a lgorithms on p arking f unctions and r elated m ultigraphs 賴俊儒 lai, chun-ju...

71
ALGORITHMS ON PARKING FUNCTIONS AND RELATED MULTIGRAPHS 賴賴賴 Lai, Chun-Ju 賴賴賴賴賴賴賴賴賴賴 [email protected]

Upload: teresa-osborne

Post on 19-Jan-2016

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

ALGORITHMS ON PARKING FUNCTIONS AND RELATED MULTIGRAPHS

賴俊儒 Lai, Chun-Ju

國家理論科學研究中心[email protected]

Page 2: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

PARKING FUNCTIONS: MODEL

n drivers try to park in n spots (1 to n) one by one.

ith driver → spot ai. Vacant → park there Occupied → park at next vacant spot.

If no spots left, then he’ll give up parking. (a1, a2,..., an) is called a parking function if all cars

are parked.

1 2 3

2

Page 3: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

PARKING FUNCTIONS: SEQUENCE

A sequence (a1,...an) is a parking function if its nondecreasing rearrangement b1 ≤ ... ≤ bn satisfies bi ≤ i for all i

[Example]

(1,3,1), (4,3,1,1), (5,3,1,1,2) are parking functions.

(2), (1,3,3), (3,5,1,2,3) are not3

Page 4: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

PARKING FUNCTIONS

n = 1, there are 1 parking functions:1

n = 2, there are 3 parking functions:11, 12, 21

n = 3, there are 16 parking functions:111, 112, 113, 121, 122, 123, 131, 132211, 212, 213, 221, 231, 311, 312, 321

4

Page 5: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

PARKING FUNCTIONS: PN

Pn := #{ Parking functions of length n }

P1 = 1, P2 = 3, P3 = 16, P4 = 125, ...

Theorem [Konheim & Weiss, 1966]

Pn = (n+1)n-1

5

Page 6: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

PARKING FUNCTIONS :PN,K

(a1, ..., an) is called k-leading if a1 = k.

Pn,k := #{ k-leading parking function of length n }

[Example]

P1,1 = 1

P2,1 = 2

P3,1 = 16

Page 7: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

PARKING FUNCTIONS : P3,K

All 16 parking functions of length 3.

111 122 211 231

112 123 212 311

113 131 213 312

121 132 221 3217

Page 8: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

PARKING FUNCTIONS : P3,1

All 16 parking functions of length 3.

111 122 211 231

112 123 212 311

113 131 213 312

121 132 221 321

P3, 1 = 8

8

Page 9: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

PARKING FUNCTIONS : P3,2

All 16 parking functions of length 3.

111 122 211 231

112 123 212 311

113 131 213 312

121 132 221 321

P3, 1 = 8 P3, 2 = 5

9

Page 10: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

PARKING FUNCTIONS : P3,3

All 16 parking functions of length 3.

111 122 211 231

112 123 212 311

113 131 213 312

121 132 221 321

P3, 1 = 8 P3, 2 = 5 P3, 3 = 3

10

Page 11: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

PARKING FUNCTIONS : PN,K

Pn,k =?

We’ll give an answer by combinatorial argument, then move on to prove more.

11

Page 12: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

ROOTED LABELED TREE

Fact: (n+1)n-1 = # { rooted labeled trees on { 0,1, ... , n } }

[Example] n = 3, we have 16 trees.

Some bijections between trees and parking functions are known, but none seems useful.

12

Page 13: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

πa(3) = 2

πa(6) = 3

πa(1) = 4

πa(5) = 5

πa(4) = 6

3

0

2

1 5

6

4

TRIPLE-LABEL ALGORITHM: IDEA

Given a labeled tree, 1. Label πa(x) to each node x according to the

Breadth First Search (BFS).

0

1 2 3

4 5 6

πa(0) = 0

πa(2) = 1

13

Page 14: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

πa(3) = 2

πa(6) = 3

πa(1) = 4

πa(5) = 5

πa(4) = 6

3

0

2

1 5

6

4

TRIPLE-LABEL ALGORITHM: IDEA

Given a labeled tree, 1. Label πa(x) to each node x according to the

Breadth First Search (BFS).2. Assign 3rd label w by the formula

w(x) = πa(parent of x) + 1

0

1 2 3

4 5 63 3 4

1 1 1

πa(0) = 0w(2) = 1w(3) = 1w(6) = 1w(1) = 3w(5) = 3w(4) = 4

πa(2) = 1

14

Page 15: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

πa(3) = 2

πa(6) = 3

πa(1) = 4

πa(5) = 5

πa(4) = 6

3

0

2

1 5

6

4

TRIPLE-LABEL ALGORITHM: IDEA

We proved that: (w(1), ...,w(n)) is the desired parking function (a1,...an)

In this case, it is (3, 1, 1, 4, 3, 1).

0

1 2 3

4 5 63 3 4

1 1 1

πa(0) = 0w(2) = 1w(3) = 1w(6) = 1w(1) = 3w(5) = 3w(4) = 4

πa(2) = 1

15

Page 16: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

TRIPLE-LABEL ALGORITHM: FORMAL

Given a parking function (a1,...an) ,For i = 1 to n, define:

1. πα(i) := #{ aj : aj < ai } { aj : aj = ai and j < i }

2. Triplet-labeled rooted tree Tα associated with

a) V(Tα) := { (0, 0, 0) } { (i, ai, πα(i)) }

b) rooted at (0, 0, 0)c) For any 2 vertices u = (i, ai; πα(i)), v = (j, aj;

πα(j)), u is a child of v if ai = πα(j) + 1.

16

Page 17: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

ENUMERATION: IDEA

Under the setting of our algorithm, we can enumerate parking functions by the leading term in a neat “autograft” method.

ParkingFunctions

k-leading

LabeledTrees

Autograft

Triple-Label Algorithm

correspond

17

Page 18: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

ENUMERATION: AUTOGRAFT

Establish a bijection

so that #{ Tn,k \ T’n,k } is easy to compute.

18

Page 19: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

AUTOGRAFT METHOD

1. Remove the subtree S := { node 1 and all its descendants }

0

4

1 3

2 5

n = 5, k = 1

19

Page 20: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

AUTOGRAFT METHOD

1. Remove the subtree S := { node 1 and all its descendants }

2. Renew the labels according to the BFS0

3

2 5

1

2 3

n = 5, k = 1

20

Page 21: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

AUTOGRAFT METHOD

1. Remove the subtree S := { node 1 and all its descendants }

2. Renew the labels according to the BFS3. Locate the node y satisfies

πa (y) = k

0

3

2 5

1

2 3

n = 5, k = 1

21

Page 22: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

AUTOGRAFT METHOD

1. Remove the subtree S := { node 1 and all its descendants }

2. Renew the labels according to the BFS3. Locate the node y satisfies

πa (y) = k

4. Re-attach S making node 1 a child of node y

0

4

1 3

2 5

1

2 3

n = 5, k = 1

22

Page 23: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

ENUMERATION: FORM

The trees in Tn,k \ T’n,k are in the form:

23

Page 24: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

ENUMERATION: FORMULA

It is easy to observe that:

A: # ways to form S. B: #{ Pk }

C: #{ Pn-k+1 }

24

Page 25: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

ENUMERATION: RESULTS

Proposition

Corollary

Corollary

2, 1

nn n nP P n

25

Page 26: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

Proposition

Theorem [Foata & Riordan, 1974]

The original proof combined 3 papers

ENUMERATION: RESULTS

26

Page 27: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

27

X-PARKING FUNCTIONS

x := (x1,...,xn) is a sequence of positive integers.

A sequence (a1,...,an) is a x-parking function if its nondecreasing rearrangement b1≤ ... ≤ bn satisfies bi ≤ x1 +...+ xi for all i

The ordinary parking function is a special case:x = (1,1,...,1)

Page 28: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

28

An equivalent definition:λ = ( λ1,..., λn ), λ1 ≥ ... ≥ λn. A sequence (a1,...,an) is a λ-parking function its nondecreasing rearrangement b1 ≤ ... ≤ bn satisfies bi ≤ λn-i+1 for all i

The ordinary parking function is a special case that λ= (n, n-1, ...,1)

Theorem [Steck 1968, Gessel 1996].

X-PARKING FUNCTIONS

11

, 1,...,

# !( 1)!

j in i

i j n

nj i

Page 29: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

29

EXPLICIT FORMULAE

However, nice explicit formulae are very few.back to the x = ( x1,...,xn ) notataion.

[Pitman, Stanley, 1986] (a, b,...,b) and two other cases.

[Yan, 1999] Two other cases, algebraically. [Yan, 2001] (a, b,..., b), combinatorially. [Kung, Yan, 2001] Goncarov Polynomials.

Arguably, (a,b,...,b)-parking functions is the best so far.

Page 30: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

30

EXPLICIT FORMULAE

However, nice explicit formulae are very few.back to the x = ( x1,...,xn ) notataion.

How about the Statistics k-leading? [Foata, Riordan, 1974] (1,1,...,1),

algebraically. [Eu, Fu, Lai, 2005] (a, b,..., b),

combinatorially.

No other results

Page 31: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

31

K-LEADING (A,1,...1) PARKING FUNCTIONS

Consider a forest with a components: Ex: a = 2, (2, 5, 9, 1, 5, 7, 2, 4, 1)

(ρ0 , , ) (ρ1, , )

(1, , ) (7, , )

(2, , )(5, , )

(3, , )

(9, , )

(8, , )

(6, , )

(4, , )

0 1

23

4 5

67

8

9 10

Page 32: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

32

K-LEADING (A,1,...1) PARKING FUNCTIONS

Consider a forest with a components: Ex: a = 2, (2, 5, 9, 1, 5, 7, 2, 4, 1)

(ρ0 , , ) (ρ1, , )

(1, , ) (7, , )

(2, , )(5, , )

(3, , )

(9, , )

(8, , )

(6, , )

(4, , )

0 1

23

4 5

67

8

9 10

11

4

2 2

7

55

9

Page 33: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

33

K-LEADING (A,1,...1) PARKING FUNCTIONS

Page 34: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

34

K-LEADING (A,B,...B) PARKING FUNCTIONS

When it comes to (a, b, ...,b)-parking functions.

Consider a forest with a components and edge-coloring.

We extract an (a, 1, ...,1)-parking function. Remainder indicates the color used.

Page 35: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

35

K-LEADING (A,1,...1) PARKING FUNCTIONS

Ex: a = 2, b=2, (2, 7, 15, 1, 8, 12, 2, 5, 1) r = (-1, 1, 1, -1, 0, 0, -1, 1, -1)

(ρ0 , , ) (ρ1, , )

(1, , ) (7, , )

(2, , )(5, , )

(3, , )

(9, , )

(8, , )

(6, , )

(4, , )

0 1

23

4 5

67

8

9 10

11

4

2 2

7

55

9

57

8

12 15

Page 36: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

36

K-LEADING (A,1,...1) PARKING FUNCTIONS

Ex: a = 2, b=2, (2, 7, 15, 1, 8, 12, 2, 5, 1) r = (-1, 1, 1, -1, 0, 0, -1, 1, -1)

(ρ0 , , ) (ρ1, , )

(1, , ) (7, , )

(2, , )(5, , )

(3, , )

(9, , )

(8, , )

(6, , )

(4, , )

0 1

23

4 5

67

8

9 10

11

2 2

57

8

12 15

( , , )66

( , , )911 ( , , )1016

Page 37: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

37

K-LEADING (A,B,...B) PARKING FUNCTIONS

Page 38: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

38

INFLATING PARKING FUNCTIONS

Take x = (1,1,...,1,a,1, ...,1) of length n, a is at the k-th position. We call it an inflating parking function.

# { IPF with a at the k-th position } = # { Pn+a-1 with the first a-1 numbers are k’s }

Page 39: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

39

INFLATING PARKING FUNCTIONS

Ex: x = (1, 1, 1, 3, 1, 1, 1, 1, 1, 1) From (5, 1, 4, 5, 1, 10, 3, 3, 7)

to (4, 4, 6, 1, 4, 6, 1, 11, 3, 3, 5)

Page 40: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

40

PARKING FUNCTION

The first few Pn, k’s are:

n Pn, 1 Pn, 2 Pn, 3 Pn, 4 Pn, 5 Pn, 6

1

2

3

4

5

6 4802 3506 2881 2401 1921 1296

1

12

8 5 3

50 34 25 16

432 307 243 189 432

Page 41: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

41

MORE THEOREMS

A

B

1

0

A

B

1

0

A

B

1

0

A

B

1

0

Page 42: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

42

0

MORE THEOREMS

The first few Pn, k’s are::

n Pn, 1 Pn, 2 Pn, 3 Pn, 4 Pn, 5 Pn, 6

1

2

3

4

5

6 4802 3506 2881 2401 1921 1296

1

12

8 5 3

50 34 25 16

432 307 243 189 432

0

0

0

0

0

1

1 1

3 32

169

125 12564 6454

1296 625 480 480 625 1296

916

Page 43: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

43

MORE THEOREMS

The first few Pn, k’s are:

The table is symmetric!

n Pn, 1 Pn, 2 Pn, 3 Pn, 4 Pn, 5Pn, 6

1 1

2 1 1

3 3 2 3

4 16 9 9 16

5 125 64 54 64 125

6 1296 625 480 480 625 1296

Page 44: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

44

MORE THEOREMS

Theorem [Eu, Fu & Lai, 2005]

Pn,k – Pn,k+1 = Pn,n-k+1 – Pn,n-k+2

Page 45: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

45

MORE THEOREMS

Pn,bk – Pn,bk+1

Pn,n-bk+a – Pn,n-bk+a+1

forest

forest

forest

forest

Choosesomething

n

Choosesomething

n

scale

Page 46: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

46

ALGORITHM

Tree(forest)

w(x) = πa(parent of x) + 1BFS

DFSParking function

x-parking function

Graph

Some ordering

G-parking function

Page 47: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

WORDS

Letters set X = { y, x1, x2, …, xj, …}

A word is a sequence of letters

A factorization of word f is a pair of words (g,h) such that f = gh, g is not empty

Weight

47

Page 48: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

WORDS: EXAMPLE

Letters Set X = { y, x }

A word f = xyyxy is of weight – 1has factorizations:

48

Page 49: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

LUKASIEWICZ WORD

A word f is called a Lukasiewicz word if

1) δ( f ) < 0

2) For any nonempty factorization ( g, h ),

δ( g ) > δ( f )

49

Page 50: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

LUKASIEWICZ WORD: EXAMPLE

1. f = xyyxy is not a Lukasiewicz word since g = xyy has δ( g ) = – 1 δ( f ) = – 1

2. f = xyxyy is a Lukasiewicz word since

1) δ( f ) = – 1 < 02) All nonempty factorizations satisfy

50

Page 51: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

CYCLE LEMMA

Theorem 2.2 [Lothaire, 1997]

If δ( f ) = – p < 0,Then f has exactly p factorizations ( g, h )such that ( h, g ) is a Lukasiewicz word.

51

Page 52: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

CYCLE LEMMA: EXAMPLE

X = { y, x, x2 } f = x2yyyxy satisfies δ( f ) = –1

By cycle lemma, there is only 1 Lukasiewicz word ( h, g ) among all factorizations:

1. yyyxyx2 : –1 → –2 → –3 → –2 → –3

2. yyxyx2y : –1 → –2 → –1 → –2 → 0

3. yxyx2yy : –1 → 0 → –1 → 1 → 0

4. xyx2yyy : 1 → 0 → 2 → 1 → 0

5. yx2yyyx : –1 → 1 → 0 → –1 → –2

6. x2yyyxy : 2 → 1 → 0 → –1 → 0

52

Page 53: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

CONJUGATES

Πn,m := { 0, 1, …, m−1 }n

Given f є Πn,m , its conjugate is a sequence obtained from f by shifted each word by the same amount (mod m).

[Example]( 0,3,7 ) є Π3,10 has 10 conjugates:

( 0,3,7 ), ( 1,4,8 ), ( 2,5,9 ), ( 3,6,0 ), ( 4,7,1 ), ( 5,8,2 ), ( 6,9,3 ), ( 7,0,4 ), ( 8,1,5 ), ( 9,2,6 ).

53

Page 54: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

CONJUGATES V.S. PARKING FUNCTIONS

Theorem 2.7 [Eu, Fu & Lai, 2010]

If m = a + bn, f = (u1,…,un) є Πn,m ,

g := yu1 xb yu2 xb … xb ym−un,then:

1. g is a Lukasiewicz word iff f є Pn(a,b)

2. #{ g є P(a,b) : g is a conjugate of f } = a

54

Page 55: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

CONJUGATES V.S. PARKING FUNCTIONS

[Example]a = 4, b = 2, n = 3, m = 10f = ( 0,3,7 ) є Π3,10 g = x2yyyx2yyyyx2yyy, δ( g ) = −4

By cycle lemma, there are 4 Lucasiewicz words

There are 4 conjugates of f being parking functions.

55

Page 56: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

COROLLARY

Corollary 2.9

#Pn(a,b) = a(a+nb)n-1

Corollary 2.10 (Symmetric Restriction)

#

56

Page 57: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

COROLLARY

Corollary 2.11 (Periodic Restriction)

If d|n, let m := n/d,then # { f є Pn

(a,b) : Cmf = f } = a(a+nb)d-1

Corollary 2.12 ( Orbits of Cn )

1. #{ Orbits of size d } =

2. #{ Orbits } = 57

Page 58: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

LAPLACIAN MATRIX

Given a graph G = ( V, E ), its Laplacian matrix

It’s an interested object in algebraic graph theory:

1. 2nd smallest Laplacian eigenvalue (μ2) is the bound of connectivity.

2. If |V| is even, μ|V| ≤ 2μ2, then G has a perfect matching.

58

Page 59: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

CRITICAL GROUP

Regard as a linear map

its cokernel

K(G) is called the critical group of graph G

In general, it is not easy to compute.

59

Page 60: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

CRITICAL GROUPS: RESULTS

Theorem 5.1 [Eu, Fu & Lai, 2010]

60

Page 61: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

ROOT SYSTEM

Given a finite dimensional real vector space E,A root system Φ is a finite subset of E satisfies:

61

Page 62: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

ROOT SYSTEM: EXAMPLE

Root System of some classical Lie algebras

Type A1 x A1 Type A2

Type B2 Type G262

Page 63: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

ROOT SYSTEM: EXAMPLE

Root System of some classical Lie algebras

Type A3 Type B3

63

Page 64: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

COXETER ARRANGEMENT

Hα,0 := { x є E: ( α, x ) = 0 }

Coxeter Arrangement := { Hα,0 : α є Φ }

α1

α2ρ

Hα1,0 Hα2,0

Hρ,0

64

Page 65: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

AFFINE COXETER ARRANGEMENT

Affine Coxeter Arrangement := { Hα,k : α є Φ, k = 0,1,…}

Shi arrangment := { Hα,k : α є Φ, k = 0, 1 }

6565

α1

α2ρ

Hα1,0

Hα2,0

Hρ,0

Hα1,1 Hα2,1

Hρ,1

Page 66: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

SHI ARRANGEMENT OF TYPE A2

66

Page 67: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

BIJECTION

67

111

112

122

113

123

121

132

131

211

213

212

312

311321

221

231

Page 68: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

COMBINATORIAL INVARIANTS

Shi arr. P. Fcns R. Lbl Trees

#regions total #total #

#dominant # increasing # unlabeled regions PFs Trees

distant sum # inversionsoperator

68

Page 69: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

BIJECITON: GENERALIZATION

Theorem [Shi]# regions in Shi arrangement = ( h + 1 )r

h = Coxter number of the root systemr = dimension of E

The total # of Shi Arr. Of type Bn, Dn, …correspond to what types of parking function?

Any reasonable bijection? 69

Page 70: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

REFERENCES

1. Athanasiadis, Generalized Catalan Numbers, Weyl Groups And Arrangements Of Hyperplanes, Bull. London Math. Soc. 36, 294–302 (2004)

2. Eu, Fu and Lai, On Enumeration of Parking Functions by Leading Numbers, Advances in Applied Mathematics 35, 392-406, (2005)

3. Eu, Fu and Lai, Cycle Lemma, Parking Functions and Related Multigraphs, Graphs and Combinatorics 26, 345-360, (2010)

70

Page 71: A LGORITHMS ON P ARKING F UNCTIONS AND R ELATED M ULTIGRAPHS 賴俊儒 Lai, Chun-Ju 國家理論科學研究中心 cjlai@ntu.edu.tw

THANK YOU

賴俊儒 Lai, Chun-Ju

國家理論科學研究中心[email protected]

71