a integrable generalized super-nls-mkdv hierarchy, its ...hierarchy and its super-hamiltonian...

10
Research Article A Integrable Generalized Super-NLS-mKdV Hierarchy, Its Self-Consistent Sources, and Conservation Laws Hanyu Wei 1 and Tiecheng Xia 2 1 College of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China 2 Department of Mathematics, Shanghai University, Shanghai 200444, China Correspondence should be addressed to Hanyu Wei; [email protected] Received 30 November 2017; Accepted 4 February 2018; Published 5 March 2018 Academic Editor: Zhijun Qiao Copyright Β© 2018 Hanyu Wei and Tiecheng Xia. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A generalized super-NLS-mKdV hierarchy is proposed related to Lie superalgebra (0, 1); the resulting supersoliton hierarchy is put into super bi-Hamiltonian form with the aid of supertrace identity. en, the super-NLS-mKdV hierarchy with self-consistent sources is set up. Finally, the infinitely many conservation laws of integrable super-NLS-mKdV hierarchy are presented. 1. Introduction e superintegrable systems have aroused strong interest in recent years; many experts and scholars do research on the field and obtain lots of results [1, 2]. In [3], the supertrace identity and the proof of its constant are given by Ma et al. As an application, super-Dirac hierarchy and super-AKNS hierarchy and its super-Hamiltonian structures have been furnished. en, like the super-C-KdV hierarchy, the super- Tu hierarchy, the multicomponent super-Yang hierarchy, and so on were proposed [4–9]. In [10], the binary nonlineariza- tion and Bargmann symmetry constraints of the super-Dirac hierarchy were given. Soliton equations with self-consistent sources have important applications in soliton theory. ey are oο¬…en used to describe interactions between different solitary waves, and they can provide variety of dynamics of physical models; some important results have been got by some scholars [11– 18]. Conservation laws play an important role in mathemati- cal physics. Since Miura et al. discovery of conservation laws for KdV equation in 1968 [19], lots of methods have been presented to find them [20–23]. In this work, a generalized super-NLS-mKdV hierarchy is constructed. en, we present the super bi-Hamiltonian form for the generalized super-NLS-mKdV hierarchy with the help of the supertrace identity. In Section 3, we consider the generalized super-NLS-mKdV hierarchy with self-consistent sources based on the theory of self-consistent sources. Finally, the conservation laws of the generalized super-NLS-mKdV hierarchy are given. 2. The Generalized Superequation Hierarchy Based on the Lie superalgebra (0, 1) 1 =( 1 0 0 0 βˆ’1 0 0 0 0 ), 2 =( 0 10 βˆ’1 0 0 0 00 ), 3 =( 010 100 000 ), 4 =( 0 0 1 0 0 0 0 βˆ’1 0 ), 5 =( 000 001 100 ); (1) Hindawi Advances in Mathematical Physics Volume 2018, Article ID 1396794, 9 pages https://doi.org/10.1155/2018/1396794

Upload: others

Post on 18-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Research ArticleA Integrable Generalized Super-NLS-mKdV Hierarchy, ItsSelf-Consistent Sources, and Conservation Laws

    HanyuWei 1 and Tiecheng Xia 2

    1College of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China2Department of Mathematics, Shanghai University, Shanghai 200444, China

    Correspondence should be addressed to Hanyu Wei; [email protected]

    Received 30 November 2017; Accepted 4 February 2018; Published 5 March 2018

    Academic Editor: Zhijun Qiao

    Copyright Β© 2018 HanyuWei and Tiecheng Xia.This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

    A generalized super-NLS-mKdV hierarchy is proposed related to Lie superalgebra 𝐡(0, 1); the resulting supersoliton hierarchy isput into super bi-Hamiltonian form with the aid of supertrace identity. Then, the super-NLS-mKdV hierarchy with self-consistentsources is set up. Finally, the infinitely many conservation laws of integrable super-NLS-mKdV hierarchy are presented.

    1. Introduction

    The superintegrable systems have aroused strong interest inrecent years; many experts and scholars do research on thefield and obtain lots of results [1, 2]. In [3], the supertraceidentity and the proof of its constant 𝛾 are given by Ma etal. As an application, super-Dirac hierarchy and super-AKNShierarchy and its super-Hamiltonian structures have beenfurnished. Then, like the super-C-KdV hierarchy, the super-Tu hierarchy, the multicomponent super-Yang hierarchy, andso on were proposed [4–9]. In [10], the binary nonlineariza-tion and Bargmann symmetry constraints of the super-Dirachierarchy were given.

    Soliton equations with self-consistent sources haveimportant applications in soliton theory. They are often usedto describe interactions between different solitary waves, andthey can provide variety of dynamics of physical models;some important results have been got by some scholars [11–18]. Conservation laws play an important role in mathemati-cal physics. Since Miura et al. discovery of conservation lawsfor KdV equation in 1968 [19], lots of methods have beenpresented to find them [20–23].

    In this work, a generalized super-NLS-mKdVhierarchy isconstructed.Then, we present the super bi-Hamiltonian formfor the generalized super-NLS-mKdVhierarchy with the helpof the supertrace identity. In Section 3, we consider thegeneralized super-NLS-mKdV hierarchy with self-consistentsources based on the theory of self-consistent sources. Finally,

    the conservation laws of the generalized super-NLS-mKdVhierarchy are given.

    2. The Generalized Superequation Hierarchy

    Based on the Lie superalgebra 𝐡(0, 1)𝑒1 = (1 0 00 βˆ’1 00 0 0) ,𝑒2 = ( 0 1 0βˆ’1 0 00 0 0) ,𝑒3 = (0 1 01 0 00 0 0) ,𝑒4 = (0 0 10 0 00 βˆ’1 0) ,𝑒5 = (0 0 00 0 11 0 0) ;

    (1)

    HindawiAdvances in Mathematical PhysicsVolume 2018, Article ID 1396794, 9 pageshttps://doi.org/10.1155/2018/1396794

    http://orcid.org/0000-0002-2668-9550http://orcid.org/0000-0001-8235-0319https://doi.org/10.1155/2018/1396794

  • 2 Advances in Mathematical Physics

    that is, along with the communicative operation[𝑒1, 𝑒2] = 2𝑒3,[𝑒1, 𝑒3] = 2𝑒2,[𝑒1, 𝑒4] = [𝑒2, 𝑒5] = [𝑒3, 𝑒5] = 𝑒4,[𝑒4, 𝑒2] = [𝑒5, 𝑒1] = [𝑒3, 𝑒4] = 𝑒5,[𝑒2, 𝑒3] = 2𝑒1,[𝑒4, 𝑒4]+ = βˆ’π‘’2 βˆ’ 𝑒3,[𝑒4, 𝑒5]+ = 𝑒1,[𝑒5, 𝑒5]+ = 𝑒3 βˆ’ 𝑒2.(2)

    To set up the generalized super-NLS-mKdV hierarchy,the spectral problem is given as follows:πœ‘π‘₯ = π‘ˆπœ‘,πœ‘π‘‘ = π‘‰πœ‘, (3)with

    π‘ˆ = ( πœ† + 𝑀 𝑒1 + 𝑒2 𝑒3𝑒1 βˆ’ 𝑒2 βˆ’πœ† βˆ’ 𝑀 𝑒4𝑒4 βˆ’π‘’3 0 ) ,𝑉 = ( 𝐴 𝐡 + 𝐢 𝜎𝐡 βˆ’ 𝐢 βˆ’π΄ 𝜌𝜌 βˆ’πœŽ 0) ,

    (4)

    where 𝑀 = πœ€((1/2)𝑒21 βˆ’ (1/2)𝑒22 + 𝑒3𝑒4) with πœ€ being anarbitrary even constant, πœ† is the spectral parameter, 𝑒1 and𝑒2 are even potentials, and 𝑒3 and 𝑒4 are odd potentials. Notethat spectral problem (3) with πœ€ = 0 is reduced to super-NLS-mKdV hierarchy case [24].

    Setting 𝐴 = βˆ‘π‘šβ‰₯0

    π‘Žπ‘šπœ†βˆ’π‘š,𝐡 = βˆ‘π‘šβ‰₯0

    π‘π‘šπœ†βˆ’π‘š,𝐢 = βˆ‘π‘šβ‰₯0

    π‘π‘šπœ†βˆ’π‘š,𝜎 = βˆ‘π‘šβ‰₯0

    πœŽπ‘šπœ†βˆ’π‘š,𝜌 = βˆ‘π‘šβ‰₯0

    πœŒπ‘šπœ†βˆ’π‘š,(5)

    solving the equation 𝑉π‘₯ = [π‘ˆ,𝑉], we haveπ‘Žπ‘šπ‘₯ = 2𝑒2π‘π‘š βˆ’ 2𝑒1π‘π‘š + 𝑒3πœŒπ‘š + 𝑒4πœŽπ‘š,π‘π‘šπ‘₯ = 2π‘π‘š+1 βˆ’ 2𝑒2π‘Žπ‘š βˆ’ 𝑒3πœŽπ‘š + 𝑒4πœŒπ‘š + 2π‘€π‘π‘š,π‘π‘šπ‘₯ = 2π‘π‘š+1 βˆ’ 2𝑒1π‘Žπ‘š βˆ’ 𝑒3πœŽπ‘š βˆ’ 𝑒4πœŒπ‘š + 2π‘€π‘π‘š,πœŽπ‘šπ‘₯ = πœŽπ‘š+1 + π‘€πœŽπ‘š + (𝑒1 + 𝑒2) πœŒπ‘š βˆ’ 𝑒3π‘Žπ‘š βˆ’ 𝑒4π‘π‘šβˆ’ 𝑒4π‘π‘š,πœŒπ‘šπ‘₯ = βˆ’πœŒπ‘š+1 βˆ’ π‘€πœŒπ‘š + 𝑒1πœŽπ‘š βˆ’ 𝑒2πœŽπ‘š βˆ’ 𝑒3π‘π‘š + 𝑒3π‘π‘š+ 𝑒4π‘Žπ‘š,(6)

    and, from the above recursion relationship, we can get therecursion operator 𝐿 which meets the following:

    ( π‘π‘š+1βˆ’π‘π‘š+1πœŒπ‘š+1βˆ’πœŽπ‘š+1)= 𝐿(π‘π‘šβˆ’π‘π‘šπœŒπ‘šβˆ’πœŽπ‘š), π‘š β©Ύ 0, (7)

    where the recursive operator 𝐿 is given as follows:𝐿 =((βˆ’π‘€ + 2𝑒1πœ•βˆ’1𝑒2 βˆ’12πœ• + 2𝑒1πœ•βˆ’1𝑒1 12𝑒4 + 𝑒1πœ•βˆ’1𝑒3 βˆ’12𝑒3 βˆ’ 𝑒1πœ•βˆ’1𝑒4βˆ’12πœ• βˆ’ 2𝑒2πœ•βˆ’1𝑒2 βˆ’π‘€ + 2𝑒2πœ•βˆ’1𝑒1 12𝑒4 βˆ’ 𝑒2πœ•βˆ’1𝑒3 12𝑒3 + 𝑒2πœ•βˆ’1𝑒4βˆ’π‘’3 + 2𝑒4πœ•βˆ’1𝑒2 βˆ’π‘’3 + 2𝑒4πœ•βˆ’1𝑒1 βˆ’πœ• βˆ’ 𝑀 + 𝑒4πœ•βˆ’1𝑒3 βˆ’π‘’1 + 𝑒2 βˆ’ 𝑒4πœ•βˆ’1𝑒4βˆ’π‘’4 βˆ’ 2𝑒3πœ•βˆ’1𝑒2 𝑒4 βˆ’ 2𝑒3πœ•βˆ’1𝑒1 𝑒1 + 𝑒2 βˆ’ 𝑒3πœ•βˆ’1𝑒3 πœ• βˆ’ 𝑀 + 𝑒3πœ•βˆ’1𝑒4

    )). (8)

    Choosing the initial dataπ‘Ž0 = 1,𝑏0 = 𝑐0 = 𝜎0 = 𝜌0 = 0, (9)from the recursion relations in (6), we can obtainπ‘Ž1 = 0,𝑏1 = 𝑒1,

    𝑐1 = 𝑒2,𝜎1 = 𝑒3,𝜌1 = 𝑒4,π‘Ž2 = βˆ’12𝑒21 + 12𝑒22 βˆ’ 𝑒3𝑒4,𝑏2 = 12𝑒2π‘₯ βˆ’ 𝑀𝑒1,

  • Advances in Mathematical Physics 3

    𝑐2 = 12𝑒1π‘₯ βˆ’ 𝑀𝑒2,𝜎2 = 𝑒3π‘₯ βˆ’ 𝑀𝑒3,𝜌2 = βˆ’π‘’4π‘₯ βˆ’ 𝑀𝑒4,π‘Ž3 = 12 (𝑒2𝑒1π‘₯ βˆ’ 𝑒1𝑒2π‘₯) + 𝑒3𝑒4π‘₯ + 𝑒4𝑒3π‘₯+ 𝑀 (𝑒21 βˆ’ 𝑒22) + 2𝑒3𝑒4,𝑏3 = 14𝑒1π‘₯π‘₯ βˆ’ 12𝑀π‘₯𝑒2 + 12𝑒1𝑒22 βˆ’ 12𝑒31 + 12𝑒3𝑒3π‘₯βˆ’ 12𝑒4𝑒4π‘₯ βˆ’ 𝑒1𝑒3𝑒4 βˆ’ 𝑀𝑒2π‘₯ + 𝑀2𝑒1,𝑐3 = 14𝑒2π‘₯π‘₯ βˆ’ 12𝑀π‘₯𝑒1 + 12𝑒32 βˆ’ 12𝑒2𝑒21 + 12𝑒3𝑒3π‘₯+ 12𝑒4𝑒4π‘₯ βˆ’ 𝑒2𝑒3𝑒4 βˆ’ 𝑀𝑒1π‘₯ + 𝑀2𝑒2,𝜎3 = 𝑒3π‘₯π‘₯ + 12𝑒3𝑒22 βˆ’ 12𝑒3𝑒21 + 12𝑒4𝑒1π‘₯ + 12𝑒4𝑒2π‘₯+ 𝑒1𝑒4π‘₯ + 𝑒2𝑒4π‘₯ βˆ’ 𝑀π‘₯𝑒3 + 𝑀2𝑒3 βˆ’ 2𝑀𝑒3π‘₯,𝜌3 = 𝑒4π‘₯π‘₯ + 12𝑒4𝑒22 βˆ’ 12𝑒4𝑒21 + 12𝑒3𝑒1π‘₯ βˆ’ 12𝑒3𝑒2π‘₯+ 𝑒1𝑒3π‘₯ βˆ’ 𝑒2𝑒3π‘₯ + 𝑀π‘₯𝑒4 + 𝑀2𝑒4 + 2𝑀𝑒4π‘₯.(10)

    Then we consider the auxiliary spectral problemπœ‘π‘‘π‘› = 𝑉(𝑛)πœ‘, (11)with

    𝑉(𝑛) = π‘›βˆ‘π‘š=0

    ( π‘Žπ‘š π‘π‘š + π‘π‘š πœŽπ‘šπ‘π‘š βˆ’ π‘π‘š βˆ’π‘Žπ‘š πœŒπ‘šπœŒπ‘š βˆ’πœŽπ‘š 0 )πœ†π‘›βˆ’π‘š + Ξ” 𝑛,𝑛 β‰₯ 0. (12)Suppose

    Ξ” 𝑛 = ( π‘Ž 𝑏 + 𝑐 𝑒𝑏 βˆ’ 𝑐 βˆ’π‘Ž 𝑓𝑓 βˆ’π‘’ 0) , (13)substituting 𝑉(𝑛) into the zero curvature equationπ‘ˆπ‘‘π‘› βˆ’ 𝑉(𝑛)π‘₯ + [π‘ˆ,𝑉(𝑛)] = 0, (14)

    where 𝑛 β‰₯ 0. Making use of (6), we have𝑀𝑑𝑛 = π‘Žπ‘₯,𝑏 = 𝑐 = 𝑒 = 𝑓 = 0,𝑒1𝑑𝑛 = 𝑏𝑛π‘₯ βˆ’ 2𝑀𝑐𝑛 + 2𝑒2π‘Žπ‘› + 𝑒3πœŽπ‘› βˆ’ 𝑒4πœŒπ‘› + 𝑏π‘₯ βˆ’ 2𝑀𝑐+ 𝑒3𝑒 βˆ’ 𝑒4𝑓 + 2𝑒2π‘Ž = 2𝑐𝑛+1 + 2𝑒2π‘Ž,𝑒2𝑑𝑛 = 𝑐𝑛π‘₯ βˆ’ 2𝑀𝑏𝑛 + 2𝑒1π‘Ž + 𝑒3πœŽπ‘› + 𝑒4πœŒπ‘› + 𝑐π‘₯ + 𝑒3𝑒+ 𝑒4𝑓 + 2𝑒1π‘Ž βˆ’ 2𝑀𝑏 = 2𝑏𝑛+1 + 2𝑒1π‘Ž,𝑒3𝑑𝑛 = πœŽπ‘›π‘₯ βˆ’ π‘€πœŽπ‘› βˆ’ 𝑒1πœŒπ‘› βˆ’ 𝑒2πœŒπ‘› + 𝑒3π‘Žπ‘› + 𝑒4𝑏𝑛 + 𝑒4𝑐𝑛+ 𝑒π‘₯ βˆ’ 𝑀𝑒 βˆ’ 𝑒1𝑓 βˆ’ 𝑒2𝑓 + 𝑒3π‘Ž + 𝑒4𝑏 + 𝑒4𝑐= πœŽπ‘›+1 + 𝑒3π‘Ž,𝑒4𝑑𝑛 = πœŒπ‘›π‘₯ + π‘€πœŒπ‘› βˆ’ 𝑒1πœŽπ‘› + 𝑒2πœŽπ‘› + 𝑒3𝑏𝑛 βˆ’ 𝑒3𝑐𝑛 βˆ’ 𝑒4π‘Žπ‘›βˆ’ 𝑒4π‘Ž + 𝑓π‘₯ + 𝑀𝑓 βˆ’ 𝑒1𝑒 + 𝑒2𝑒 + 𝑒3𝑏 βˆ’ 𝑒3𝑐= βˆ’πœŒπ‘›+1 βˆ’ 𝑒4π‘Ž,

    (15)

    which guarantees that the following identity holds true:(12𝑒22 βˆ’ 12𝑒21 + 𝑒4𝑒3)𝑑𝑛= 2𝑒2𝑏𝑛+1 βˆ’ 2𝑒1𝑐𝑛+1 βˆ’ πœŒπ‘›+1𝑒3 + 𝑒4πœŽπ‘›+1 = π‘Žπ‘›+1π‘₯. (16)Choosing π‘Ž = βˆ’πœ€π‘Žπ‘›+1, we arrive at the following generalizedsuper-NLS-mKdV hierarchy:

    𝑒𝑑𝑛 = (𝑒1𝑒2𝑒3𝑒4)𝑑𝑛 =(2𝑐𝑛+1 βˆ’ 2πœ€π‘’2π‘Žπ‘›+12𝑏𝑛+1 βˆ’ 2πœ€π‘’1π‘Žπ‘›+1πœŽπ‘›+1 βˆ’ πœ€π‘’3π‘Žπ‘›+1βˆ’πœŒπ‘›+1 + πœ€π‘’4π‘Žπ‘›+1), (17)

    where 𝑛 β‰₯ 0.The case of (17) with πœ€ = 0 is exactly the standardsupersoliton hierarchy [24].

    When 𝑛 = 1 in (17), the flow is trivial. Taking 𝑛 = 2,we can obtain second-order generalized super-NLS-mKdVequations𝑒1𝑑2 = 12𝑒2π‘₯π‘₯ + 𝑒32 βˆ’ 𝑒2𝑒21 + 𝑒3𝑒3π‘₯ + 𝑒4𝑒4π‘₯ βˆ’ 2𝑒2𝑒3𝑒4+ πœ€ (2𝑒1𝑒2𝑒2π‘₯ βˆ’ 2𝑒21𝑒1π‘₯ + 𝑒4π‘₯𝑒3𝑒1 βˆ’ 𝑒3π‘₯𝑒4𝑒1βˆ’ 2𝑒3𝑒4𝑒1π‘₯ βˆ’ 2𝑒2𝑒3𝑒4π‘₯ βˆ’ 2𝑒2𝑒4𝑒3π‘₯ βˆ’ 2𝑒2𝑒21𝑒3𝑒4+ 2𝑒32𝑒3𝑒4) + 2πœ€2𝑒2 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4)2+ 2πœ€2𝑒2 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4) (𝑒22 βˆ’ 𝑒21) ,𝑒2𝑑2 = 12𝑒1π‘₯π‘₯ βˆ’ 𝑒31 + 𝑒1𝑒22 βˆ’ 2𝑒1𝑒3𝑒4 + 𝑒3𝑒3π‘₯ βˆ’ 𝑒4𝑒4π‘₯+ πœ€ (2𝑒22𝑒2π‘₯ βˆ’ 2𝑒1𝑒2𝑒1π‘₯ βˆ’ 𝑒3π‘₯𝑒4𝑒2 + 𝑒4π‘₯𝑒3𝑒2

  • 4 Advances in Mathematical Physicsβˆ’ 2𝑒3𝑒4𝑒2π‘₯ βˆ’ 2𝑒1𝑒3𝑒4π‘₯ βˆ’ 2𝑒1𝑒4𝑒3π‘₯)βˆ’ 2πœ€2𝑒1 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4) (𝑒21 βˆ’ 𝑒22)+ 2πœ€2 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4)2 𝑒1 βˆ’ 2πœ€2𝑒1𝑒3 (𝑒21βˆ’ 𝑒22) 𝑒4,𝑒3𝑑2 = 𝑒3π‘₯π‘₯ + 12𝑒3𝑒22 βˆ’ 12𝑒3𝑒21 + 12𝑒4𝑒1π‘₯ + 12𝑒4𝑒2π‘₯+ 𝑒1𝑒4π‘₯ + 𝑒2𝑒4π‘₯ + πœ€ (12𝑒3𝑒1𝑒2π‘₯ βˆ’ 12𝑒3𝑒2𝑒1π‘₯+ 𝑒22𝑒3π‘₯ βˆ’ 𝑒21𝑒3π‘₯ + 𝑒2𝑒2π‘₯𝑒3 βˆ’ 𝑒1𝑒1π‘₯𝑒3βˆ’ 2𝑒3𝑒4𝑒3π‘₯) + πœ€2 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4)2 𝑒3βˆ’ πœ€2𝑒3 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4) (𝑒21 βˆ’ 𝑒22) ,𝑒4𝑑2 = βˆ’π‘’4π‘₯π‘₯ βˆ’ 12𝑒4𝑒22 + 12𝑒4𝑒21 + 12𝑒3𝑒2π‘₯ βˆ’ 12𝑒3𝑒1π‘₯βˆ’ 𝑒1𝑒3π‘₯ + 𝑒2𝑒3π‘₯ + πœ€ (12𝑒4𝑒2𝑒1π‘₯ βˆ’ 12𝑒4𝑒1𝑒2π‘₯βˆ’ 𝑒1𝑒1π‘₯𝑒4 + 𝑒2𝑒2π‘₯𝑒4 βˆ’ 𝑒21𝑒4π‘₯ + 𝑒22𝑒4π‘₯βˆ’ 2𝑒3𝑒4𝑒4π‘₯) βˆ’ πœ€2 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4)2 𝑒4βˆ’ πœ€2𝑒4 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4) (𝑒21 βˆ’ 𝑒22) .(18)

    From (3) and (11), one infers the following:

    𝑉(2) = (𝑉(2)11 𝑉(2)12 𝑉(2)13𝑉(2)21 βˆ’π‘‰(2)11 𝑉(2)23𝑉(2)23 βˆ’π‘‰(2)13 0 ) , (19)with 𝑉(2)11 = πœ†2 + 12𝑒22 βˆ’ 12𝑒21 βˆ’ 𝑒3𝑒4βˆ’ πœ€ (12𝑒2𝑒1π‘₯ βˆ’ 12𝑒1𝑒2π‘₯ + 𝑒4𝑒3π‘₯ + 𝑒3𝑒4π‘₯)βˆ’ 2πœ€2 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4)2 ,𝑉(2)12 = (𝑒1 + 𝑒2) πœ† + 12 (𝑒1 + 𝑒2)π‘₯βˆ’ πœ€ (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4) (𝑒1 + 𝑒2) ,

    𝑉(2)13 = 𝑒3πœ† + 𝑒3π‘₯ βˆ’ πœ€ (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4) 𝑒3,𝑉(2)21 = (𝑒1 βˆ’ 𝑒2) πœ† + 12 (𝑒2 βˆ’ 𝑒1)π‘₯+ πœ€ (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4) (𝑒2 βˆ’ 𝑒1) ,𝑉(2)23 = 𝑒4πœ† βˆ’ 𝑒4π‘₯ βˆ’ πœ€ (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4) 𝑒4.(20)

    In what follows, we shall set up super-Hamiltonianstructures for the generalized super-NLS-mKdV hierarchy.

    Through calculations, we obtain

    Str(π‘‰πœ•π‘ˆπœ•πœ† ) = 2𝐴,Str( πœ•π‘ˆπœ•π‘’1𝑉) = 2 (𝐡 + πœ€π‘’1𝐴) ,Str( πœ•π‘ˆπœ•π‘’2𝑉) = βˆ’2 (𝐢 + πœ€π‘’2𝐴) ,Str( πœ•π‘ˆπœ•π‘’3𝑉) = 2 (𝜌 + πœ€π‘’4𝐴) ,Str( πœ•π‘ˆπœ•π‘’4𝑉) = βˆ’2 (𝜎 + πœ€π‘’3𝐴) .

    (21)

    Substituting the above results into the supertrace identity[3] and balancing the coefficients of πœ†π‘›+2, we obtain𝛿𝛿𝑒 ∫ π‘Žπ‘›+2𝑑π‘₯ = (𝛾 βˆ’ 𝑛 βˆ’ 1)(

    𝑏𝑛+1 + πœ€π‘’1π‘Žπ‘›+1βˆ’π‘π‘›+1 βˆ’ πœ€π‘’2π‘Žπ‘›+1πœŒπ‘›+1 + πœ€π‘’4π‘Žπ‘›+1βˆ’πœŽπ‘›+1 βˆ’ πœ€π‘’3π‘Žπ‘›+1),𝑛 β‰₯ 0.(22)

    Thus, we have𝐻𝑛+1 = βˆ«βˆ’ π‘Žπ‘›+2𝑛 + 1𝑑π‘₯,𝛿𝐻𝑛+1𝛿𝑒 =(

    𝑏𝑛+1 + πœ€π‘’1π‘Žπ‘›+1βˆ’π‘π‘›+1 βˆ’ πœ€π‘’2π‘Žπ‘›+1πœŒπ‘›+1 + πœ€π‘’4π‘Žπ‘›+1βˆ’πœŽπ‘›+1 βˆ’ πœ€π‘’3π‘Žπ‘›+1),𝑛 β©Ύ 0.(23)

    Moreover, it is easy to find that

    ( 𝑏𝑛+1βˆ’π‘π‘›+1πœŒπ‘›+1βˆ’πœŽπ‘›+1)= 𝑅1(𝑏𝑛+1 + πœ€π‘’1π‘Žπ‘›+1βˆ’π‘π‘›+1 βˆ’ πœ€π‘’2π‘Žπ‘›+1πœŒπ‘›+1 + πœ€π‘’4π‘Žπ‘›+1βˆ’πœŽπ‘›+1 βˆ’ πœ€π‘’3π‘Žπ‘›+1), 𝑛 β©Ύ 0, (24)

    where 𝑅1 is given by

  • Advances in Mathematical Physics 5

    𝑅1 =(1 βˆ’ 2πœ€π‘’1πœ•βˆ’1𝑒2 βˆ’2πœ€π‘’1πœ•βˆ’1𝑒1 πœ€π‘’1πœ•βˆ’1𝑒3 πœ€π‘’1πœ•βˆ’1𝑒42πœ€π‘’2πœ•βˆ’1𝑒2 1 + 2πœ€π‘’2πœ•βˆ’1𝑒1 πœ€π‘’2πœ•βˆ’1𝑒3 βˆ’πœ€π‘’2πœ•βˆ’1𝑒4βˆ’2πœ€π‘’4πœ•βˆ’1𝑒2 βˆ’2πœ€π‘’4πœ•βˆ’1𝑒1 1 βˆ’ πœ€π‘’4πœ•βˆ’1𝑒3 πœ€π‘’4πœ•βˆ’1𝑒42πœ€π‘’3πœ•βˆ’1𝑒2 2πœ€π‘’3πœ•βˆ’1𝑒1 πœ€π‘’3πœ•βˆ’1𝑒3 1 βˆ’ πœ€π‘’3πœ•βˆ’1𝑒4). (25)

    Therefore, superintegrable hierarchy (17) possesses thefollowing form:

    𝑒𝑑𝑛 = 𝑅2( 𝑏𝑛+1βˆ’π‘π‘›+1πœŒπ‘›+1βˆ’πœŽπ‘›+1)= 𝑅2𝑅1(𝑏𝑛+1 + πœ€π‘’1π‘Žπ‘›+1βˆ’π‘π‘›+1 βˆ’ πœ€π‘’2π‘Žπ‘›+1πœŒπ‘›+1 + πœ€π‘’4π‘Žπ‘›+1βˆ’πœŽπ‘›+1 βˆ’ πœ€π‘’3π‘Žπ‘›+1)= 𝐽𝛿𝐻𝑛+1𝛿𝑒 , 𝑛 β‰₯ 0,

    (26)

    where

    𝑅2 =( βˆ’4πœ€π‘’2πœ•βˆ’1𝑒2 βˆ’2 βˆ’ 4πœ€π‘’2πœ•βˆ’1𝑒1 βˆ’2πœ€π‘’2πœ•βˆ’1𝑒3 2πœ€π‘’2πœ•βˆ’1𝑒42 βˆ’ 4πœ€π‘’1πœ•βˆ’1𝑒2 βˆ’4πœ€π‘’1πœ•βˆ’1𝑒1 βˆ’2πœ€π‘’1πœ•βˆ’1𝑒3 2πœ€π‘’1πœ•βˆ’1𝑒4βˆ’4πœ€π‘’3πœ•βˆ’1𝑒2 βˆ’4πœ€π‘’3πœ•βˆ’1𝑒1 βˆ’2πœ€π‘’3πœ•βˆ’1𝑒3 βˆ’1 + 2πœ€π‘’3πœ•βˆ’1𝑒42πœ€π‘’4πœ•βˆ’1𝑒2 2πœ€π‘’4πœ•βˆ’1𝑒1 βˆ’1 + πœ€π‘’4πœ•βˆ’1𝑒3 βˆ’πœ€π‘’4πœ•βˆ’1𝑒4 ), (27)

    and super-Hamiltonian operator 𝐽 is given by𝐽 = 𝑅2𝑅1 =( βˆ’8πœ€π‘’2πœ•

    βˆ’1𝑒2 βˆ’2 βˆ’ 8πœ€π‘’2πœ•βˆ’1𝑒1 βˆ’4πœ€π‘’2πœ•βˆ’1𝑒3 4πœ€π‘’2πœ•βˆ’1𝑒42 βˆ’ 8πœ€π‘’1πœ•βˆ’1𝑒2 βˆ’8πœ€π‘’1πœ•βˆ’1𝑒1 βˆ’4πœ€π‘’1πœ•βˆ’1𝑒3 4πœ€π‘’1πœ•βˆ’1𝑒4βˆ’6πœ€π‘’3πœ•βˆ’1𝑒2 βˆ’6πœ€π‘’3πœ•βˆ’1𝑒1 βˆ’3πœ€π‘’3πœ•βˆ’1𝑒3 βˆ’1 + 3πœ€π‘’3πœ•βˆ’1𝑒44πœ€π‘’4πœ•βˆ’1𝑒2 4πœ€π‘’4πœ•βˆ’1𝑒1 βˆ’1 + 2πœ€π‘’4πœ•βˆ’1𝑒3 βˆ’2πœ€π‘’4πœ•βˆ’1𝑒4 ). (28)In addition, generalized super-NLS-mKdV hierarchy (17)

    also possesses the following super-Hamiltonian form:

    𝑒𝑑𝑛 = 𝑅2𝐿( π‘π‘›βˆ’π‘π‘›πœŒπ‘›βˆ’πœŽπ‘›)= 𝑅2𝐿𝑅1(𝑏𝑛 + πœ€π‘’1π‘Žπ‘›βˆ’π‘π‘› βˆ’ πœ€π‘’2π‘Žπ‘›πœŒπ‘› + πœ€π‘’4π‘Žπ‘›βˆ’πœŽπ‘› βˆ’ πœ€π‘’3π‘Žπ‘›)=𝑀𝛿𝐻𝑛𝛿𝑒 , 𝑛 β‰₯ 0,

    (29)

    where 𝑀 = 𝑅2𝐿𝑅1 = (𝑀𝑖𝑗)4Γ—4 is the second super-Hamiltonian operator.

    3. Self-Consistent Sources

    Consider the linear system

    (πœ‘1π‘—πœ‘2π‘—πœ‘3𝑗)π‘₯ = π‘ˆ(πœ‘1π‘—πœ‘2π‘—πœ‘3𝑗),

    (πœ‘1π‘—πœ‘2π‘—πœ‘3𝑗)𝑑 = 𝑉(πœ‘1π‘—πœ‘2π‘—πœ‘3𝑗).

    (30)

    From the result in [25], we setπ›Ώπœ†π‘—π›Ώπ‘’π‘– = 13Str(Ψ𝑗 πœ•π‘ˆ (𝑒, πœ†π‘—)𝛿𝑒𝑖 ) , 𝑖 = 1, 2, . . . , 4, (31)

  • 6 Advances in Mathematical Physics

    with Str on behalf of the supertrace, and

    Ψ𝑗 = (πœ‘1π‘—πœ‘2𝑗 βˆ’πœ‘21𝑗 πœ‘1π‘—πœ‘3π‘—πœ‘22𝑗 βˆ’πœ‘1π‘—πœ‘2𝑗 πœ‘2π‘—πœ‘3π‘—πœ‘2π‘—πœ‘3𝑗 βˆ’πœ‘1π‘—πœ‘3𝑗 0 ) , 𝑗 = 1, 2, . . . , 𝑁. (32)From system (30), we get π›Ώπœ†π‘—/𝛿𝑒 as follows:π‘βˆ‘π‘—=1

    π›Ώπœ†π‘—π›Ώπ‘’π‘– = π‘βˆ‘π‘—=1((((((

    Str(Ψ𝑗 π›Ώπ‘ˆπ›Ώπ‘’1)Str(Ψ𝑗 π›Ώπ‘ˆπ›Ώπ‘’2)Str(Ψ𝑗 π›Ώπ‘ˆπ›Ώπ‘’3)Str(Ψ𝑗 π›Ώπ‘ˆπ›Ώπ‘’4)

    ))))))

    =( 2πœ€π‘’1 ⟨Φ1, Ξ¦2⟩ βˆ’ ⟨Φ1, Ξ¦1⟩ + ⟨Φ2, Ξ¦2βŸ©βˆ’2πœ€π‘’2 ⟨Φ1, Ξ¦2⟩ + ⟨Φ1, Ξ¦1⟩ + ⟨Φ2, Ξ¦2⟩2πœ€π‘’4 ⟨Φ1, Ξ¦2⟩ βˆ’ 2 ⟨Φ2, Ξ¦3⟩2πœ€π‘’3 ⟨Φ1, Ξ¦2⟩ βˆ’ 2 ⟨Φ1, Ξ¦3⟩ ) ,(33)

    where Φ𝑖 = (πœ‘π‘–1, . . . , πœ‘π‘–π‘)𝑇, 𝑖 = 1, 2, 3.So, we obtain the self-consistent sources of generalized

    super-NLS-mKdV hierarchy (17):

    𝑒𝑑𝑛 =(𝑒1𝑒2𝑒3𝑒4)𝑑𝑛 = 𝐽𝛿𝐻𝑛+1𝛿𝑒𝑖 + 𝐽 π‘βˆ‘π‘—=1π›Ώπœ†π‘—π›Ώπ‘’π‘–

    = 𝐽( 𝑏𝑛+1 + πœ€π‘’1π‘Žπ‘›+1βˆ’π‘π‘›+1 βˆ’ πœ€π‘’2π‘Žπ‘›+1πœŒπ‘›+1 + πœ€π‘’4π‘Žπ‘›+1βˆ’πœŽπ‘›+1 βˆ’ πœ€π‘’3π‘Žπ‘›+1)+ 𝐽( 2πœ€π‘’1 ⟨Φ1, Ξ¦2⟩ βˆ’ ⟨Φ1, Ξ¦1⟩ + ⟨Φ2, Ξ¦2βŸ©βˆ’2πœ€π‘’2 ⟨Φ1, Ξ¦2⟩ + ⟨Φ1, Ξ¦1⟩ + ⟨Φ2, Ξ¦2⟩2πœ€π‘’4 ⟨Φ1, Ξ¦2⟩ βˆ’ 2 ⟨Φ2, Ξ¦3⟩2πœ€π‘’3 ⟨Φ1, Ξ¦2⟩ βˆ’ 2 ⟨Φ1, Ξ¦3⟩ ) .

    (34)

    For 𝑛 = 2, we get supersoliton equation with self-consistent sources as follows:𝑒1𝑑2 = 12𝑒2π‘₯π‘₯ + 𝑒32 βˆ’ 𝑒2𝑒21 + 𝑒3𝑒3π‘₯ + 𝑒4𝑒4π‘₯ βˆ’ 2𝑒2𝑒3𝑒4+ πœ€ (2𝑒1𝑒2𝑒2π‘₯ βˆ’ 2𝑒21𝑒1π‘₯ + 𝑒4π‘₯𝑒3𝑒1 βˆ’ 𝑒3π‘₯𝑒4𝑒1βˆ’ 2𝑒3𝑒4𝑒1π‘₯ βˆ’ 2𝑒2𝑒3𝑒4π‘₯ βˆ’ 2𝑒2𝑒4𝑒3π‘₯ βˆ’ 2𝑒2𝑒21𝑒3𝑒4+ 2𝑒32𝑒3𝑒4) + 2πœ€2𝑒2 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4)2

    + 2πœ€2𝑒2 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4) (𝑒22 βˆ’ 𝑒21)+ 2πœ€π‘’1 π‘βˆ‘π‘—=1

    πœ‘1π‘—πœ‘2𝑗 βˆ’ π‘βˆ‘π‘—=1

    (πœ‘21𝑗 βˆ’ πœ‘22𝑗) ,𝑒2𝑑2 = 12𝑒1π‘₯π‘₯ βˆ’ 𝑒31 + 𝑒1𝑒22 βˆ’ 2𝑒1𝑒3𝑒4 + 𝑒3𝑒3π‘₯ βˆ’ 𝑒4𝑒4π‘₯+ πœ€ (2𝑒22𝑒2π‘₯ βˆ’ 2𝑒1𝑒2𝑒1π‘₯ βˆ’ 𝑒3π‘₯𝑒4𝑒2 + 𝑒4π‘₯𝑒3𝑒2βˆ’ 2𝑒3𝑒4𝑒2π‘₯ βˆ’ 2𝑒1𝑒3𝑒4π‘₯ βˆ’ 2𝑒1𝑒4𝑒3π‘₯)βˆ’ 2πœ€2𝑒1 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4) (𝑒21 βˆ’ 𝑒22)+ 2πœ€2 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4)2 𝑒1 βˆ’ 2πœ€2𝑒1𝑒3 (𝑒21βˆ’ 𝑒22) 𝑒4 βˆ’ 2πœ€π‘’2 π‘βˆ‘

    𝑗=1

    πœ‘1π‘—πœ‘2𝑗 + π‘βˆ‘π‘—=1

    (πœ‘21𝑗 + πœ‘22𝑗) ,𝑒3𝑑2 = 𝑒3π‘₯π‘₯ + 12𝑒3𝑒22 βˆ’ 12𝑒3𝑒21 + 12𝑒4𝑒1π‘₯ + 12𝑒4𝑒2π‘₯+ 𝑒1𝑒4π‘₯ + 𝑒2𝑒4π‘₯ + πœ€ (12𝑒3𝑒1𝑒2π‘₯ βˆ’ 12𝑒3𝑒2𝑒1π‘₯+ 𝑒22𝑒3π‘₯ βˆ’ 𝑒21𝑒3π‘₯ + 𝑒2𝑒2π‘₯𝑒3 βˆ’ 𝑒1𝑒1π‘₯𝑒3βˆ’ 2𝑒3𝑒4𝑒3π‘₯) + πœ€2 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4)2 𝑒3βˆ’ πœ€2𝑒3 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4) (𝑒21 βˆ’ 𝑒22)+ 2πœ€π‘’4 π‘βˆ‘

    𝑗=1

    πœ‘1π‘—πœ‘2𝑗 βˆ’ π‘βˆ‘π‘—=1

    πœ‘2π‘—πœ‘3𝑗,𝑒4𝑑2 = βˆ’π‘’4π‘₯π‘₯ βˆ’ 12𝑒4𝑒22 + 12𝑒4𝑒21 + 12𝑒3𝑒2π‘₯ βˆ’ 12𝑒3𝑒1π‘₯βˆ’ 𝑒1𝑒3π‘₯ + 𝑒2𝑒3π‘₯ + πœ€ (12𝑒4𝑒2𝑒1π‘₯ βˆ’ 12𝑒4𝑒1𝑒2π‘₯βˆ’ 𝑒1𝑒1π‘₯𝑒4 + 𝑒2𝑒2π‘₯𝑒4 βˆ’ 𝑒21𝑒4π‘₯ + 𝑒22𝑒4π‘₯βˆ’ 2𝑒3𝑒4𝑒4π‘₯) βˆ’ πœ€2 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4)2 𝑒4βˆ’ πœ€2𝑒4 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4) (𝑒21 βˆ’ 𝑒22)+ 2πœ€π‘’3 π‘βˆ‘π‘—=1

    πœ‘1π‘—πœ‘2𝑗 βˆ’ 2 π‘βˆ‘π‘—=1

    πœ‘1π‘—πœ‘3𝑗,πœ‘1𝑗π‘₯ = (πœ† + 𝑀) πœ‘1𝑗 + (𝑒1 + 𝑒2) πœ‘2𝑗 + 𝑒3πœ‘3𝑗,πœ‘2𝑗π‘₯ = (𝑒1 βˆ’ 𝑒2) πœ‘1𝑗 βˆ’ (πœ† + 𝑀) πœ‘2𝑗 + 𝑒4πœ‘3𝑗,πœ‘3𝑗π‘₯ = 𝑒4πœ‘1𝑗 βˆ’ 𝑒3πœ‘2𝑗, 𝑗 = 1, . . . , 𝑁.(35)

  • Advances in Mathematical Physics 7

    4. Conservation Laws

    In the following, we shall derive the conservation laws ofsupersoliton hierarchy. Introducing the variables𝐾 = πœ‘2πœ‘1 ,𝐺 = πœ‘3πœ‘1 , (36)then we obtain𝐾π‘₯ = 𝑒1 βˆ’ 𝑒2 βˆ’ 2 (πœ† + 𝑀)𝐾 + 𝑒4𝐺 βˆ’ (𝑒1 + 𝑒2)𝐾2βˆ’ 𝑒3𝐾𝐺,𝐺π‘₯ = 𝑒4 βˆ’ 𝑒3𝐾 βˆ’ (πœ† + 𝑀)𝐺 βˆ’ (𝑒1 + 𝑒2) 𝐺𝐾 βˆ’ 𝑒3𝐺2. (37)

    Next, we expand 𝐾 and 𝐺 as series of the spectralparameter πœ†

    𝐾 = βˆžβˆ‘π‘—=1

    π‘˜π‘—πœ†π‘—,𝐺 = βˆžβˆ‘π‘—=1

    π‘”π‘—πœ†π‘—. (38)Substituting (38) into (37), we raise the recursion formulas forπ‘˜π‘— and 𝑔𝑗:π‘˜π‘—+1 = βˆ’12π‘˜π‘—π‘₯ βˆ’ π‘€π‘˜π‘— + 12𝑒4𝑔𝑗 βˆ’ 12 (𝑒1 + 𝑒2) π‘—βˆ’1βˆ‘

    𝑙=1

    π‘˜π‘™π‘˜π‘—βˆ’π‘™βˆ’ 12𝑒3π‘—βˆ’1βˆ‘

    𝑙=1

    π‘˜π‘™π‘”π‘—βˆ’π‘™,𝑔𝑗+1 = βˆ’π‘”π‘—π‘₯ βˆ’ 𝑒3π‘˜π‘— βˆ’ 𝑀𝑔𝑗 βˆ’ (𝑒1 + 𝑒2) π‘—βˆ’1βˆ‘

    𝑙=1

    π‘”π‘™π‘˜π‘—βˆ’π‘™βˆ’ 𝑒3π‘—βˆ’1βˆ‘π‘™=1

    π‘”π‘™π‘”π‘—βˆ’π‘™, 𝑗 β‰₯ 2.(39)

    We write the first few terms of π‘˜π‘— and 𝑔𝑗:π‘˜1 = 12 (𝑒1 βˆ’ 𝑒2) ,𝑔1 = 𝑒4,π‘˜2 = βˆ’14 (𝑒1 βˆ’ 𝑒2) π‘₯βˆ’ 12πœ€ (𝑒1 βˆ’ 𝑒2) (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4) ,𝑔2 = βˆ’π‘’4π‘₯ βˆ’ 12 (𝑒1 βˆ’ 𝑒2) (𝑒3 + πœ€π‘’1 + πœ€π‘’2) ,

    π‘˜3 = 18 (𝑒1 βˆ’ 𝑒2)π‘₯π‘₯ βˆ’ 18 (𝑒1 + 𝑒2) (𝑒1 βˆ’ 𝑒2)2+ 14𝑀π‘₯ (𝑒1 βˆ’ 𝑒2) + 12 (𝑒1 βˆ’ 𝑒2)π‘₯ 𝑀+ 12 (𝑒1 βˆ’ 𝑒2) 𝑀2 βˆ’ 12𝑒4𝑒4π‘₯,𝑔3 = 𝑒4π‘₯π‘₯ + 12 (𝑒1 βˆ’ 𝑒2) 𝑒3π‘₯ βˆ’ 12 (𝑒21 βˆ’ 𝑒22) 𝑒4+ 34 (𝑒1 βˆ’ 𝑒2)π‘₯ 𝑒3 + 𝑀π‘₯𝑒4 + 2𝑀𝑒4π‘₯+ 𝑀 (𝑒1 βˆ’ 𝑒2) 𝑒3 + 𝑀2𝑒4, . . . .(40)

    Note that πœ•πœ•π‘‘ [πœ† + 𝑀 + (𝑒1 + 𝑒2)𝐾 + 𝑒3𝐺]= πœ•πœ•π‘₯ [𝐴 + (𝐡 + 𝐢)𝐾 + 𝜎𝐺] , (41)setting 𝛿 = πœ†+𝑀+ (𝑒1 +𝑒2)𝐾+𝑒3𝐺, πœƒ = 𝐴+ (𝐡+𝐢)𝐾+𝜎𝐺,which admitted that the conservation laws is 𝛿𝑑 = πœƒπ‘₯. For (19),one infers that𝐴 = πœ†2 + 12𝑒22 βˆ’ 12𝑒21 βˆ’ 𝑒3𝑒4,𝐡 = 𝑒1πœ† + 12𝑒2π‘₯ βˆ’ πœ€π‘’1 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4) ,𝐢 = 𝑒2πœ† + 12𝑒1π‘₯ βˆ’ πœ€π‘’2 (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4) ,𝜎 = 𝑒3πœ† + 𝑒3π‘₯ βˆ’ 12πœ€π‘’3 (𝑒21 βˆ’ 𝑒22) .

    (42)

    Expanding 𝛿 and πœƒ as𝛿 = πœ† + 𝑀 + βˆžβˆ‘

    𝑗=1

    π›Ώπ‘—πœ†βˆ’π‘—,πœƒ = πœ†2 + 12𝑒22 βˆ’ 12𝑒21 βˆ’ 𝑒3𝑒4 + βˆžβˆ‘

    𝑗=1

    πœƒπ‘—πœ†βˆ’π‘—, (43)conserved densities and currents are the coefficients 𝛿𝑗, πœƒπ‘—,respectively. The first two conserved densities and currentsare read:𝛿1 = 12 (𝑒21 βˆ’ 𝑒22) + 𝑒3𝑒4,πœƒ1 = βˆ’14 (𝑒1 + 𝑒2) (𝑒1 βˆ’ 𝑒2) π‘₯ + 14 (𝑒1 βˆ’ 𝑒2) (𝑒1 + 𝑒2)β‹… π‘₯ βˆ’ 14πœ€ (𝑒21 βˆ’ 𝑒22) (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4) βˆ’ 12 (𝑒21

  • 8 Advances in Mathematical Physics

    βˆ’ 𝑒22) (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4) βˆ’ 12πœ€ (𝑒21 βˆ’ 𝑒22) 𝑒3 βˆ’ 12β‹… πœ€ (𝑒21 βˆ’ 𝑒22) 𝑒3𝑒4 βˆ’ 𝑒3𝑒4π‘₯ + 𝑒3π‘₯𝑒4,𝛿2 = βˆ’14 (𝑒1 + 𝑒2) (𝑒2 βˆ’ 𝑒1)π‘₯ βˆ’ 12πœ€ (𝑒21 βˆ’ 𝑒22) (12𝑒21βˆ’ 12𝑒22 + 𝑒3 + 𝑒3𝑒4) βˆ’ 𝑒3𝑒4π‘₯,πœƒ2 = (𝑒1 + 𝑒2) π‘˜3 βˆ’ 14 [(𝑒1 + 𝑒2)π‘₯βˆ’ πœ€ (𝑒1 + 𝑒2) (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4)]β‹… [12 (𝑒1 βˆ’ 𝑒2) π‘₯ + (𝑒1 βˆ’ 𝑒2)Γ— (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4)] + 𝑒3𝑔3 βˆ’ [𝑒3π‘₯βˆ’ 12πœ€ (𝑒21 βˆ’ 𝑒22) 𝑒3] [𝑒4π‘₯+ 12 (𝑒1 βˆ’ 𝑒2) (𝑒3 + πœ€π‘’1 + πœ€π‘’2)] ,(44)

    where π‘˜3 and 𝑔3 are given by (40).The recursion relationshipfor 𝛿𝑗 and πœƒπ‘— is as follows:𝛿𝑗 = (𝑒1 + 𝑒2) π‘˜π‘— + 𝑒3𝑔𝑗,πœƒπ‘— = (𝑒1 + 𝑒2) π‘˜π‘—+1 + 12 [(𝑒1 + 𝑒2)π‘₯βˆ’ πœ€ (𝑒1 + 𝑒2) (12𝑒21 βˆ’ 12𝑒22 + 𝑒3𝑒4)] π‘˜π‘— + 𝑒3𝑔𝑗+1+ [𝑒3π‘₯ βˆ’ 12πœ€ (𝑒21 βˆ’ 𝑒22) 𝑒3] 𝑔𝑗,

    (45)

    where π‘˜π‘— and 𝑔𝑗 can be recursively calculated from (39). Wecan display the first two conservation laws of (18) as𝛿1𝑑 = πœƒ1π‘₯,𝛿2𝑑 = πœƒ2π‘₯, (46)where 𝛿1, πœƒ1, 𝛿2, and πœƒ2 are defined in (44). Then we canobtain the infinitely many conservation laws of (17) from(37)–(46).

    5. Conclusions

    In this work, we construct the generalized super-NLS-mKdV hierarchy with bi-Hamiltonian forms with the help ofvariational identity. Self-consistent sources and conservationlaws are also set up. In [26–29], the nonlinearization ofAKNS hierarchy and binary nonlinearization of super-AKNShierarchy were given. Can we do the binary nonlinearizationfor hierarchy (17)? The question may be investigated infurther work.

    Conflicts of Interest

    The authors declare that there are no conflicts of interestregarding the publication of this paper.

    Acknowledgments

    The project is supported by the National Natural ScienceFoundation of China (Grant nos. 11547175, 11271008, and11601055) and the Aid Project for the Mainstay Young Teach-ers in Henan Provincial Institutions of Higher Education ofChina (Grant no. 2017GGJS145).

    References

    [1] A. Roy Chowdhury and S. Roy, β€œOn the Backlund transforma-tion and Hamiltonian properties of superevaluation equations,”Journal of Mathematical Physics, vol. 27, no. 10, pp. 2464–2468,1986.

    [2] X.-B. Hu, β€œAn approach to generate superextensions of inte-grable systems,” Journal of Physics A:Mathematical andGeneral,vol. 30, no. 2, pp. 619–632, 1997.

    [3] W.-X. Ma, J.-S. He, and Z.-Y. Qin, β€œA supertrace identityand its applications to superintegrable systems,” Journal ofMathematical Physics, vol. 49, no. 3, Article ID 033511, 2008.

    [4] Y. S. Li and L. N. Zhang, β€œHamiltonian structure of the superevolution equation,” Journal ofMathematical Physics, vol. 31, no.2, pp. 470–475, 1990.

    [5] S.-X. Tao and T.-C. Xia, β€œLie algebra and lie super algebrafor integrable couplings of C-KdV hierarchy,” Chinese PhysicsLetters, vol. 27, no. 4, Article ID 040202, 2010.

    [6] X.-Z. Wang and X.-K. Liu, β€œTwo types of Lie super-algebra forthe super-integrable Tu-hierarchy and its super-Hamiltonianstructure,”Communications in Nonlinear Science andNumericalSimulation, vol. 15, no. 8, pp. 2044–2049, 2010.

    [7] F. Yu and L. Li, β€œA new matrix Lie algebra, the multicompo-nent Yang hierarchy and its super-integrable coupling system,”Applied Mathematics and Computation, vol. 207, no. 2, pp. 380–387, 2009.

    [8] H.-X. Yang and Y.-P. Sun, β€œHamiltonian and super-hamiltonianextensions related to Broer-Kaup-Kupershmidt system,” Inter-national Journal of Theoretical Physics, vol. 49, no. 2, pp. 349–364, 2010.

    [9] S. Tao and T. Xia, β€œTwo super-integrable hierarchies and theirsuper-Hamiltonian structures,” Communications in NonlinearScience and Numerical Simulation, vol. 16, no. 1, pp. 127–132,2011.

    [10] J. Yu, J. He, W. Ma, and Y. Cheng, β€œThe Bargmann symmetryconstraint and binary nonlinearization of the super Diracsystems,” Chinese Annals of Mathematics, Series B, vol. 31, no.3, pp. 361–372, 2010.

    [11] V. K. Mel’nikov, β€œIntegration of the nonlinear Schrodingerequation with a source,” Inverse Problems, vol. 8, no. 1, articleno. 009, pp. 133–147, 1992.

    [12] V. S. Shchesnovich and E. V. Doktorov, β€œModified Manakovsystem with self-consistent source,” Physics Letters A, vol. 213,no. 1-2, pp. 23–31, 1996.

    [13] T. C. Xia, β€œTwo new integrable couplings of the soliton hierar-chies with self-consistent sources,”Chinese Physics B, vol. 19, no.10, Article ID 100303, 2010.

  • Advances in Mathematical Physics 9

    [14] H.-Y. Wei and T.-C. Xia, β€œA new six-component super solitonhierarchy and its self-consistent sources and conservation laws,”Chinese Physics B, vol. 25, no. 1, Article ID 010201, 2015.

    [15] Y. Fa-Jun, β€œThemulti-function jaulent-miodek equation hierar-chy with self-consistent sources,”Chinese Physics Letters, vol. 27,no. 5, Article ID 050201, 2010.

    [16] F.-J. Yu, β€œConservation laws and self-consistent sources for asuper-classical- boussinesq hierarchy,” Chinese Physics Letters,vol. 28, no. 12, Article ID 120201, 2011.

    [17] H. Wang and T. Xia, β€œSuper Jaulent-Miodek hierarchy and itssuper Hamiltonian structure, conservation laws and its self-consistent sources,” Frontiers of Mathematics in China, vol. 9,no. 6, pp. 1367–1379, 2014.

    [18] J. Yu, W.-X. Ma, J. Han, and S. Chen, β€œAn integrable generaliza-tion of the super AKNS hierarchy and its bi-Hamiltonian for-mulation,”Communications in Nonlinear Science andNumericalSimulation, vol. 43, pp. 151–157, 2017.

    [19] R. M. Miura, C. S. Gardner, and M. . Kruskal, β€œKorteweg-deVries equation and generalizations. II. Existence of conserva-tion laws and constants of motion,” Journal of MathematicalPhysics, vol. 9, pp. 1204–1209, 1968.

    [20] M. Wadati, H. Sanuki, and K. Konno, β€œRelationships amonginverse method, Bäcklund transformation and an infinite num-ber of conservation laws,” Progress of Theoretical and Experi-mental Physics, vol. 53, no. 2, pp. 419–436, 1975.

    [21] H.Wei, T. Xia, and G. He, β€œA New Soliton Hierarchy Associatedwith so (3, R) and Its Conservation Laws,” MathematicalProblems in Engineering, vol. 2016, Article ID 3682579, 2016.

    [22] N. H. Ibragimov and T. Kolsrud, β€œLagrangian approach to evo-lution equations: Symmetries and conservation laws,”NonlinearDynamics, vol. 36, no. 1, pp. 29–40, 2004.

    [23] A. H. Kara and F.M.Mahomed, β€œRelationship between symme-tries and conservation laws,” International Journal ofTheoreticalPhysics, vol. 39, no. 1, pp. 23–40, 2000.

    [24] Q.-L. Zhao, Y.-X. Li, X.-Y. Li, and Y.-P. Sun, β€œThe finite-dimensional super integrable system of a super NLS-mKdVequation,” Communications in Nonlinear Science and NumericalSimulation, vol. 17, no. 11, pp. 4044–4052, 2012.

    [25] G. Z. Tu, β€œAn extension of a theorem on gradients of conserveddensities of integrable systems,” Northeastern MathematicalJournal, vol. 6, no. 1, pp. 28–32, 1990.

    [26] C. W. Cao, β€œNonlinearization of the Lax system for AKNShierarchy,” Science China Mathematics, vol. 33, no. 5, pp. 528–536, 1990.

    [27] C. Cao, Y.Wu, and X. Geng, β€œRelation between the Kadomtsev-Petviashvili equation and the confocal involutive system,” Jour-nal of Mathematical Physics, vol. 40, no. 8, pp. 3948–3970, 1999.

    [28] Z. J. Qiao, β€œA Bargmann system and the involutive represen-tation of solutions of the Levi hierarchy,” Journal of Physics A:Mathematical and General, vol. 26, no. 17, pp. 4407–4417, 1993.

    [29] J. He, J. Yu, Y. Cheng, and R. Zhou, β€œBinary nonlinearization ofthe super AKNS system,” Modern Physics Letters B, vol. 22, no.4, pp. 275–288, 2008.

  • Hindawiwww.hindawi.com Volume 2018

    MathematicsJournal of

    Hindawiwww.hindawi.com Volume 2018

    Mathematical Problems in Engineering

    Applied MathematicsJournal of

    Hindawiwww.hindawi.com Volume 2018

    Probability and StatisticsHindawiwww.hindawi.com Volume 2018

    Journal of

    Hindawiwww.hindawi.com Volume 2018

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawiwww.hindawi.com Volume 2018

    OptimizationJournal of

    Hindawiwww.hindawi.com Volume 2018

    Hindawiwww.hindawi.com Volume 2018

    Engineering Mathematics

    International Journal of

    Hindawiwww.hindawi.com Volume 2018

    Operations ResearchAdvances in

    Journal of

    Hindawiwww.hindawi.com Volume 2018

    Function SpacesAbstract and Applied AnalysisHindawiwww.hindawi.com Volume 2018

    International Journal of Mathematics and Mathematical Sciences

    Hindawiwww.hindawi.com Volume 2018

    Hindawi Publishing Corporation http://www.hindawi.com Volume 2013Hindawiwww.hindawi.com

    The Scientific World Journal

    Volume 2018

    Hindawiwww.hindawi.com Volume 2018Volume 2018

    Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisAdvances inAdvances in Discrete Dynamics in

    Nature and SocietyHindawiwww.hindawi.com Volume 2018

    Hindawiwww.hindawi.com

    DiοΏ½erential EquationsInternational Journal of

    Volume 2018

    Hindawiwww.hindawi.com Volume 2018

    Decision SciencesAdvances in

    Hindawiwww.hindawi.com Volume 2018

    AnalysisInternational Journal of

    Hindawiwww.hindawi.com Volume 2018

    Stochastic AnalysisInternational Journal of

    Submit your manuscripts atwww.hindawi.com

    https://www.hindawi.com/journals/jmath/https://www.hindawi.com/journals/mpe/https://www.hindawi.com/journals/jam/https://www.hindawi.com/journals/jps/https://www.hindawi.com/journals/amp/https://www.hindawi.com/journals/jca/https://www.hindawi.com/journals/jopti/https://www.hindawi.com/journals/ijem/https://www.hindawi.com/journals/aor/https://www.hindawi.com/journals/jfs/https://www.hindawi.com/journals/aaa/https://www.hindawi.com/journals/ijmms/https://www.hindawi.com/journals/tswj/https://www.hindawi.com/journals/ana/https://www.hindawi.com/journals/ddns/https://www.hindawi.com/journals/ijde/https://www.hindawi.com/journals/ads/https://www.hindawi.com/journals/ijanal/https://www.hindawi.com/journals/ijsa/https://www.hindawi.com/https://www.hindawi.com/