a challenge for society international perspectives and ... · a challenge for society international...

25
A Challenge for Society International Perspectives and Energy Futures Pathways to Sustainable D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 1 Energy Futures David H. Marks Goulder Family Professor of Engineering Systems and Civil and Environmental Engineering MIT

Upload: ngocong

Post on 03-Dec-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

A Challenge for Society

International Perspectives and Energy Futures

Pathways to Sustainable

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 1

Pathways to Sustainable Energy Futures

David H. MarksGoulder Family Professor of Engineering Systems and

Civil and Environmental EngineeringMIT

Preamble

• The Argument about the existance of Climate Change is about over. It has shifted to what the damages will be, what to do about it, who gets hurt, and how fast to move.

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 2

move.

• The Pathways to a Sustainable Energy Future rest on but are not totally driven by Climate Change however. We will need to think about Social Impacts, Energy Security and Environmental Impacts in evolving plans for the future.

What Do We Know about Climate Change?

- CO2 concentration is rising due to fossil fuel use

- The global temperature is increasing - other indicators of climate change

- There is a plausible causal connection - but the scientific case is not overwhelming (natural variability, forcings)

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 3

- Impacts of higher CO2 quite uncertain- ~ 2X pre-industrial is a widely discussed stabilization target (550 ppm)

- Reached by 2050 under BAU

- Precautionary action is warranted- What could the world do?

- Source Koonin BP

D����� D����� D����� D�����

G�����G�����G�����G�����

• GDP � ���� ������

• ������������

• ������ �����

S����� C������S����� C������S����� C������S����� C������

������������

• ����������� ���������

• ��������������

• �����������������

Key Drivers of the Energy Future

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 4

T���������T���������T���������T���������

S������� S������� S������� S�������

�� S������� S������� S������� S�����

• ������ ����������

• �����������

E������������ C�E������������ C�E������������ C�E������������ C�

������������������������������������

• ����� �������������� �������������� �������������� ���������

• ������� ������������� ������������� ������������� ������

250

300

350

400

Pri

ma

ry E

ne

rgy

pe

r c

ap

ita

(G

J)

Energy Use Grows with Economic Development

US

A��������

energy demand and GDP per capita (1980-2002)

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 5

0

50

100

150

200

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000

GDP per capita (PPP, $1995)

Pri

ma

ry E

ne

rgy

pe

r c

ap

ita

(G

J)

S������ UN ��� DOE EIA

R�����

B�����C����

I����

S� K����

M�����

I������

G�����

F�����

UK J����

M�������

40

50

60 History Projections

All Other Uses

Petroleum Use for Transportation and Other Purposes, 1980-2020

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 6

1980 1985 1990 1995 2000 2005 2010 2015 2020

0

10

20

30

40

Transportation

Source: EIA, International Energy Outlook 1999

Per Capita Primary Energy Consumption, 1984-2004

200

300

400

Mil

lio

n B

TU

United States

North America

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 7

0

100

200

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Mil

lio

n B

TU

Portugal

Europe

Eurasia

Central and South America

Middle East

Africa

Asia and Oceania

World

0.4

0.5

0.6

0.7

0.8

# C

ars

/ P

erso

n

France

GDR

FRG

Germany

Italy

Netherlands

Car Ownership Per Capita

USA

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 8

0

0.1

0.2

0.3

0.4

1970 1975 1980 1985 1990 1995 2000

Year

# C

ars

/ P

erso

n

Netherlands

UK

US

Canada

Japan

Demographic Transformations

world population

0

2

4

6

8

10

1750 1800 1850 1900 1950 1998 2050

2003 2050

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 9

1750 1800 1850 1900 1950 1998 20502050

source: United Nations

6.3billion 8.9

billion

Oceania

AfricaN-America

S-America

Europe

Asia

Oceania

Africa

N-America

S-America

Europe

Asia

Global Energy Inventory

28 TW (Hoffert, Nature 1998)

?

(35 TW)

30

25

20

200 yrs oil

why worry?

200 yrs methane12.8 TW

UN World Energy Assessment Report, 2000

Nate Lewis (Caltech) webpage

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 10

2050

?

15

10

5

0

~1900 yrs coal

cost

because...

environment

security

gas (2.70)

coal (2.96)

biomass (1.21)

nuclear (0.83)

hydro (0.29)

renewable (0.29)

oil (4.52)

12.8 TW

20000

5

10

15

Have We Had It Too Easy?

• What Direction Has Our/ShouldOur Energy Infrastructures be Headed?

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 11

The Public has Hidden Its Head in the Sand on Energy Issues

• Frequently Asked Questions from the Public

»When will the Oil Age end?

A Better Question Might be When will the Fossil Age End?

»Why not do a Project Apollo Approach on Renewables?

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 12

Renewables?

»Isn’t Hydrogen the Answer?

•Depends on What the Question is.

»Why isn’t there more Conservation?

•What Do You Drive? How Big is your House?

»Of Course I know Where My Electricity Comes From! From the Wall Plug.

Will we run out of oil?

•Geologist’s view (Hubbert and all that)

»Fossil resources are finite

»Bigger fields are discovered and produced first

»Fields come on rapidly and then decline slowly

»Production peaks when ½ the resource has been consumed

6,000,000

7,000,000

8,000,000

9,000,000

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 13

resource has been consumed

»Non-OPEC within 20 years? OPEC within 30 years?

•Economist’s view»Price increases as demand exceeds supply

»High prices will encourage discovery and production of more expensive resources

»At some price, fuel substitution will be attractive

•Both are probably right •Koonin BP

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000 Others AlaskaCalifornia LouisianaNew Mexico OklahomaTexas WyomingDiscovered D/W GoM ANWR2004 20052006 20072008 20092010 20112012 20132014 20152016 20172018 20192020 20212022 20232024 20252026 20272028 20292030

US oil production, 1992-2030

Substantial Global Fossil Resources

C���C���C���C���C���C���C���C���

������������������������������������������������������������������������������������������������

��� �� ������� �� ������� �� ������� �� ������� �� ������� �� ������� �� ������� �� ����

����������������������������������������������������������������������������������������������������������������

K���K���K���K���K���K���K���K���O��O��O��O��O��O��O��O��

R/P = 41 yrs

R/P > 200 yrs

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 14

G��G��G��G��G��G��G��G��

����� ���������� ���������� ���������� ���������� ���������� ���������� ���������� �����

����� ���������� ���������� ���������� ���������� ���������� ���������� ���������� �����

S������ BP ��������� K�����

����� ���������� ���������� ���������� ���������� ���������� ���������� ���������� �����

R/P = 67 yrs

Hydrocarbon Fungibility

Primary Energy Source

Syngas Step Conversion Technology Products

Fischer Tropsch

(FT)

Upgrading

Lubes

Naphtha

DieselSyngas to Liquids (GTL) Process

Natural Gas

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 15

Syngas(CO + H2)

Mixed Alcohols (e.g. ethanol, propanol)

Syngas to Chemicals Technologies

Methanol

Acetic Acid

Others (e.g. Triptane, DME, etc)

Coal

Biomass

Hydrogen

Extra

Heavy Oil

Hydrogen economy

Sustainable energy

markets

Constrained hydrocarbon

economy

hydrogen

tim

e

Hydrogen economy

Sustainable energy

markets

Constrained hydrocarbon

economy

hydrogen

tim

e

Hydrogen economy

Sustainable energy

markets

Constrained hydrocarbon

economy

hydrogen

tim

e

Pathways to more sustainable energy

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 16

hydrocarbons ….. oxygenates

fossilbiomass

solar, wind, ...

market sharetim

e

hydrocarbon fuels …..bio-fuels

hydrocarbons ….. oxygenates

fossilbiomass

solar, wind, ...

market sharetim

e

hydrocarbons ….. oxygenates

fossilbiomass

solar, wind, ...

market sharetim

e

hydrocarbon fuels …..bio-fuels

Renewables: A Small but Growing Share of Primary Energy

Total primary energy: 410 EJ/year Renewables: 4 EJ/year

Gas

Hydro

Nuclear

WindSolar

PV

Solar

thermal

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 17

Oil

Coal

Nuclear

Renewables

Bio-

mass

BiofuelsGeothermal

Significant hydrocarbon resource potential

0

200

400

600

800

1000

1200 N���� A������N���� A������N���� A������N���� A������

R������� P�������� �������

0

200

400

600

800

1000

1200

FSUFSUFSUFSU

O�� G�� C���

R������� P�������� �������

Gas E�����E�����E�����E�����

0

200

400

600

800

1000

1200

R������� P�������� �������

O�� G�� C���

1200

R������� P�������� �������

O��� G�� ��� C��� R�������� �� R����� �������

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 18

S������ BP D��� K�����

0

200

400

600

800

1000

1200

S���� A������S���� A������S���� A������S���� A������

0

O�� G�� C���

O�� G�� C���

R������� P�������� �������

0

200

400

600

800

1000

1200

A�����A�����A�����A�����

O�� G�� C���

R������� P�������� �������

0

200

400

600

800

1000 M����� E���M����� E���M����� E���M����� E���

O�� G�� C���

R������� P�������� �������

0

200

400

600

800

1000

1200

A���A���A���A���

P������P������P������P������

O�� G�� C���

R������� P�������� �������

Key:

- unconventional oil

- conventional oil - gas

- coal

…and dislocation of supply & demand

R������� S���� �� ���� C���������� �� R������� ��� O��� G�� � C���

O��O��O��O��

G��G��G��G��

C���C���C���C���

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 19

� R��� �� ������ � ������� ������ ������� �N� A������� E����� ��� A��� P�������K���K���K���K���

N���� ��� ������� ������� �� ���

������� �������������� ��������

���������

S������ BP D���� IEA �EO ����

������������

������������

C����������C����������C����������C����������R�������R�������R�������R�������

������������

������������

C����������C����������C����������C���������� R�������R�������R�������R�������

������������

������������

C����������C����������C����������C���������� R�������R�������R�������R�������

Reaching CO2 Goals

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 20

What Might We Do?

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 21

Efficiency and Conservation

• Increase the rate of decrease in energy use per unit of GDP

• Option 1 Increase Fuel Economy

› 2 Billion Cars from 30 to 60 miles per gallon

• Option 2 Reduce per car miles per year

»Drive 5000 miles instead of 10000 miles per year

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 22

»Drive 5000 miles instead of 10000 miles per year

• Option 3 More Efficient Buildings

»Cut energy use in future buildings by 25%

• Option 4 Improve power plant efficiency

»Produce twice today's coal power output at 60% instead of 40%

Wedge Options Fuels

• Option 5 Gas-Base load power for

Coal-Base load power

•Replace 1400 GW 50% efficient coal

to gas

• Option 6 Capture CO2 at Coal- and Gas-

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 23

• Option 6 Capture CO2 at Coal- and Gas-Base Load Plants

• Option 7 Capture CO2 at Hydrogen Plants

• Option 8 Geological Storage- Create 3500 Sleipners

Wedge Options

• Option 9 Nuclear Power for Coal

• Option 10 Wind Power for Coal

• Option 11 PV Power for Coal Power

• Option 12 Wind Hydrogen in fuel cell

car for gasoline in hybrid car

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 24

car for gasoline in hybrid car

• Option 13 Biomass for fossil fuel

• Option 14 Reduce deforestation

plus reforestation and new plantations

• Option 15 Conservation tillage

In Conclusion

• Must Understand the importance of Robust Short Term Steps now and encourage them

• Need for a Portfolio Approach

• Fossil around for a long time but in what forms? Stationary reduction first?

• Importance of Sequestration, Conservation,

D.H. Marks – MIT Laboratory for Energy and the Environment October 2007 25

• Importance of Sequestration, Conservation, Renewables

• Energy Security Issues will help focus the debate

• Need for New Partnerships - the university as honest broker

• The next generation of leaders and institutions are critical - MIT will work with others around the world