a l c o r history of the idea extreme relativistic kinematics hadrons from quasiparticles spectral...

55
A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró , J. Zimányi †, P. Lévai, T. Csörgő, K. Ürmössy MTA KFKI RMKI Budapest, Hungary om quark combinatorics to spectral coalescen

Upload: donna-hall

Post on 29-Jan-2016

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

A L C O R

• History of the idea

• Extreme relativistic kinematics

• Hadrons from quasiparticles

• Spectral coalescence

T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő, K. ÜrmössyMTA KFKI RMKI Budapest, Hungary

From quark combinatorics to spectral coalescence

Page 2: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

A L C O R: the history

• Algebraic combinatoric rehadronization

• Nonlinear vs linear coalescence

• Transchemistry

• Recombination vs fragmentation

• Spectral coalescence

Page 3: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Quark recombination : combinatoric rehadronization

1981

Page 4: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Quark recombination : combinatoric rehadronization

Page 5: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Robust ratios for competing channels

PLB 472p. 2432000

Page 6: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Collision energy dependence in ALCOR

Page 7: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Collision energy dependence in ALCOR

100

10

0 2 4 6 8 10 leading rapidity

Sto

pp

ed

pe

r c

ent

of

ba

ryo

ns

AGS

SPS

RHICLHC

Page 8: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Collision energy dependence in ALCOR

200

100

0 2 4 6 8 10 leading rapidity

Ne

wly

pro

du

ced

lig

ht

dN

/dy

AGS

SPS

RHICLHC

Page 9: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Collision energy dependence in ALCOR

0.2

0.1

0 2 4 6 8 10 leading rapidity

K+

/ p

i+

rati

o

AGS

SPS

RHICLHC

Page 10: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

A L C O R: kinematics

• 2-particle Hamiltonian

• massless limit

• virial theorem

• coalescence cross section

Page 11: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

A L C O R: kinematics

Non-relativistic quantum mechanics problem

Page 12: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Virial theorem for Coulomb

Deformed energy addition rule

Page 13: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Test particle simulation

x

y

h(x,y) = const.

E

E

EE

13

4

2

uniform random: Y(E ) = ( h/ y) dx-1

∫0

E3

3

E

E

h=const

Page 14: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Massless kinematicsTsallis rule

Page 15: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

A special pair-energy:

E = E + E + E E / E12 1 2 1 2 c

(1 + x / a) * (1 + y / a ) = 1 + ( x + y + xy / a ) / a

Stationary distribution:

f ( E ) = A ( 1 + E / E )c

- v

Page 16: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Color balanced pair interaction

E = E + E + D12 1

color state

2

Singlet channel: hadronization

color state

D + 8 D = 0singlet octet

Octet channel: parton distribution

E = E + E - D12 1 2

singlet

E = E + E + D / 812 1 2

octet

Page 17: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Semiclassical binding:

E = E + E - D = E + E - D12 1 2

Zero mass kinematics (for small angle):

Octet channel: Tsallis distributionOctet channel: Tsallis distribution

singlet tot rel

kinkin

rel

kin E = 4 sin ( / 2)

E E

E + E

1

1 2

22

constant?

4 / E c

Singlet channel: convolution of Tsallis distributionsSinglet channel: convolution of Tsallis distributions

- D / 2virial

Coulomb

for

Page 18: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Coalescence cross section

222

2

)1( relpa

a

a: Bohr radius in Coulomb potential

Pick-up reaction in non-relativistic potential

Page 19: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Limiting temperature with Tsallis distribution

<X(E)>

N=

E – j T

TE T = E / d ;

c

cj=1

d

cH

Massless particles, d-dim. momenta, N-fold

For N 2: Tsallis partons Hagedorn hadrons

( with A. Peshier, Giessen ) hep-ph/0506132

Page 20: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Temperature vs. energy

Page 21: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Hadron mass spectrum from X(E)-folding of Tsallis

N = 2 N = 3

Page 22: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

A L C O R: quasiparticles

• continous mass spectrum

• limiting temperature

• QCD eos quasiparticle masses

• Markov type inequalities

Page 23: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

High-T behavior of ideal gases

Pressure and energy density

Page 24: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

High-T behavior of a continous mass spectrum of ideal gases

„interaction measure”

Boltzmann: f = exp(- / T) (x) = x K1(x)

Page 25: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

High-T behavior of a single mass ideal gas

„interaction measure” for a single mass M:

Boltzmann: f = exp(- / T) (0) =

Page 26: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

High-T behavior of a particular mass spectrum of ideal gases

Example: 1/m² tailed mass distribution

Page 27: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

High-T behavior of a continous mass spectrum of ideal gases

High-T limit ( µ = 0 )

Boltzmann: c = /2, Bose factor (5), Fermi factor (5)

Zwanziger PRL, Miller hep-ph/0608234 claim: (e-3p) ~ T

Page 28: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

High-T behavior of lattice eos

2

20

T

mSU(3)

Page 29: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

High-T behavior of lattice eos

hep-ph/0608234 Fig.2 8 × 32 ³

Page 30: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

High-T behavior of lattice eos

Page 31: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

High-T behavior of lattice eos

Page 32: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Lattice QCD eos + fit

TT

baTT

bac

ce

e

e

/

/

1

1

cTT76.1ln

54.01 Peshier et.al.

Biro et.al.

Page 33: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Quasiparticle mass distributionby inverting the Boltzmann integral

Inverse of a Meijer trf.: inverse imaging problem!

Page 34: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Bounds on integrated mdf

• Markov, Tshebysheff, Tshernoff, generalized

• Applied to w(m): bounds from p

• Applied to w(m;µ,T): bounds from e+p– Boltzmann: mass gap at T=0– Bose: mass gap at T=0– Fermi: no mass gap at T=0

• Lattice data

Page 35: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Markov inequality and mass gap

T and µ dependent w(m) requires mean field term,

but this is cancelled in (e+p) eos data!

Page 36: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Boltzmann scaling functions

Page 37: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

General Markov inequality

Relies on the following property of the

function g(t):

i.e.: g() is a positive, montonic growing function.

Page 38: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Markov inequality and mass gap

There is an upper bound on the integrated

probability P( M ) directly from (e+p) eos data!

Page 39: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

SU(3) LGT upper bounds

Page 40: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

2+1 QCD upper bounds

Page 41: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

A L C O R: spectral coalescence

• p-relative << p-common

• convolution of thermal distributions

• convolution of Tsallis distributions

• convolution with mass distributions

Page 42: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Idea: Continous mass distribution

• Quasiparticle picture has one definite mass, which is temperature dependent: M(T)

• We look for a distribution w(m), which may be temperature dependent

Page 43: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Why distributed mass?

valence mass hadron mass ( half or third…)

c o a l e s c e n c e : c o n v o l u t i o n

Conditions: w ( m ) is not constant zero probability for zero mass

Zimányi, Lévai, Bíró, JPG 31:711,2005

w(m)w(m) w(had-m)

Page 44: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Coalescence from Tsallis

distributed quark matter

Page 45: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,
Page 46: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,
Page 47: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,
Page 48: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,
Page 49: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Kaons

Page 50: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Recombination of Tsallis spectra at high-pT

)1(1

)1(1

)1(1)1(1

)()(

31

21

1

11

QUARKBARYON

QUARKMESON

QUARKBARYONMESON

qq

n

qq

HADRONnEQUARK

n

qq

qq

TTT

T

Eq

nT

Eq

Eff

q

Page 51: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

(q-1) is a quark coalescence

parameter

Page 52: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

Properties of quark matter from fitting quark-recombined hadron spectra

• T (quark) = 140 … 180 MeV

• q (quark) = 1.22

power = 4.5 (same as for e+e- spectra)

• v (quark) = 0 … 0.5

• Pion: near coalescence (q-1) value

Page 53: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

SQM 1996 BudapestSQM 1996 Budapest

Page 54: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

SQM 1996 BudapestSQM 1996 Budapest

Page 55: A L C O R History of the idea Extreme relativistic kinematics Hadrons from quasiparticles Spectral coalescence T.S. Bíró, J. Zimányi †, P. Lévai, T. Csörgő,

July 22, 2006, Budapest