a magnetic analog of the isotope effect in cuprates

14
Ph.D. Amit Kanigel Ph.D. Rinat Ofer MSc. Yuval Lubashevsky Ph.D. Eran Amit Ph.D. Gil Drachuck ollaborators . Bazalitski-Technion . Knizhnik-Technion . Lord-ISIS . Amato-PSI . Chmaissem-ANL . Wilds-ILL . Lemmens-Braunschweig . Razzoli & M. Shi -PSI A magnetic analog of the isotope effect in cuprates Amit Keren

Upload: arlo

Post on 23-Feb-2016

54 views

Category:

Documents


0 download

DESCRIPTION

A magnetic analog of the isotope effect in cuprates. Amit Keren. Ph.D. Amit Kanigel Ph.D. Rinat Ofer MSc . Yuval Lubashevsky Ph.D. Eran Amit Ph.D. Gil Drachuck. Collaborators G. Bazalitski -Technion A. Knizhnik -Technion J. Lord-ISIS Amato-PSI O. Chmaissem -ANL Wilds-ILL - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: A  magnetic analog  of the  isotope effect  in  cuprates

Ph.D. Amit KanigelPh.D. Rinat OferMSc. Yuval LubashevskyPh.D. Eran AmitPh.D. Gil Drachuck

CollaboratorsG. Bazalitski-TechnionA. Knizhnik-TechnionJ. Lord-ISISA. Amato-PSIO. Chmaissem-ANLB. Wilds-ILLP. Lemmens-BraunschweigE. Razzoli & M. Shi -PSI

A magnetic analog of the isotope effect in cupratesAmit Keren

Page 2: A  magnetic analog  of the  isotope effect  in  cuprates

What is superconductivity?

0 10 20 30 40 50 60-18-16-14-12-10-8-6-4-202

M (e

mu

10-4

)

Temperature (K)

Tc

Magnetization Resistivity

0 20 40 60 80 1000.000

0.005

0.010

0.015

R (m

Ohm

-cm

)

Temperature (K)

Tc

Page 3: A  magnetic analog  of the  isotope effect  in  cuprates

Superconductivity

Fermions Attraction

1/ 2cT M

BCS

Isotope effect

Page 4: A  magnetic analog  of the  isotope effect  in  cuprates

2Cu3Cu

2Cu3Cu ~15%

Y

BaCu

O

What are HTSC’s? Y1Ba2Cu3Oy

< , >i j

i j

H J S S

Page 5: A  magnetic analog  of the  isotope effect  in  cuprates

B. Serin et al., Phys. Rev. 86, 162 (1952).

C. A. Reynolds et. al., Phys. Rev. 84, 691 (1950).

E. Maxwell et al., Phys. Rev. 95, 333 (1954).

• Maximum 4% variation of Tc in Sn.• The (0,0) point is important.• The is not applicable for different materials. 1/2

cT M

The Isotope Effect

Page 6: A  magnetic analog  of the  isotope effect  in  cuprates

Our motivation

We would like to change J, with no other structural changes, and see the effect on Tc.

• We will know that we changed J if TN changes.• Experimentally this is difficult but not inconceivable.

Tg

T*

TN

Tc

T

P

AFM

SG

PG

SC

To make a magnetic measurement equivalent of the isotope effect.

Page 7: A  magnetic analog  of the  isotope effect  in  cuprates

• YBa2Cu3Oy structure.

• Tetragonal at all x and y.

• 2 planes per unit cell.

• Over doping is possible.

• Tc variation of 30%.

• Valance Ca=Ba=2, La=3.

• Similar level of disorder.

6.80 6.85 6.90 6.95 7.00 7.05 7.10 7.15 7.20 7.250

20

40

60

80

(CaxLa1-x)(Ba1.75-xLa0.25+x)Cu3Oy

y

X=0.1 X=0.2 X=0.3 X=0.4

T c(K)

CLBLCO; Our Model Compound

CLBLCO allows Tcmax variations, with minimal structural changes.

Goldschmidt et al., Phys. Rev. B 48, 532 1993

Page 8: A  magnetic analog  of the  isotope effect  in  cuprates

The role of x (CaxLa1-x)(Ba1.75-xLa0.25+x)Cu3Oy

• Positive change is moving out with increasing x. • This alters the oxygen position.

+

+

Page 9: A  magnetic analog  of the  isotope effect  in  cuprates

Structural variation between families

4.0

4.5

5.0

5.5

6.0

6.5

6.4 6.6 6.8 7.0 7.23.87

3.88

3.89

3.90

3.91

3.92

Buc

klin

g an

gle

(deg

.)

y

a [A

]

x=0.1 x=0.2 x=0.3 x=0.4 Cu Cu

Oq

a

(CaxLa1-x)(Ba1.75-xLa0.25+x)Cu3Oy

• Buckling angle and distance decreases with increasing x.

Page 10: A  magnetic analog  of the  isotope effect  in  cuprates

J variations between families.

6.4 6.6 6.8 7.0 7.2 7.40.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

J~co

s2 (q)/a

14 (

a.u.

)

y

x=0.1 x=0.2 x=0.3 x=0.4

(CaxLa1-x)(Ba1.75-xLa0.25+x)Cu3Oy

< , >

2

14

cos

i ji j

H J

Ja

q

S S

• J increases with x mainly due to decreasing buckling angle.

• We will verify this by TN and Tg measurements using mSR.

Page 11: A  magnetic analog  of the  isotope effect  in  cuprates

Principals of mSR

Page 12: A  magnetic analog  of the  isotope effect  in  cuprates

Asymmetry = (F-B)/(F+B) Pz(t).

Asy

mm

etry

Time

Uniform FieldRandom Field

Time

Principals of mSR

0 200 400 6001500

2000

2500

3000

Cou

nts

Bins0 200 400 600

1500

2000

2500

3000

Cou

nts

Bins

Page 13: A  magnetic analog  of the  isotope effect  in  cuprates

• There are oscillations in the ordered phase but not in the spin glass phase.

Raw Zero Field mSR Data

0 2 4 6 8 100.00

0.05

0.10

0.15

0.20

0.25

Time msec)

(a)

T(K)= 40.2 7.4 3.8 2.1 0.37

Asy

mm

etry

Tc=33.1K

0 2 4 6 8 100.10

0.15

0.20

0.25

0.30

Asy

mm

etry

T(K)=381

379

378

377

375303

Tg

T*

TN

Tc

T

P

Page 14: A  magnetic analog  of the  isotope effect  in  cuprates

Phase Diagram of (CaxLa1-x)(Ba1.75-xLa0.25+x)Cu3Oy

6.4 6.6 6.8 7.0 7.20

20

40

60

80

180240300360420 TN,Tg Tc x

0.10.20.30.4

T N, g

, C (

K)

y

TC

Tg

TN

• The family with the highest Tcmax has the highest TN at zero doping.