a convergent adaptive method for elliptic eigenvalue...

23
Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary A convergent adaptive method for elliptic eigenvalue problems Stefano Giani and Ivan G. Graham School of Mathematical Sciences University of Nottingham 14th Leslie Fox Prize Warwick, 29th June 2009

Upload: others

Post on 12-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

A convergent adaptive method for ellipticeigenvalue problems

Stefano Giani and Ivan G. Graham

School of Mathematical SciencesUniversity of Nottingham

14th Leslie Fox PrizeWarwick, 29th June 2009

Page 2: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

IntroductionPhotonic Crystal FibersModel Problem

Finite Element Methods (FEMs)Finite Element Methods (FEMs)Adaptivity

Convergence ProofThe Convergent MethodConvergence Proof

NumericsDefect modes

Summary

Page 3: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Photonic Crystal Fibers (PCFs)

Applications: communications, filters, lasers, switchersFigotin & Klein (1998), Cox & Dobson (1999), Dobson (1999), Sakoda (2001), Kuchment (2001),Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari & Santosa (2004),Joannopoulos, Johnson, Winn & Meade (2008),...

S. G.

Convergence of Adaptive Finite Element Methods for EllipticEigenvalue Problems with Applications to Photonic Crystals.

Ph.D. Thesis , University of Bath (2008)

Page 4: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Model Problem

Let Ω be a bounded polygonal domain in R2 (or a bounded

polyhedral domain in R3)

Problem: seek eigenpairs (λ,u) of the problem

−∇ · (A ∇u) = λ B u in Ω,

u = 0 on ∂Ω.

We assume that A and B are both piecewise constant on Ω andthat:

∀ξ ∈ Rd with |ξ| = 1, ∀x ∈ Ω, 0 < a ≤ ξTA(x)ξ ≤ a ,

and∀x ∈ Ω, 0 < b ≤ B(x) ≤ b .

Page 5: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Variational Formulation

Ω

A u · v dx = λ

Ω

B u v dx .

a(u, v) :=

Ω

A u · v dx ,

‖|v‖|Ω := a(v , v)1/2 ,

b(u, v) :=

Ω

B u v dx .

Variational Problem: seek eigenpairs (λ, u) ∈ R × H10(Ω) such

thata(u, v) = λb(u, v) for all v ∈ H1

0 (Ω) .

Page 6: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

The Ritz-Galerkin MethodLet Vn be a finite dimensional space such that: Vn ⊂ H1

0 (Ω):Seek eigenpairs (λn, un) ∈ R × Vn such that

a(un, vn) = λnb(un, vn) for all vn ∈ Vn .

• Tn conforming and shape regular triangulation of Ω,• Vn space of piecewise linear functions over Tn,• Sn is the set of the edges of the triangles of Tn.

Page 7: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Standard Convergence Results

For Hmaxn small enough:

|λ − λn| ≤ C2spec(H

maxn )2,

and‖|u − un‖|Ω ≤ CspecHmax

n ,

Strang & Fix (1973), Babuška & Osborn (1991)

Page 8: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Adaptivity

ηn(λn, un) :=∑

S∈Sn

ηS,n(λn, un) ,

ηn and ηS,n are explicit andcomputable.

Properties for Hmaxn small enough:

1. ‖|u − un‖|Ω ≤ Crelηn (Reliability)

2. |λ − λn| ≤ C2relηn

2 (Reliability)

3. ηn ≤ Ceff‖|u − un‖|Ω (Efficiency)

Constants Crel and Ceff are independent of Hmaxn .

Page 9: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Adaptivity

ηn(λn, un) :=∑

S∈Sn

ηS,n(λn, un) ,

ηn and ηS,n are explicit andcomputable.

Properties for Hmaxn small enough:

C−1eff ηn ≤ ‖|u − un‖|Ω ≤ Crel ηn .

Constants Crel and Ceff are independent of Hmaxn .

Page 10: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Marking Strategy 1

Set the parameter 0 < θ < 1:mark the edges (faces) in a minimal subset Sn of Sn such that

(

S∈Sn

η2S,n

)1/2

≥ θηn.

Then construct the set Tn marking all the elements sharing atleast an edge (face) in Sn.

Page 11: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Bisection5

@@

@@

@@

@@

@@

@@

@@

@@

1. Split all edges

2. Split one of the new edges

PROS:

1. A new node on each edge

2. A new node in the interior of the element

Page 12: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Adaptivity Algorithm

1. Require 0 < θ < 1, tol > 0 and T0

2. Loop

3. Compute (λn, un) on Tn

4. Marking strategy

5. Refine the mesh

6. Continue until ηn > tol.

Page 13: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Convergence for Adaptive FEMs

Convergence for Adaptive Finite Element Methods for LinearBoundary Value Problems:Dörfler (1996), Morin, Nochetto & Siebert (2000,2002), Karakashian & Pascal (2003), Mekchay & Nochetto (2005),Mommer & Stevenson (2006), Morin, Siebert & Veeser (2007), Cascon, Kreuzer Nochetto & Siebert (2008), ...

Convergence for Adaptive Finite Element Methods forEigenvalue Problems:G.& Graham (2009), Dai, Xu & Zhou (2008), Carstensen & Gedicke (2009?),Garau, Morin & Zuppa (2009)

Page 14: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Oscillations

Oscillations:

osc(vn,Tn) :=

(

τ∈Tn

‖hτ (vn − Pnvn)‖2τ

)1/2

,

where (Pnvn)|τ := 1|τ |

τ vn.

P. Morin, R. H. Nochetto, and K. G. Siebert (2000)Data oscillation and convergence of adaptive FEM.SIAM J. Numer. Anal. 38, 466-488.

Page 15: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Marking Strategy 2

Set the parameter 0 < θ < 1:mark the sides in a minimal subset Tn of Tn such that

osc(un, Tn) ≥ θ osc(un,Tn).

Then we take the union of Tn ∪ Tn and we refine all theelements in the union.

Page 16: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Adaptivity Algorithm

1. Require 0 < θ < 1, 0 < θ < 1 and T0

2. Loop

3. Compute (λn, un) on Tn

4. Marking strategy 1

5. Marking strategy 2

6. Refine the mesh

7. End Loop

Page 17: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Convergence

Theorem (Convergence Result)Provided that λ is a simple eigenvalue and that on the initialmesh Hmax

0 is small enough, there exists a constant p ∈ (0, 1)and constants C0, C1 such that the recursive application of thealgorithm yields a convergent sequence of approximateeigenvalues and eigenvectors, with the property:

‖|u − un ‖|Ω ≤ C0pn ,

|λ − λn| ≤ C20p2n ,

andosc(λnun,Tn) ≤ C1pn.

Page 18: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Error Reduction

Theorem (Error Reduction)For each θ ∈ (0, 1), exists a sufficiently fine mesh thresholdHmax

n and constants µ > 0 and α ∈ (0, 1) such that:For any ǫ > 0 then inequality

osc(un,Tn) ≤ µǫ ,

implies either‖|u − un ‖|Ω ≤ ǫ ,

or‖|u − un+1 ‖|Ω ≤ α ‖|u − un ‖|Ω .

Page 19: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Oscillations Reduction

Theorem (Oscillations Reduction)There exists a constant α ∈ (0, 1) such that:

osc(un+1,Tn+1) ≤ αosc(un,Tn) + C(Hmaxn )2 ‖|u − un ‖|Ω .

Page 20: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Defect modes (I)

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure: The structure of the supercell and the trapped mode.

Page 21: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Defect modes (II)

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure: An adapted mesh for the periodic structure with θ = θ = 0.8.

Refinement in the interior and at the corners of the inclusions.

Page 22: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Defect modes (III)

Uniform Adaptive|λ − λn| N β |λ − λn| N β

0.5858 10000 - 0.5858 10000 -0.1966 40000 0.7876 0.1225 20506 2.17910.0653 160000 0.7951 0.0579 44548 0.96590.0188 640000 0.8982 0.0078 220308 1.2541

Table: Comparison between uniform and adaptive refinement (withθ = θ = 0.8) for a trapped mode in the supercell for TE mode problem.

|λ − λn| = O(N−β), N = #DOF .

Page 23: A convergent adaptive method for elliptic eigenvalue problemscommunity.dur.ac.uk/stefano.giani/Talks/Fox_prize.pdf · Figotin & Goren (2001), Johnson & Joannopoulos (2002), Ammari

Introduction Finite Element Methods (FEMs) Convergence Proof Numerics Summary

Summary

• We prove the convergence of an adaptive finite elementmethod for elliptic eigenvalue problems,

• The proof exploits reduction results for error andoscillations,

• Consequences:• The computed approximated eigenpairs are approximation

of true eigenpairs,• For any tolerance tol > 0 the adaptive algorithm will end

after a finite number of iterations.