a chorismate mutase (cm) - plant cell filea chorismate mutase (cm) b arogenate dehydrogenase (adh)...

14
A Chorismate mutase (CM) B Arogenate dehydrogenase (ADH) Supplemental Figure 1. ML phylogenetic non-parametric bootstrap consensus analyses of CM and ADH. Trees are unrooted with arbitrary branch lengths; node labels are given as bootstrap support percentages. Taxa are colored coded as follows: pink, archaea; black, assorted eubacteria; red, diatoms; green, Plantae; teal, cyanobacteria; brown, α-proteobacteria; and orange, Bacteroidetes or Chlorobi. plants diatoms fungi archaea eubacteria cyanobacteria alpha-proteobacteria chlorobi and bacteroidetes

Upload: buikiet

Post on 04-Jul-2019

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Chorismate mutase (CM) - Plant Cell fileA Chorismate mutase (CM) B Arogenate dehydrogenase (ADH) Supplemental Figure 1. ML phylogenetic non-parametric bootstrap consensus analyses

A Chorismate mutase (CM)

B Arogenate dehydrogenase (ADH)

Supplemental Figure 1. ML phylogenetic non-parametric bootstrap consensus analyses of CM and ADH. Trees are unrooted with arbitrary branch lengths; node labels are given as bootstrap support percentages. Taxa are colored coded as follows: pink, archaea; black, assorted eubacteria; red, diatoms; green, Plantae; teal, cyanobacteria; brown, α-proteobacteria; and orange, Bacteroidetes or Chlorobi.

plants diatoms

fungi archaea

eubacteria cyanobacteria

alpha-proteobacteria chlorobi and bacteroidetes

!

Hiroshi A. Maeda
Hiroshi A. Maeda
Supplemental Data. Dornfeld et al. (2014). Plant Cell 10.1105/tpc.114.127407
Hiroshi A. Maeda
Hiroshi A. Maeda
Hiroshi A. Maeda
page 1
Page 2: A Chorismate mutase (CM) - Plant Cell fileA Chorismate mutase (CM) B Arogenate dehydrogenase (ADH) Supplemental Figure 1. ML phylogenetic non-parametric bootstrap consensus analyses

Supplemental Figure 2. PPA-AT optimal ML search trees showing estimated branch lengths. Non-parametric bootstrap support values (out of 1024 replicates) are mapped onto nodes. PPA-AT-specific clades are indicated by colored bars over relevant taxa. Taxon color-coding is the same as Figure 2 and Supplemental Figure 1 online.

PPA-AT Plantae

PPA-AT Bacteroidetes/Chlorobiplants

diatoms fungi

archaea eubacteria

cyanobacteria alpha-proteobacteria

chlorobi and bacteroidetes !

Hiroshi A. Maeda
Hiroshi A. Maeda
Supplemental Data. Dornfeld et al. (2014). Plant Cell 10.1105/tpc.114.127407
Hiroshi A. Maeda
page 2
Page 3: A Chorismate mutase (CM) - Plant Cell fileA Chorismate mutase (CM) B Arogenate dehydrogenase (ADH) Supplemental Figure 1. ML phylogenetic non-parametric bootstrap consensus analyses

A.

PPA-A

T Chlorobi/Bacteroidetes PPA-AT Plantae

plants diatoms

fungi archaea

eubacteria cyanobacteria

alpha-proteobacteria chlorobi and bacteroidetes

!

Hiroshi A. Maeda
Supplemental Data. Dornfeld et al. (2014). Plant Cell 10.1105/tpc.114.127407
Hiroshi A. Maeda
page 3
Page 4: A Chorismate mutase (CM) - Plant Cell fileA Chorismate mutase (CM) B Arogenate dehydrogenase (ADH) Supplemental Figure 1. ML phylogenetic non-parametric bootstrap consensus analyses

B.

Supplemental Figure 3. PPA-AT and ADT optimal ML search trees used for the approximately unbiased (AU) test shown in Supplemental Table 1. Estimated branch lengths are shown. Non-parametric bootstrap support values (out of 1024 replicates each) are mapped onto nodes. Taxon color-coding is the same as Figure 2 and Supplemental Figure 1 online. (A) Unconstrained PPA-AT ML phylogram. (B) Unconstrained ADT ML phylogram.

plants diatoms

fungi archaea

eubacteria cyanobacteria

alpha-proteobacteria chlorobi and bacteroidetes

!

Hiroshi A. Maeda
Supplemental Data. Dornfeld et al. (2014). Plant Cell 10.1105/tpc.114.127407
Hiroshi A. Maeda
page 4
Page 5: A Chorismate mutase (CM) - Plant Cell fileA Chorismate mutase (CM) B Arogenate dehydrogenase (ADH) Supplemental Figure 1. ML phylogenetic non-parametric bootstrap consensus analyses

(kDa)

70 55 40 35 25

15

130

T84K

169

K16

9

T84

WT

A. m

ajus

T. th

erm

ophi

lus

D. d

adan

tii

S. b

ingc

heng

gens

is

A. a

cido

cald

ariu

s

A

B

(kDa)

70 55 40 35 25

15

130

(kDa)

70 55 40 35 25

15

130

C. tepidum PPA-AT homolog

C

Supplemental Figure 4. SDS-PAGE of purified recombinant enzymes. (A) E. coli protein crude extracts expressing C. tepidum and Synechocystis PPA-AT homologs and A. thaliana PPA-AT (Lane 2) were purified to 47.2, 44.5, and 47.7 kDa proteins, respectively (Lane 3). Lane 1 represents E. coli extracts expressing an empty vector. (B) Purified recombinant proteins of the T84VK169S double mutant, the K169S and T84V single mutants, wild type of A. thaliana PPA-AT (47.7 kDa), as well as PPA-AT homologs of A. majus (47.3 kDa), T. thermophilus (45.2 kDa), D. dadantii (46.4 kDa), S. bingchenggensis (45.2 kDa), and A. acidocaldarius (45.5 kDa). (C) E. coli protein crude extract expressing C. tepidum ADT homolog (Lane 1) was purified to 34.3 kDa proteins (Lane 5). Most of the expressed C. tepidum ADT homolog was found in the pellet (Lane 3).!

1 2 3

Synechocystis PPA-AT homolog

A. thaliana PPA-AT 1 2 3

C. tepidum ADT homolog

A. thaliana PPA-AT

(kDa)

70 55 40 35 25

15

130

1 2 3

(kDa)

70 55 40

35 25

15

130

1. C

tAD

T cr

ude

2. E

mpt

y cr

ude

3. C

tAD

T pe

llet

4. E

mpt

y pe

llet

5. P

urifi

ed C

tAD

T

Hiroshi A. Maeda
Supplemental Data. Dornfeld et al. (2014). Plant Cell 10.1105/tpc.114.127407
Hiroshi A. Maeda
Hiroshi A. Maeda
page 5
Page 6: A Chorismate mutase (CM) - Plant Cell fileA Chorismate mutase (CM) B Arogenate dehydrogenase (ADH) Supplemental Figure 1. ML phylogenetic non-parametric bootstrap consensus analyses

Supplemental Figure 5. Time-dependent ADT and PDT activity of C. tepidum ADT homolog. !ADT and PDT activity of the purified recombinant C. tepidum enzyme were measured with indicated reaction times. For ADT activity, 0.5 mM arogenate substrate was incubated at 37°C with 4 μg/mL enzyme and the production of Phe was analyzed. For PDT activity, 1 mM prephenate substrate was incubated at 37°C with 37.2 μg/mL enzyme and the production of phenylpyruvate was measured. !!

0

3

6

9

12

15

0 15 30 45 60

Pro

duct

form

atio

n (µ

mol

/mg

prot

ein)

Reaction time (min)

PDT activity

ADT activity

Hiroshi A. Maeda
Supplemental Data. Dornfeld et al. (2014). Plant Cell 10.1105/tpc.114.127407
Hiroshi A. Maeda
Hiroshi A. Maeda
page 6
Page 7: A Chorismate mutase (CM) - Plant Cell fileA Chorismate mutase (CM) B Arogenate dehydrogenase (ADH) Supplemental Figure 1. ML phylogenetic non-parametric bootstrap consensus analyses

3.0

Clo_per_2

1_yre_ohR

Bra_sp._1

Fae_pra_1

Aci_sp._1

Thermus_th

ermophilus_

HB8

Lac_lac_1

1_nib_rtS

Psy_sp._1

Bac_myc_2

Myc_tub_1

Nei_sp._1

Met_bur_1

Ric_bel_1

Clo_bot_5

Geo_sp._2

Nit_sp._1

Moo_the_2

Hel_pyl_1

Aci_sac_1

Des_ole_1

Bur_am

b_1

Esc_col_1

Bif_lon_3

Fra_sp._

2

Clo_phy_1

Nit_sp._2

Ana_cac_1

Thi_cru_2

Pse_put_1

Geo_sp._1

Ana_col_1

Tur_sp._1

Oen_oen_1

Pop_tri_1

Aca_mar_1

Fus_sp._1

Met_the_1

Cam_lar_1

Clo_per_1

Bif_lon_1

Leu_mes_1

Ros_sp._1

Met_mar_1

Bac_ova_1

Deh_lyk_1

Thi_cru_1

Clo_asp_1Ph

o_pro_1

Bac_cer_12

1_alf

_leC

Bac_amy_1

Des_baa_2

1_nak_cyM

Sul_sp._1

Ric_can_1

Bif_lon_4

Bac_sp._2Fla_bac_1

Bif_bif_1

Ost_tau_1

AtAGD2

Ana_hyd_1

Str_gri_1Str_sca_1

Bac_cer_11

Des_des_1

Bac_cer_13

Pre_buc_1

Mes_lot_

1

Ast_exc_2

Bac_cer_8

Tro_whi_

1

Bif_bre_1

Tal_sti_1

Sul_del_1

Bac_xyl_1

Agr_rad_2

Hyd_sp._2

1_dad_ciD

del_pro_1

Rhi_leg_1

Aer_vir_1

Bac_pse_2

Lep_fer_1

Lac_del_1

Pol_irg_1

Ent_cas_1

Rho_sph_1

Cor_res_1

Rho_rub_1

Bac_cer_7

Rho_pal_2

Kor_alg_1

Str_ube_1

Azo_cau_1

Bac_vul_1

Pre_ori_1

Lok_ves_1

Des_mag_1

Lac_cas_2

Bif_cat_1

Syn_sp._1

Pro_stu_1

Kyt_sed_1

Des_sp._1

Cam_jej_1

Ped_sp._1

Nit_mob_2

Nat_pha_1

Bru_cet_1

Yer_ald_1

Bur_pse_1

Pse_aer_1

Com_tes_1

Sac_ery_1

AtCOR13

Bru_sui_2

Fer_pla_1

Noc_sp._1

Ver_spi_1

Ace_pas_1

Rho_pal_3

Ara_tha_4

Met_sp._1

Pyr_fur_1

Bru_sui_3

unc_bac_1

Met_ext_1

Pse_syr_1

Pse_atl_1

Aci_cal_1

The_afr_1

Bru_cet_3

Ali_den_1

Bac_cer_1

Str_coe_1

Ano_fla_1

Pep_ana_1

Ami_col_1

Ara_lyr_1

Fra_phi_1

Bac_sp._1Bur_vie_1

Bif_bif_2

Pre_mel_1

Bac_thu_1

Str_ora_1

Des_baa_

1

Pho_pro_2

Sel_spu_1

Gra_bet_1

At2G22250

Ana_var_1

Bac_dor_1Pet_mob_1

1_ic

a_il

A

Mar_aqu_1

Art_max_1

Met_eve_1

Pas_mul_1

Sal_ent_1

Met_pop_1

Bac_pse_1Lis_mon_2

Cat_mor_1

Clo_bot_2

gam_pro_2

She_pea_1

Clo_bot_

1

She_loi_1

1_oe

j_la

H

Bla_hyd_1

Zea_may_1

Hel_mod_1

Her_ser_1

The_mar_1

Bru_mel_1

Cit_sp._

1

Noc_far_1

Str_sp._1

Des_thi_1

Shu_sat_1

Bac_cer_3

The_sib_1

Can_Met_2

Bac_myc_1

Bru_sui_1

Mic_lut_1

Clo_nov_2

Pel_ber_1

Nei_sub_1

Des_pig_1

Lis_inn_1

The_kod_1

Bac_cer_4

Sal_rub_1

Str_aga_2

Her_ars_1

Rho_opa_1

Bur_pse_2

Clo_nov_1Clo_bot_4

1_da

r_ic

A

Str_sp._2

Met_tri_1

Nit_oce_1

Str_aga_1

Afi_sp._1

Fra_aln_1

Ped_sp._2

Sph_sp._1

Tri_ery_1

Kin_rad_

1

Lac_cas_1

Tre_vin_1

Mob_cur

_1

Rhi_sp._2

Yer_roh_1

Syn_sp._2

Sta_aur_1

Pyr_ars_

1

Ral_sol_1

Bac_ant_1

Dic_zea_1

Bul_ext_1

Bac_cer_2

Lee_bla_1

Sin_med_1

Nos_sp._1

Bur_amb_2

Ric_com_1

Sil_sp._1

unc_mar_1

Str_vir_1

Hyd_sp._1

Str_sal_1

Ery_lit_1

Can_tro

_1

Rho_m

ar_1

Shi_dys_1

Lis_mon_1

Met_nod_1

Aci_ave_1

Syn_aci_1

Rhi_sp._1

Eub_bif_1

Lac_cri_1

Rho_pal_1

Lis_see_1

Ric_aka_1

Ent_fae_1

Och_ant_1

Bac_uni_1

Erw_amy_1

Bac_sub_1

unc_eur_1

Geo_sp._3

Lep_fer_2

Str_sca_2

Lac_bre_1

Sid_lit_1

Bac_thu_2

Nit_mob_1

The_let_1

Bru_cet_2

Pse_flu_1

Des_fru_1

Bac_cer_6

Hae_som_1

Bac_cer_5

Fra_sp._1

Bac_cer_9

Oce_bat_1

Aqu_aeo_1

Par_joh_1

Eub_eli_1

Dor_lon_2

HsKota

Nos_pun_1

Chlorobium_tep

idum_TL

Hor_vul_1

Ato_rim_1

Clo_bot_3

Dan_rer_1

Agr_rad_1

Dor_lon_1

Bif_lon_2

Ast_exc_1

Ast_exc_3

Met_bar_1

Bac_cer_10

Moo_the_1

Ori_sin_1

Gra_ele_1

Alc_sp._1

gam_pro_1

Can_Met_1

Deh_sp._1

Met_rad_1

mar_gam

_1

Bur_sp._

1

Str_alb_1

Can_Met_3

The_pen_1

Bac_meg_1

100

100

86

100

100

77

100

100

100

08

93

100

100

100

100

100

100

100

100

93

54

100

100

100

100

100

100

79

99

100

92

100

100

100

100

64

100

100

81

100

100

100

65

100

71

90

100

99

100

100

001

100

100

73

100

100

100

100

001

78

100

100

100

100

99

100

100

100

100

100

100

100

100

100

100

100

100

60

100

100

100

97

100

100

100

100

99

100

100

69

100

100

100

83

100

100 100

100

96

100

100

100

100

75

100

100

100

100

100

100

100

54

100

80

100

100

80

100

95

93

100

100

76

100

100

100

77

100

64

100

100

100

100

10082

100

85

100

100

100

100

100

100

100

100

100

100

100

62

100

100

100

100

99

100

100

100

100

100

100

100

90

100

100

59

58

100

72

100

100

90

100

100

93

100

93

100

100

100

100

89

100

100

72

100

100

100

100

100

100

100

100

100

100100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

57

100

100

100

100

100

100

100

100

100

100

100

100

99

81

100

100

100

100

100

100

100

78

95

100

100100

100

100

100

100

100

100

100

100

100

100

65

100

100

65

80

80

100

100

100

001

81

100

98100

100

100

100

100

100

57

100

100

100

100

100

100

100

100

100

100

100

99

100

75

100

93

100

100

Thermus thermophilus (4)

Arabidopsis thaliana (1)

Chlorobium tepidum (3)

Synechocystis sp. PCC6803 (5)

Antirrhinum majus (2)

plants diatoms

fungi eubacteria

archaea α-proteobacteria

cyanobacteria chlorobi and bacteroidetes

Dickeya dadantii Ech703 (6)

Streptomyces bingchenggensis (7)

Alicyclobacillus acidocaldarius (8) Rhodothermus marinus_2

Clostridium perfringens

Functional PPA-AT homologs?

Rhodothermus marinus_1

Bacillus cereus G9842

Supplemental Figure 6. !Prediction of the transition between functional and non-functional PPA-ATs using a deep ML phylogenetic tree. The tree is unrooted with arbitrary branch lengths; node labels are given as ML consensus values. Taxa are colored coded as Figure 2. Representative PPA-AT homologs used for the recombinant enzyme characterization (numbered from one to eight) and/or the functional protein-protein association analysis (Supplemental Table 2) are indicated at the locations where they are found or can be placed (i.e., Rhodothermus marinus_1 enzyme was placed between plant and C. tepidum enzymes based on the results from Figure 2). A group of potentially functional PPA-AT homologs (based on the analysis on Supplemental Table 2) is indicated by blue arrows. !

Hiroshi A. Maeda
Supplemental Data. Dornfeld et al. (2014). Plant Cell 10.1105/tpc.114.127407
Hiroshi A. Maeda
Hiroshi A. Maeda
page 7
Page 8: A Chorismate mutase (CM) - Plant Cell fileA Chorismate mutase (CM) B Arogenate dehydrogenase (ADH) Supplemental Figure 1. ML phylogenetic non-parametric bootstrap consensus analyses

AtPPA-AT wild type

AtPPA-AT_T84V mutant

Temperature (°C)

AtPPA-AT_K169S mutant

AtPPA-AT_T84V_K169S mutant

No enzyme control

81.6 ± 0.4°C

83.1 ± 0.2°C**

82.1 ± 0.1°C

83.0 ± 0.3°C*

Supplemental Figure 7. !Representative thermo-denaturation responses of wild type and mutants of Arabidopsis PPA-AT (AtPPA-AT) enzymes. Melting temperatures (Tm) of the purified recombinant enzymes were estimated by differential scanning fluorimetry (DSF). The individual enzymes were mixed with the fluorescence dye, SYPRO orange, and the fluorescence signal was monitored during step wise increase in temperature (1°C per minute from 25 to 99°C) (Niesen et al., 2007). The Tm was calculated by non-linear regression analysis using the Boltzmann Sigmoidal equation and shown as means ± S.E. (n ≥ 3). Significantly different from the corresponding wild type value (*P<0.05, **P<0.01, Student-t test). Relatively high Tm values of the AtPPA-AT enzymes are consistent with the thermostable properties of PPA-AT activities detected in previous biochemical studies (Bonner and Jensen, 1985; Siehl et al., 1986; Bonner and Jensen, 1987; De-Eknamkul and Ellis, 1988) and are currently under investigation."

Hiroshi A. Maeda
Supplemental Data. Dornfeld et al. (2014). Plant Cell 10.1105/tpc.114.127407
Hiroshi A. Maeda
page 8
Page 9: A Chorismate mutase (CM) - Plant Cell fileA Chorismate mutase (CM) B Arogenate dehydrogenase (ADH) Supplemental Figure 1. ML phylogenetic non-parametric bootstrap consensus analyses

Supplemental Table 1.

Approximately unbiased (AU) test of ADT and PPA-AT phylogenies.

Dataset p-value PPA-AT unconstrained (Plantae PPA-AT group with bacteroidetes/chlorobi)

1.00

Plantae PPA-AT constrained with α-proteobacteria 4e-05 Plantae PPA-AT constrained with cyanobacteria 3e-08 ADT unconstrained (Plantae ADT group with bacteroidetes/chlorobi)

1.00

Plantae ADT constrained with α-proteobacteria 1e-05 Plantae ADT constrained with cyanobacteria 4e-52

The approximately unbiased (AU) test creates a distribution based on pseudo-replicates generated from the site-wise log-likelihood scores for all of the trees in the test using the multi-scale bootstrap technique (1). A p-value for each tree is then calculated based on the distribution. Trees that are rejected (p-value < 0.05) are significantly worse than trees that are not. This table contains the results of hypothesis testing of different evolutionary hypotheses for PPA-AT and ADT. In this case, the tree with the largest lnL for each hypothesis (out of 1024 search replicates each) was selected for AU testing using Consel (2). In both PPA-AT and ADT, the unconstrained trees (Supplemental Figure 3A and B online, where plants and algae clustered closest to the chlorobi/bacteroidetes) were significantly better than those clustered with either cyanobacteria or α-proteobacteria. These results provide support for PPA-AT and ADT having a chlorobi/bacteroidetes origin rather than being more likely originated from cyanobacteria or α-proteobacteria. 1. Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–

508.

2. Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinforma 17:1246–1247.

!

Hiroshi A. Maeda
Supplemental Data. Dornfeld et al. (2014). Plant Cell 10.1105/tpc.114.127407
Hiroshi A. Maeda
page 9
Page 10: A Chorismate mutase (CM) - Plant Cell fileA Chorismate mutase (CM) B Arogenate dehydrogenase (ADH) Supplemental Figure 1. ML phylogenetic non-parametric bootstrap consensus analyses

Supplemental Table 2. Functional protein association prediction of PPA-AT homologs. Top three candidate proteins that are functionally associated with potential PPA-AT homologs were identified by STRING (http://string-db.org/). Proteins involved in Phe or Tyr biosynthesis are shown in blue. The dotted blue line denotes a predicted transition between functional and non-functional PPA-ATs.

Organism Query protein Predicted functional partners

Arabidopsis thaliana NP_565529.1 AT5G57850 aminotransferase class IV family proteinAT3G53580 diaminopimelate epimerase family proteinAT5G13520 peptidase M1 family protein

Rhodothermus marinus_1 ZP_04423142.1 Rmar_0633 prephenate dehydrataseRmar_2129 Glu/Leu/Phe/Val dehydrogenaseRmar_1803 Prephenate dehydrogenase

Chloribium tepidum NP_661859.1 pheA prephenate dehydratasemdh malate dehydrogenasegdhA glutamate dehydrogenase

Thermus thermophilus YP_143312.1 ldh L-lactate dehydrogenaseTTHA1104 prephenate dehydratase ask aspartate kinase

Synechocystis 6803 NP_442191.1 mdh malate dehydrogenasepheA prephenate dehydratasegdhA glutamate dehydrogenase

Dickeya Dadantii YP_002987080.1 Dd703_1230 Glu/Leu/Phe/Val dehydrogenaseDd703_2853 chorismate mutaseDd703_3765 delta-1-pyrroline-5-carboxylate dehydrogenase

Alicyclobacillus acidocaldarius ZP_03494134.1 Aaci_2663 transcriptional regulator, AsnC familyAaci_1893 diaminopimelate epimerase Aaci_2662 protein of unknown function DUF322

Clostridium perfringens NP_562823.1 dapH tetrahydrodipicolinate succinylasemalA dipeptidase PepVCPE1908 cob(I)alamin adenosyltransferase

Bacillus cereus G9842 YP_002448463.1 BCG9842_B0200 transcriptional regulator, AsnC familyBCG9842_B0199 D-isomer specific 2-hydroxyacid dehydrogenase family proteincoaD phosphopantetheine adenylyltransferase

Rhodothermus marinus_2 YP_003290582.1 Rmar_0755 diaminopimelate epimeraseRmar_1657 dihydrodipicolinate reductaseRmar_1658 dihydrodipicolinate synthase

Hiroshi A. Maeda
Supplemental Data. Dornfeld et al. (2014). Plant Cell 10.1105/tpc.114.127407
Hiroshi A. Maeda
page 10
Page 11: A Chorismate mutase (CM) - Plant Cell fileA Chorismate mutase (CM) B Arogenate dehydrogenase (ADH) Supplemental Figure 1. ML phylogenetic non-parametric bootstrap consensus analyses

Supplemental Table 3. Aminotransferase activities of PPA-AT homologs with different keto acid acceptors shown in Figure 4B.

4-hydroxyprephenate α-ketoglutarate phenylpyruvate phenylpyruvate

(1) A. thaliana (AtPPA-AT) 295.4 ± 21.4 311.2 ± 9.1 N.D. N.D.(2) A. majus 308.9 ± 3.9 353.8 ± 5.2 N.D. N.D.(3) C. tepidum 241.7 ± 2.4 237.5 ± 6.1 N.D. N.D.(4) T. thermophilus 43.2 ± 8.6 79.9 ± 23.4 0.02 ± 0.01 N.D.(5) Synechocystis 6803 2.6 ± 0.0 202.1 ± 0.7 N.D. N.D.(6) D. dadantii 0.99 ± 0.01 45.5 ± 0.3 N.D. N.D.(7) S. bingchenggensis 0.14 ± 0.00 12.9 ± 0.1 0.65 ± 0.02 0.43 ± 0.08(8) A. acidocaldarius N.D. 4.5 ± 0.1 2.7 ± 0.1 0.65 ± 0.05

Activities were measured in 15 min reactions at 37°C using 1 mM keto acid substrate, 5 mM aspartate amino donor, and 200 µM PLP cofactor.Different enzyme concentrations were used, so that activity was proportional to enzyme concentration.Activities (nmol s-1 mg protein-1) are shown as means ± S.E (n ≥ 3).N.D., Not detectable or below detection limit (< 0.01 nmol s-1 mg protein-1)

Hiroshi A. Maeda
Supplemental Data. Dornfeld et al. (2014). Plant Cell 10.1105/tpc.114.127407
Hiroshi A. Maeda
page 11
Page 12: A Chorismate mutase (CM) - Plant Cell fileA Chorismate mutase (CM) B Arogenate dehydrogenase (ADH) Supplemental Figure 1. ML phylogenetic non-parametric bootstrap consensus analyses

Supplemental Table 4. PPA-AT, Asp-AT, and HPP-AT activities of A. thaliana PPA-AT wild type and mutants with different amino donors shown in Figure 6.

Aspartate Alanine Tryptophan

PPA-AT activityAtPPA-AT_WT 324.7 ± 29.0 0.29 ± 0.02 0.12 ± 0.02AtPPA-AT_T84V 66.9 ± 2.33 1.01 ± 0.08 0.89 ± 0.33AtPPA-AT_K169S 78.9 ± 4.38 1.18 ± 0.01 1.01 ± 0.36AtPPA-AT_T84VK169S N.D. N.D. N.D.

Asp-AT activityAtPPA-AT_WT 502.1 ± 10.6 N.D. N.D.AtPPA-AT_T84V 123.9 ± 7.6 0.87 ± 0.37 1.56 ± 0.59AtPPA-AT_K169S 145.1 ± 2.4 1.46 ± 0.11 1.84 ± 0.68AtPPA-AT_T84VK169S 0.81 ± 0.13 0.97 ± 0.03 1.05 ± 0.01

HPP-AT activityAtPPA-AT_WT N.D. 0.08 ± 0.01 N.D.AtPPA-AT_T84V 2.14 ± 0.30 0.66 ± 0.06 0.27 ± 0.07AtPPA-AT_K169S 2.30 ± 0.43 0.84 ± 0.05 0.30 ± 0.04AtPPA-AT_T84VK169S 0.36 ± 0.12 76.7 ± 11.2 123.3 ± 16.0

Activities were measured in 10 min reactions at 37°C using 3 mM keto acid substrate, 20 mM aspartateamino donor, and 200 µM PLP cofactor. Different enzyme concentrations (0.5 to 20 µg/mL) were used, so that activity was proportional to enzyme concentration.Activities (nmol s-1 mg protein-1) are shown as means ± S.E (n = 3).N.D., Not detectable or below detection limit (< 0.01 nmol s-1 mg protein-1)

Hiroshi A. Maeda
Supplemental Data. Dornfeld et al. (2014). Plant Cell 10.1105/tpc.114.127407
Hiroshi A. Maeda
Hiroshi A. Maeda
page 12
Hiroshi A. Maeda
Page 13: A Chorismate mutase (CM) - Plant Cell fileA Chorismate mutase (CM) B Arogenate dehydrogenase (ADH) Supplemental Figure 1. ML phylogenetic non-parametric bootstrap consensus analyses

Supplemental Table 5. Primer sequences used for cloning. A. majus PPA-AT homologs

Forward: 5’- CCATATGGCAGTATTGAAAACAGAGAAA -3’ Reverse: 5’- CGGATCCTTAGAGAGGAGCAGCAGGCT -3’

C. tepidum PPA-AT homologs

Forward: 5’- CACCATGAGCGTAGAGAGCTTTG -3’ Reverse: 5’- TTAACTGAACGCTTTTCTGATGC -3’

T. thermophilus PPA-AT homologs

Forward: 5’- CACCATGCGCGGCCTTTCCC -3’ Reverse: 5’- TTTCTAGGCGCGCCCCAG -3’

Synechocystis sp. PCC6803 PPA-AT homologs

Forward: 5’- CGCGCGGCAGCCATATGCGACTAACCCAGCGA -3’ Reverse: 5’- GACGGAGCTCGAATTCTCAAGCCAAAGTGCTGACAA -3’

D. dadantii Ech703 PPA-AT homologs

Forward: 5’- CGCGCGGCAGCCATATGAGAAGCGTAGCCGATC -3’ Reverse: 5’- GCTCGAATTCGGATCCTCATGATGCCTCCTGTTGC -3’

S. bingchenggensis PPA-AT homologs

Forward: 5’- CGCGCGGCAGCCATATGAATTCCACACTCGATCT -3’ Reverse: 5’- GACGGAGCTCGAATTCTCAGTTGCTTTGCACGGT -3’

A. acidocaldarius PPA-AT homologs

Forward: 5’-CGCGCGGCAGCCATATGAACACGCTGTATGACC-3’ Reverse: 5’-GACGGAGCTCGAATTCCTATCTCACCGGGTGATAC-3’

C. tepidum ADT homologs Forward: 5’- CACCATGACAAACTGGTTGATCG -3’ Reverse: 5’- TCGTCATGGATTCACCACCC -3’

Hiroshi A. Maeda
Supplemental Data. Dornfeld et al. (2014). Plant Cell 10.1105/tpc.114.127407
Hiroshi A. Maeda
Hiroshi A. Maeda
page 13
Page 14: A Chorismate mutase (CM) - Plant Cell fileA Chorismate mutase (CM) B Arogenate dehydrogenase (ADH) Supplemental Figure 1. ML phylogenetic non-parametric bootstrap consensus analyses

Supplemental References:

Bonner CA, Jensen RA (1985) Novel features of prephenate aminotransferase from cell cultures

of Nicotiana silvestris. Arch. Biochem. Biophys. 238: 237–246

Bonner CA, Jensen RA (1987) A selective assay for prephenate aminotransferase activity in

suspension-cultured cells of Nicotiana silvestris. Planta 172: 417–423

De-Eknamkul W, Ellis BE (1988) Purification and characterization of prephenate

aminotransferase from Anchusa officinalis cell cultures. Arch. Biochem. Biophys. 267: 87–

94

Nakai T, Okada K, Akutsu S, Miyahara I, Kawaguchi S, Kato R, Kuramitsu S, Hirotsu K

(1999) Structure of Thermus thermophilus HB8 aspartate aminotransferase and its complex

with maleate. Biochemistry (Mosc) 38: 2413–2424

Niesen FH, Berglund H, Vedadi M (2007) The use of differential scanning fluorimetry to detect

ligand interactions that promote protein stability. Nat. Protoc. 2: 2212–2221

Siehl DL, Connelly JA, Conn EE (1986) Tyrosine biosynthesis in Sorghum bicolor:

characteristics of prephenate aminotransferase. Z. Naturforschung C- J Biosci 41: 79–86

Hiroshi A. Maeda
Supplemental Data. Dornfeld et al. (2014). Plant Cell 10.1105/tpc.114.127407
Hiroshi A. Maeda
page 14