

    n

    p

    a

    m

    e

    e

    d

    n

    e

    e

    a

    p

    o

    k

    w

    e

    o

    h

    b

    n

    i

    n

    c

    a

    e

    s

    c

    o

    h

    u

    R

    H

    M

    E

    R

    C

    C

    1

    9

    7

    2

     

    A

    m

    h

    m

    c

    m

    o

    p

    e

    c

    n

    e

    s

    p

    e

    la

    u

    s

    U

    D

    F

    e

    S

    v

    R

    P

    N

    1

    i

    u

    A

    m

    h

    m

    c

    e

    m

    o

    p

    e

    c

    n

    a

    e

    o

    s

    p

    i

    n

    e

    y

    h

    s

    a

    c

    e

    o

    a

    w

    d

    a

    o

    w

    d

    a

    u

    s

    a

    r

    o

    m

    s

    p

    e

    e

    M

    e

    h

    o

    n

    p

    a

    n

    m

    i

    x

    u

    e

    s

    z

    a

    e

    n

    o

    b

    w

    g

    n

    n

    p

    a

    m

    e

    e

    b

    s

    u

    a

    T

    n

    p

    a

    m

    e

    e

    d

    n

    e

    e

    a

    p

    o

    k

    w

    e

    o

    h

    i

    n

    c

    a

    e

    s

    c

    o

    h

    u

    R

    H

    M

    E

    R

    C

    C

    1

    9

    7

    2

     

    A

    m

    h

    m

    c

    m

    o

    p

    e

    c

    n

    e

    s

    p

    e

    la

    u

    s

    U

    D

    F

    e

    S

    v

    R

    P

    N

    1

    i

    u

    A

    m

    h

    m

    c

    e

    m

    o

    p

    e

    c

    n

    a

    e

    o

    s

    p

    i

    n

    e

    y

    h

    s

    a

    c

    e

    o

    a

    w

    d

    a

    o

    w

    d

    a

    c

    s

    a

    r

    o

    m

    s

    p

    e

    e

    M

    e

    h

    o

    n

    p

    a

    n

    m

    i

    x

    u

    e

    s

    z

    a

    e

    n

    o

    b

    w

    g

    n

    n

    p

    a

    m

    e

    e

    b

    s

    u

    a

    T

    n

    p

    a

    m

    e

    e

    d

    n

    e

    e

    a

    p

    o

    k

    w

    e

    o

    h

    i

    n

    c

    a

    e

    s

    c

    o

    h

    u