,'a,' -3 6 - nasa · abstract direct solar-pumped iodine laser amplifier contents i i....

98
Submitted to: Institution: Ti t 1e of Research : NASA Grant Number Period Covered Semi annual Progress Report , ' A, ' -3 6 National Aeronautics and Space Admi ni strati on Langley Research Center Hampton, Va 23665 -. Hampton University Dept . of Physics .A Direct Solar-Pumped Iodine Laser Amplifier NAG-1 -441 Sept. 1, 1986 - Feb. 28, 1987 Principal Investigator Dr. Kwang S. Han Research Associates Dr. K. H. Kim Mr. L. V. Stock (NASA-CR- 180541) DIRECT SCLAE-IOEEED XODIPE N83-26330 ldSEti ARELIFIEB Setiaririual €rcgr€ss Report, 1 Sep, 1S86 - 2E €et. 14E7 (Eaakton Inst,) !3€ F Avail: &TIS AC ACS/ME A01 CSCL 20E Unclds 63/36 ~c69bas https://ntrs.nasa.gov/search.jsp?R=19870016897 2019-12-31T05:33:53+00:00Z

Upload: others

Post on 12-Sep-2019

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

Submitted t o :

I n s t i t u t i o n :

T i t 1 e o f Research :

NASA Grant Number

Per iod Covered

Semi annual Progress Report ,'A,' -3 6

Nat ional Aeronautics and Space Admi n i s t r a t i on Langley Research Center Hampton, Va 23665

-.

Hampton U n i v e r s i t y Dept . o f Physics

.A D i r e c t Solar-Pumped I o d i n e Laser A m p l i f i e r

NAG-1 -441

Sept. 1, 1986 - Feb. 28, 1987

P r i n c i p a l I n v e s t i g a t o r D r . Kwang S. Han

Research Associates D r . K. H. K i m M r . L. V. Stock

(NASA-CR- 180541) D I R E C T S C L A E - I O E E E D X O D I P E N83-26330 ldSEti A R E L I F I E B Setiaririual €rcgr€ss Report , 1 S e p , 1S86 - 2E € e t . 14E7 (Eaakton I n s t , ) !3€ F Avail: &TIS AC A C S / M E A01 CSCL 20E U n c l d s

63/36 ~ c 6 9 b a s

https://ntrs.nasa.gov/search.jsp?R=19870016897 2019-12-31T05:33:53+00:00Z

Page 2: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

Abs t rac t

Direct Solar-Pumped Iodine Laser Ampl i f ie r

Contents

i

I . F e a s i b i l i t y s tudy of solar-pumped dye l a s e r

A. I n t r o d u c t i o n B. Experiment and Results C . References

11. Evalua t ion of the S o l i d S t a t e Laser Mate r i a l s f o r the Solar-Pumping

A .

B. C .

D. E.

F . G .

I n t r o d u c t i o n H i s t o r i c a l Background of the Sol ar-Pumped Sol i d S t a t e Lasers Laser C r y s t a l s f o r the High-Power S o l a r Pumping. ( 1 ) Idea l Laser Crystals ( 2 ) (3) (4) Crys ta l Temperature and Coolant Flow Rate Spec t r a l and Spa t i a1 D i s t r i b u t i o n of the Tarmarack Sol ar-Simul a t o r Beam Laser System and Expected Laser Outputs Concl usi on

C h a r a c t e r i s t i c s o f Various Laser C r y s t a l s Absorption of the S o l a r Spectrum by the Laser C r y s t a l s Threshold Input Power and S lope Efficiency

1 1

10

11 11

14 14 18 27 27

34 34 44

H . Appendix A Absorption of t h e So la r beam by va r ious l a s e r c r y s t a l s 45

J . References 66 I . Appendix B Temperature d i s t r i b u t i o n i n va r ious l a s e r crystals 54

I I I . Kinetic Model i ng of the Sol ar-Pumped Iodi ne Lasers Table 1 L i s t of F igu res

70 73 74

Page 3: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

-

Abstract

This semiannual progress report covers the period from September 1 , 1986 t o February 28, 1986 under NASA grant NAG-1 -441 entitled "Direct Sol ar-pumped Iodine Laser Amplifier". system o f the Tarmarack Solar-Simulator beam has been attemped. On the other hand the basic study of evaluating the solid state laser materials for the solar-pumping and a l s o the work t o construct a kinetic model algorithm for the flashlamp-pumped iodine lasers have been carried ou t .

assembly i n order t o collect the solar simulator beam and t o focus i t down t o a strong power density. lasing characteristics shows t h a t the neodymium and chromium-co-doped gadol i n i um scandi um gal 1 i um garnet (Nd:Cr :GSGG) may be a strong candi ate f o r the high-power solar-pumped solid state laser crystal. improved k i neti c model i ng for the f 1 ash1 amp-pumped i odi ne 1 aser provides a good agreement between the theoretical model and the experimental d a t a on the 1 aser power output, and predicts the o u t p u t parameters of a solar-pumped iodine 1 aser.

During this period the improvement on the collection

I t was observed t h a t the collector cone worked better t h a n the lens

The study on the various laser materials and their

.

On the other hand the

i

Page 4: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

-9

\ & \ , I . Fesibility Study of the Solar-Pumped Dye Laser

A. Introduction

The parametric study of a dye laser amplifier pumped by a solar-simulator and a flashlamp, and the amplifier gain measurement a t various pump-beam irradiances on a dye cell were reported i n the previous semiannual report [Ref. 11. 20,000 i s required t o reach the threshold o f the rhodamine 66 dye laser. About maximum 5,000 solar constants was previously achieved a t the focus of a

simulator. been carried o u t i n this research period.

An assembly of a couple o f lenses was used instead o f the conical collector t o place the focus of the solar simulator, w h i c h i s located i n the shutter position, i n t o the work region where the laser or laser amplifier can be assembled [refer t o F i g . 11. simulator beam on the lens surfaces, the so la r simulator beam concentration, w h i c h was less t h a n 1,000 solar constants, was not improved as compared t o t h a t o b t a i n e d w i t h the conical collector. Therefore, i t was concluded t h a t a solar simulator, w h i c h provides a higher power t h a n the present Tarmarack solar-simulator does, o r a larger solar furnace i s necessary t o provide an optical power density of a t least 20,000 solar constants (=2,706 W/cm 1 i n order t o attempt t o make a solar-pumped dye laser.

From the previous work i t has been shown t h a t a solar concentration of

.cone-shaped collector of the f r o n t diameter of 9.6 cm w i t h the Tarmarack solar Thus, a different approach t o focus the solar-simulator beam has

Because of the reflection of the solar

2

8. Experiment and Results

Figure 1 shows the assembly of the several lenses t o focus the solar simulator beam down t o a small spot. the lens assembly was reflected by t h e diffuse surface, w h i c h was made of a Taflon bar. mochromator whose d i a l was set a t 530.nm w i t h a grating o f 1180 grooves/mm and w i t h a less t h a n 5 i linewidth. Then, the spectral intensity was detected by a photomultiplier tube. signal and t o trigger the oscilloscope.

The solar simulator beam a t the focus of

The reflected beam was focused down by a f = 1 2 . 5 cm lens onto the

A silicon photodiode was used t o pick u p a reference

After the spectral irradiance of the solar simulator beam was measured,

1

Page 5: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

l a - p

3 % E O

2

Page 6: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

the diffuse surface was turned by 180' and the standard lamp signal was observed i n order t o calibrate the solar simulator's intensity. 3 show the typica l ly observed signals of the standard lamp and the sol ar-simul a t o r beams, respectively, on a Nicolet oscilloscope. spectral irradiance of the standard source was 1 . 4 5 ~ 1 O - ~ solar constants (=0.268 w/cm nm), and those of the solar simulator a t various i n p u t currents are shown i n Graph 1 . about 777 solar constants.

a t the focus (F3) of the three lens assembly was observed t o be about 14% of t h a t a t F1. The l i g h t intensity a t the focus ( F 2 ) of the f i r s t two lens assembly w i t h o u t the cylinderical lens was about 68% of t h a t a t F1. results show t h a t the more lens we use the more optical loss will be caused.

I n F i g . 5 the solar simulator beam collection was tried w i t h o u t the cyl indrical lens. constants which i s lower t h a n t h a t obtained w i t h the cyl indrical lens. focusing of the solar simulator beam became poor w i t h o u t the cylindrical lens.

The spa t ia l distribution of the solar-simulator beam along the focal line of the 9.6-cm conical collector was remeasured w i t h the experimental setup shown i n F i g . 6. The absolute intensity calibration was done i n a two-step process. i n F i g . 6 a t a distance of 43.2 cm from the diffuser. The intensity of the sun-gun was calibrated w i t h the standard lamp and a small number of neutral density f i l t e r . sol ar-simul ator beam instead of using the standard 1 amp, because the s tandard lamp intensity was very weak t o directly calibrate the solar simulator beam intensity and required a large number of ND f i l t e r . large error. A = 530 nm was 1.08 solar constants, and t h a t o f the solar simulator 5,204 solar constants a t the maximum focus.

I n conclusion, the conical collector provides the higher concentration of the solar simulator beam t h a n any other lens assembly does. maximum concentration i s s t i l l much lower t h a n the required threshold for the dye laser, w h i c h i s 20,000 solar constants. The study on the solar-pumped dye laser w i l l be closed a t this p o i n t u n t i l a large solar furnace or a h i g h power sol ar-simul ator i s avai 1 ab1 e.

Figures 2 and

The observed

2

The maximum intensity a t the i n p u t current 600 A was

K i t h an experimental setup as shown i n F i g . 4 the intensity of the l i g h t

This

The observed intensity a t the focus was about 512 solar The

A sun-gun (UL model :SG-63A) was placed instead of the standard lamp

Then, this sun-gun was used t o calibrate the intensity of the

Possibly this may cause a The measured absolute spectral irradiance of the sun-gun a t

The observed

Page 7: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

LOHER BEAM ( m V )

m 8 In 8 In

h In cu m

0

CD

& -

a: E

I n W x I-

Y

H -

.C .C

a, L 3 0

4

Page 8: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

LOWER BEAM (mV)

8 8 In Ln

- fn i m

O

aJ L 3 a, .I-

LL

e 0 0 CD

5

Page 9: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

(*-Q* a I .

b) r

r I

I

P

L (0

0 v)

7

*r o r G I

U

aJ L 3 CI,

L L *C

Page 10: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

W n L 0 L)

ln I L CrJ

c, V W 7

7

0 V

0 c, x

c

7

Page 11: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

aJ r c, c, E

0 L

8

Page 12: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

0 0 00

0 0 b

0 0 CD

0 0 v)

0 0 *

0 0 m

0 0 fi

0 0 CD

0 0 I))

0 0 Q-

0 0 m

0 0 cu

0 0 0- 0 cu

c, J t n .C

9

Page 13: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

C . References

1 . K.S. Han, K . H . K i m and L.V. Stock "Direct S o l ar-Pumped Iodine Laser Amp1 i f ie r" Semi annual Progress Report , NASA, NAG-1 - 4 4 1 , Sept . 1986.

10

Page 14: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

11. Evaluat ion of the S o l i d State Laser Materials for the Solar-Pumping

A . In t roduct ion

Since the f i r s t observation of t h e optical maser action w i t h the CaFz:Dy 2k

crystal by Kiss, Lewis and Duncan CRef.11 in 1963, several kinds of the solid state materials, such as Nd203-doped barium crown glass, Nd:YAG, Nd:Cr:YAG, Ruby and Nd:CaW04, have been used for the solar-pumped lasers. Nd:YAG crystal has been known as an efficient laser materials, so far . I t s highest laser o u t p u t power observed i s lOOW w i t h a solar pumping [Ref. lo]. However, the laser o u t p u t power of a t least an order of lkW cw i s required f o r the space power transmission. In order t o satisfy the demand, the improvement of the solar-pumped Nd:YAG laser or t h e search of new laser material has t o be carried o u t . Ruby, Nd:YAG, Nd:Glass, Nd:YLF, Nd:Cr:GSGG, Alexandrite and Emerald f o r the h i g h power so lar pumping.

solid s ta te lasers. state materials wi l l be summarized. The temperature distribution i n the crystals and the coolant flowrate wi l l be determined i n section D . will show the experimental setup and the results on the spectral and spatial distribution of the Tarmarack solar-simulator beam a t the focus of a conical collector. F ina l ly , the laser system and the expected laser o u t p u t wi l l be discussed i n section F.

Among them, the

This report shows the evaluation of the laser crystals such as

Section B wi 11 describe the h i s tor ical background of the sol ar-pumped In section C , the characteristics o f the various s o l i d

Section E

B. Historical Background of the Solar-Pumped S o l i d State Lasers.

1963: Z.J. Kiss, H . R . Lewis, and R.C. Duncan i n R C A Laboratories. [Ref.l] - Observed the f i r s t solar-pumped optical maser ac t ion w i t h the

Z+ CaF2:Dy crystal a t the l i q u i d neon temperature of 27'K and a t the wavelength of 2.3um.

1964: G . R . Simpson i n American Optical Company CRef.21 - Observed the laser action a t the wavelength of 1.06,Um and the

temperature of 3OoC w i t h a 6.25 w t % Nd503-doped barium crown glass of 0.1 mm diameter and 30 mm long.

11

Page 15: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

,

- pumping source = s u n and carbon a r c sun-s imula tor . - Flashlamp t h r e s h o l d = 1 Jou le - Observed the l a s e r o s c i l l a t i o n a t the i n p u t e n e r g i e s of

1 .15J (= 144 w/cm2 = 1,062 s o l a r c o n s t a n t s ) w i t h sun-pumping and of 7.505 ( = 188 w/cm2 = 1,386 s o l a r c o n s t a n t s ) w i t h the carbon a r c sun-simul a t o r pumping.

1966: C.W. Reno i n RCA Defense E lec t ron ic s Products [Ref. 33 - Measured the t h r e s h o l d i n p u t power of 100 W ( = 35 w/cm2 = 259

s o l a r c o n s t a n t s ) f o r a solar-pumped Nd:YAG l a s e r , and observed the l a s e r ou tpu t o f 100 mW with a 25-W coupled power t o the c r y s t a l .

- Observed the same r e s u l t s fo r the Nd:Cr:YAG laser as t h o s e f o r the Nd:YAG l a s e r . because of the slow Cr - Nd t r a n s f e r time (=1 ms) compared t o the f luo rescence l ifetime of the neodymium ions .

The Cr-ions d i d not improve the l a s e r a c t i o n

1966: C.G. Young i n American Optical Company [Ref. 41 - Observed t h a t the threshold powers f o r the Ruby and Nd:CaW04

c y r s t a l s a r e l a r g e r t han t h o s e f o r the Nd:YAG and Nd:Glass. - Observed a 1-W cw l a s e r output from a Nd:YAG c r y s t a l of 3-mm

diameter and 30-mm long and of 1 a t % doping d e n s i t y w i t h a so l ar-pumpi ng .

w i t h a p u l s e w i d t h of 7 ins.

- Observed a 1.25-W pulse laser ou tpu t from a sun-pumped Nd:Glass

1972: L . Huff i n GTE Sylvania Inc. [Ref. 51 - Observed a 4.85 W mult imode laser ou tpu t from a Nd:YAG c r y s t a l

- Used a conduct ive cool ing o f the l a s e r rod w i t h a copper hea t

- Observed a TEMoo o u t p u t of 0.8-W.

w i t h a 24-inch diameter s o l a r c o l l e c t o r .

sink.

1976: J . Fa lk , L. Huff and J.D. Taynai i n GTE Sy lvan ia Inc . [Ref. 61 - Observed the mode-locked and i n t e r n a l l y frequency-doubled 1 a s e r

ou tpu t from a Nd:YAG c r y s t a l

12

Page 16: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

\ ’ A Mu1 timode TEM CW TEM mode locked -00- -00 2.05 W 0.4 W 0.5 W 0.16 W

1.06pm 5.6 W 0.53,um --

- Used an end pumping on t h e c r y s t a l with a 24-inch diameter s o l a r col 1 e c t o r and w i t h t he use of a U V c u t - o f f -f i 1 ter .

1978: D. Radick, E . Reed, and C . Chadwick i n GTE Sylvania [Ref. 71 - Developed a pulsed Nd:YAG l a s e r f o r the space communication

purpose with a 24-i nch diameter col 1 e c t o r . - Observed a TEMoo mode l a s e r output of 400 mW.

1981: V.M. Batenin, A . L . Golger, and 1.1. Klimovski i n USSR [Ref. 81. - Theore t ica l s tudy on the f e a s i b l i t y of a solar-pumped c o l o r - c e n t e r

- The expected va lues f o r a waveguide-type c r y s t a l with a c r y s t a l 1 a s e r .

2 solar-pumping of $2 10 Gain cm” e f f i c i e n c y 2 1-6% output powerC10-60 W from an 1 - m a c t i v e medium.

so la r cons t an t s :

1984: H . Arashi, Y . Okay and N. Sasahara i n Japan [Ref. 93. - Observed an 18-W cw l a s e r o u t p u t from a Nd:YAG c r y s t a l of 4-mm

diameter and 75-mm long and of 0.9 a t % doping d e n s i t y with a 10-m ape r tu re sol a r col 1 e c t o r .

- Effective pump power = 1.1 kW( = 117 w/cm2 = 863 s o l a r c o n s t a n t s ) . - Conversion e f f i c i e n c y (pump p o w e r 3 1 a s e r power) = 1.64%.

1986: M. Weksler, J . S h a r t z , and Weizmann i n I s r a e l [Ref. 101. - Observed a 100-W l a s e r o u t p u t from a Nd:YAG c r y s t a l w i t h a s o l a r

furnace .

1986: L . Zapata a t NASA Langley Research Center [i?ef. 111 - Observed a 28-W l a s e r output from a Nd:Glass f iber bundle with a

sol ar-simul a t o r pumping.

13

Page 17: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

,

t . C . Laser Crystals f o r the High-Power Solar Pumping.

( 1 1. Ideal Laser Crystals.

The charac te r i s t ics which an ideal laser crystal for the high-power solar pumping should have are l i s t ed as below: ( a ) Eff ic ient pumping (o r absorption) bands near the peak of the

solar spectrum. (b) Long fluorescent lifetime t o lower the threshold i n p u t power

f o r a cw operation and t o provide a h i g h energy storage. ( c ) High operation temperature a t l ea s t higher than the room

temperature t o f a c i l i t a t e the reject ion of heat. ( d ) Good thermal conductivity and h i g h thermal resistance f o r a cw

operati on. ( e 1 Mechanical ly strong.

( 2 ) . Characterist ics of various laser c rys ta l s . Table 1 shows the l i s t of the charac te r i s t ics o f the various c rys ta l s obtained from Refs. 12-35. The advantage and disadvantage of each crystal are discussed as follows:

Ruby - ( i D i sadvantages

- 3-level laser system : requires a h i g h threshold i n p u t power : gives a poor q u a n t u m efficiency

- Small gain coeff ic ient

( i i Advantages - Broad absorption bands - Visible laser o u t p u t - High thermal conductivity - Long fluorescence l ifetime - The lowest doping concentration i s possible.

14

Page 18: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

-0

a L

W

F

t

0) +I

L 0 c a X 0,

U

.I-

c

!!i -0 ? z

CI CI v)

V

L u

'I z

+n *I

'I

Y)

c

-0 z

a a V ? 2

2 a a

0 N I

0, 3 X

m N N

0 10 N

s

I I

8 2 X In I r(

0 v)

(3 N ?-?? I W W W I

ap z

$ Z - 2 9 ?

X

H d m Y

'2 0, c'! X

*

0 0 W W

0 0 W t t W

m

r(

Q 9 ? ? +

a W v)

5 LL 0

. ' - . v) :: 6 CI a W t V

U a U I U

Y I-

Q 9 s

N

d QI &

I

X s: c9 "p 'I N

8 h h I

01 0 h Y '4 h

Y +

z 2 vi X

N

N

€3 m a In0 am

0 0 d m

I 8

2 N s 9 In

b .I-

V +I-

w a I U a n

rnb C C C Y )

o w n c n n

.I- V c ) u a v ) I n u

15

Page 19: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

(0

rc * N Y

\o

* Y

I I

u) E Q) a

N 0

+ m m

0 s 8

Ln m (3

Ln 0

0 9

h r(

13 ? X

m

3 13

0 X N 0

0 d

d

N I

s

h r(

13 X *

h

0 rg 4

0

m d h.

A

4 V

<

? N

? m

* * * + 1c

Page 20: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

Nd:YAG (Neodymium-doped Yittrium Aluminum Garne t ) ( i ) Advantages

- 4-level l a s e r system - Good thermal conduc t iv i ty - Good Quantum e f f i c i e n c y - High ga in c o e f f i c i e n t - Low t h r e s h o l d i n p u t power r equ i r ed - Commercially well developed (600 Watts l a s e r o u t p u t ) - R e l a t i v e l y good s l o p e e f f i c i e n c y - 100 Watts cw l a s e r ope ra t ion w i t h the solar-pumping has been

achieved a1 ready

Nd:G1 a s s ( i Advantages

- 4-level l a s e r system - Cheap! easy t o f a b r i c a t e t o a high doping d e n s i t y - R e l a t i v e l y low th re sho ld i n p u t power r e q u i r e d - Large abso rp t ion o f t h e s o l a r beam a t high doping densities

( i i D i sadvantages - Poor thermal conduc t iv i ty

: b u t s t i l l good for a s h o r t p u l s e l a s e r o p e r a t i o n a t a low r e p e t i t i o n r a t e

- Broad f l u o r e s c e n c e 1 ine w i d t h : i n c r e a s e s the l a s e r t h re sho ld : permits a good energy s to ragy and s h o r t e r l i g h t pulses

Nd:YLF (Neodymium-doped Yittrium L i t h i u m F l u o r i d e ) ( i 1 Advantages

- 4-level laser system - Long f l u o r e s c e n c e l i f e t i m e (Twice of Nd:YAG)

: r e q u i r e s a low threshold i n p u t power : provides a good energy s t o r a g e

: provides a good energy s t o r a g e - Low emission c r o s s sec t ion

- Low thermal l e n s i n g e f f e c t . ( s m a l l e r t han Nd:YAG)

17

Page 21: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

- Nd:Cr :GSGG (Neodymium-and chromi urn-codoped Gadol i n i um Scandi um

( i ) Advantages Gal 1 i um Garnet )

- 4-level laser system - Broad absorption bands over the solar spectrum due t o the Cr3+

- Effective energy transfer from the Cr3+-ions t o the Nd3+-ions - Low threshold i n p u t power required - High slope efficiency - A strong candidate for the high power laser

ions

A 1 exandri t e ( i ) Advantages .

- Tunabi l i ty (700-800 nm) - Good thermal conducti v i ty

( i i ) D i sadvantages - Broad f 1 uorescence 1 i newi d t h

: Require a h i g h threshold i n p u t power

Emerald ( i ) Advantage

- T u n a b i l i t y (720-842 nm)

( i i ) Disadvantage - Short fluorescence time and broad fluorescence linewidth

: Requires a h i g h threshold i n p u t power

( 3 ) Absorption of the Solar Spectrum by the Laser Crystals

The absorption spectrum o f various laser crystals are shown i n F i g . 1 t h r o u g h 5, and compared w i t h the spectral irradiance of the air-mass-zero solar spectrum. The amount of absorption o f t h e solar beam per u n i t area by laser crystals has been calculated for the i n p u t solar spectrum of 1 solar constant

18

Page 22: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

I I - O 0 4 m

0 0 00

0 0 h

0 0 CD

0 0 v)

0 0 d-

0 0

19

E I=

I I- t3 z W II W > x

n

a

Page 23: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

.

f i’

0 0 0 - 0 0 03

0 0 Qb

0 0 h

0 0 cn

0 0 10

0 0 If

0 0

CI

U 0, N

L 5

0 a

*C

7

8 LL -I F

U z a, -c c, Y- 0

..

5 L c, V aJ ln

c 0

c, P L 0 ln

5

aJ 1 I-

(v

aJ L I cn LL

n

.C

n

.r

20

Page 24: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

,

v /

r

/

/ /

e

0 0 m

0 0 00

0 0 h

0 0 CD

0 0 ln

0 0 w

3 3

In N ln In 0” 0

N W W

21

E C

I I- c3 z W .I W > 3

n

a

m aJ L 3 cn LL .r-

Page 25: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

0 0 Q)

0 0 00

0 0 b

0 0 co

0 0 v)

0 0 *

0 c, 0 aJ L m a Eo 0 v) v,

E 2

.F II m

L M u u I I

22

Page 26: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

,

5-

0 ' 0 0 - 0 0 Q)

0 0 a0

0 0 h

0 0 CD

0 0 v)

0 0 0

0 0

0 (v a 0

c, - 5

23

Page 27: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

’ ’ w i t h an incident angle of 45’ as shown i n Fig. 9. The absorbed solar beam

i s i n the crystal a t a given spectral range from A, toX I abs intensi ty ,

J l or

where Io(A) : Spectral irradiance of the incident l i g h t (W/cm 2 ) 3 N : Absorbing molecules (or ions) per cm

c ( X )

d : Pass length of the pump beam i n the crystal (cm) E a b s ( A ) : Absorption ceff ic ient (cm-l 1 = N q A ) .

Then the r a t i o of the absorbed solar beam intensi ty t o the total incident solar

2 : Molecular absorption cross section (cm )

The absorbed solar beam intensi ty i n the central portion of the crystal rod w i t h i n a 1 .O-mm diameter i s calculated from

The sample data and calculated resu i t s a re l i s t ed i n appendix A , and Graph 1 shows the r e su l t s on the absorbed solar beam in tens i ty by the various c rys ta l s a t the various doping densi t ies according t o E q . ( 1 ) . The amount of the solar beam absorption i s the largest i n the Nd:Cr:GSGG c rys t a l . larger i n the Nd:YAG crystal than i n the Nd:Glass a t the same doping density. However, a Nd:glass of a h i g h doping density can be eas i ly fabricated compared t o any other c rys ta l s , and the solar beam absorption can be increased w i t h a h i g h doping density.

The absorption i s

Nevertheless, the doping density can n o t be increased too h i gh because of the col 1 i si onal quenchi ng e f fec t which reduces the f 1 uorescence l i fe t ime a t h i g h doping densi t ies .

Nd:YAG w i t h i n a 1.0-mm diameter for various doping densi t ies and for various Graph 2 shows the absorbed solar beam intensi ty a t the rod center of the

24

Page 28: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

m u)

J c3 '0 z

a 0.

n w I e Y

G .I > a z 0.

-9')

a, nf i

7

rc 0

L a,

P I

z 5 a

n

25

Page 29: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

'\ '.

d

II a

a a H

Q 0 E

~-

I I I I I 1 I I I I

E E

6)

II .I(

a

a

CD

Ln

d

m

N

.I(

0

a < > U z aJ s c, rc 0 v) aJ N

v)

v) 3 0

L a > aJ c c, rc 0 L aJ c, C aJ V

L aJ c, aJ

..

-I-

*I-

5 *I- U

h c, v)

C aJ U m C

Q 0 U c 0 I U z aJ r c, rc 0

C 0

-I-

.r

-I-

26

Page 30: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

_ _ -

*. rod diameters. decreases as the rod diameter increases. threshold pump power requirement a t the rod center.

The amount of the solar beam absorption a t the rod center Thus, the rod size i s limited by the

( 4 ) Threshold I n p u t Power and Slope Efficiency

Table 2 , w h i c h i s cited from Ref. 31, shows the population inversion densities a t the threshold and the threshold input-power densities of various laser crystals. The Nd:YAG has the lowest values among Ruby, Alexandrite and Emerald. However, i t has been recently observed [Ref. 361 t h a t the threshold of the Nd:Cr:GSGG is a b o u t one ha l f of t h a t of the Nd:YAG for a flashlamp pumping, and i t s slope efficiency i s twice of the Nd:YAG's [Ref. 303..

In Ref. 17, the threshold of the Nd:YLF was observed t o be 510W and t h a t of the Nd:YAG t o be 600W w i t h a t u n g u s t a n lamp pumping. These values

2 correspond t o 251 solar constants (=340W/cm ) and 295 solar constants 2 (=4OW/cm 1, respectively.

easily pumped w i t h a low power solar simulator beam.

Nd:Glass,

T h i s means tha t the Nd:YLF laser crystal can be

D . Crystal Temperature and Cool a n t Flowrate

For a cylindrical laser rod and cool ing system as shown i n figure 6, the radi a1 temperature d i s t r i b u t i o n can be determined by sol v i ng an one-dimensi onal heat conduction equation [Ref. 371:

2

'a='abs reflectance): rate o f hea t dissipated by the rod .

T(r) = T(ro) t (Ao/4K)(ro2 - r2)

where Ao=Pa/ r L:rate of heat generated per u n i t volume i n the crystal rod. ( s o l a r constant) ( rod surface area) (1- rod surface

k: Thermal conductivity of rod.

Pa = (Heat removed from the crystal surface by the c o o l a n t ) . I n steady state,

Thus ,

where h : Surface heat transfer coefficient,

: Rod surface temperature.

Pa = h D I L ( T R - T F )

D1 : Rod diameter. TR = T(ro) T- : Mean f l u i d temperature. I-

Page 31: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

Table 2 . Population inversion densities and thresholds o f various laser crystals.

N($, = population inversion densdy ut threshold in the meta- stable state for a 4-level system.

N(Z = population inversion densdy ut threshold for a 3-level system.

to = decoy time associated w@ radiative laser transition. 7 = refractive index. AV = me wiCm of the gain linewidth ut room temperature. T, = cawty lifetime - the time ut which me energy is lost in

me laser cmty. I C = speed of light. 1 X =lasing wcrvelength.

N m h Em"= - 8m0q3Av NMb

N(% = P,= - mcAz 70

Matefial N??l=Nd* w/& [J/cm3] T lasing

Ruby 3-level

AV = 11 cm"

Nd3 :glass 4-level X = 1.06 9.10'5 5.6 2.7 Av = 200 cm" TO = 3.10" S ~ C

X = 694.3 nm 1019 960 4600

TO = 3.10-3 S ~ C

Nd' * :YAG 4-level X = 1.064 0.6 Av = 6 cm" TO = 5.5.10-' S ~ C

2.10~~ 0.7

Alexandrite 4-level XA, = 720 nm 1 . 6 ~ I O " 140 70 AV = 1000 cm-' TO = 3.2.10'' S ~ C

Emerald 4-level Xq, = 740nm . 41x10'6 170 17 hv = 1500 ~ m " TO = 6.5.10'5 S ~ C

28

Page 32: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

i i jB i = i;

i i + i

/3

29

Page 33: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

' The surface hea t t r a n s f e r c o e f f i c i e n t can be determined a s fo l lows : ( i ) f o r a laminar flow (900 N R e 2,000)

( i i f o r a t u r b u l a n t f

kw ow ( 1 2,000< NRe< 220,000

where NRe =4rn*&!$D2 + D1 : Reynolds number,

Grashof number, : Thermal conduc t iv i ty of the c o o l a n t ,

D2 : I n s i d e d iameter of the coolant j a c k e t , JA : Viscos i ty of the cool ant ,

m* : Mass f low r a t e yw : Densi ty of c o o l a n t ,

g : G r a v i t a t i o n a l c o n s t a n t .

ATR =ATF =Pa/m*C

KW

cP : S p e c i f i c hea t of the coolant

: Vol umetri c thermal expansion c o e f f i c i e n t ,

The a x i a l t emperau t r e g r a d i e n t along the l a s e r c r y s t a l can be approximated a s

The sample d a t a and c a l c u l a t i o n s are l is ted i n Appendix B. Graph 3 shows the r a d i a l t empera ture d i s t r i b u t i o n of t h e va r ious cyrs ta ls w i t h a rod shape of 3.2mm diameter x 75mm long for an input s o l a r beam intensi ty o f 4,000 s o l a r c o n s t a n t s and f o r a water f l o w r a t e of 0.5 galon per minute. The rod tempera ture o f the Nd:Cr:GSGG c r y s t a l i s the h i g h e s t among the f o u r c r y s t a l s because o f i t s l a r g e s t abso rp t ion of the s o l a r spectrum. S ince the thermal c o n d u c t i v i t y of the Nd:Cr:GSGG i s higher t h a n t h a t of the Nd:YLF, the ac tua l tempera ture o f the GSGG c r y s t a l w i l l be very low f o r the same laser o u t p u t a s the Nd:YAG's o r Nd:YLF's. Graph 4 shows the r a d i a l temperature d i s t r i b u t i o n of the Nd:YAG of an 1.0 atomic percent doping d e n s i t y f o r va r ious c o o l a n t f l o w r a t e s . There i s not a s i g n i f i c a n t tempera ture difference a t the c o o l a n t f l o w r a t e s above 0.5 g a l o n h i n u t e . Graph 5 shows the a x i a l t empera ture d i s t r i b u t i o n of the Nd:YAG c r y s t a l of an 1.0 atomic percent doping density f o r va r ious c o o l a n t f l o w r a t e s . The f lowra te s below 0.5 galon/minute a r e the laminar f lows and t h o s e above 2.0 g a l o n h i n u t e a r e the t u r b u l e n t f lows . The tempera ture difference i s not s i g n i f i c a n t a t the f l o w r a t e s above 0.5 ga l o n h i nute.

P '

Page 34: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

0 0 0 0 0 0 0 0 0 C n c o o N 0 Q ) C D w N

L aJ v) a c

v) 3 0 L a > cc 0 c 0

c, 3 Ll

L c, v)

U aJ L 3 c, a L aJ P

c,

a U a E

-r

*I-

*r

*r

c

.I-

m r P a L a

L aJ v) a

aJ c t-

7

*r E \

a m m

c

c

cc 0

aJ c, a L

c cc L aJ c, tu 3 a c, a v)

a c, v) h L V

7

L a c

2 c

v) a 3 h c, v)

aJ U

*I-

L

0

c, 3 P E

aJ r c, -0 c a .

% n

-I-

Y

31

Page 35: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

c, ro 7

(0 c, v)

L V

a 4: > U z 0

cc 0

c 0

C, 3

L c, v)

-0

aJ L 3 c, ro L aJ P

c,

ro -0 ro cr:

>,

..

.I-

n .I-

*I-

E 7

*I-

d r P la L c3

aJ L aJ 3 -0 aJ L aJ U v)

0 V

v) c 0

c, U c 0 V

aJ r +

-r

*r

*r

v) aJ c, 0 L 30 7

cc L aJ c, 0 3 fn 3 0

L 0 >

.r

. . . . . . . . . . . . . . . . . . . . . . .: .......... . . . . . ._ . . . . . . ........... . . . . . ............... ........... . . . . . . . . . . . . . . . . . . . . . .

m r fa L a

n

aJ r c,

32

Page 36: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

c

A t3

W I-

cy: 3 0 J LL

I- z J 0 0 0

v

a

a

. . . . . . . . . _ . . . . . . . . .. . . . . ... .... . . ...... - ._. . . . . . . . .

33

Page 37: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

' , E . Spectral and Spa t i a l Distribution of the Tarmack Solar-Simulator Beam

The experimental setup used t o measure the spatial distribution of the solar-simulator beam a t the focus of a conical collector i s shown i n figure 7. The dimensions of the conical collector and the coordinates for the spatial distribution are shown i n figure 8. Graphs 6, 7 and 8 show the three dimensional intensity distribution of the solar-simulator beam and the location of the laser crystal.

The experimental setup used t o measure the spectral distribution of the solar-simulator beam a t the focus of the conical collector i s basically same as the one shown i n figure 7 except the use of a lens between the spectrometer and the diffuse surface instead of the fiber optics. A q u a r t z lens was used for the U V transmission. Graph 9 shows the absolute intensity of the Tarmarack solar-simulator a t the simulator i n p u t current of 200 A . The intensity a t the focus of the conical collector i s about 1,000 times higher than t h a t of the air-mass-zero solar spectrum. A t the wavelength of about 830nm there appear the line spectra of the xenon gas.

Graph 10 shows the spectral intensities of the solar-simulator beam a t the various solar-simulator i n p u t currents. The peak intensity a t I = 600 A i s about 6 times higher t h a n t h a t a t I = 200 A .

F. Laser System and Expected Laser O u t p u t

Figure 9 shows the schematic diagram of the experimental setup fo r the laser system, and figure 10 shows the detailed diagram of the laser crystal holder and the cooling water jacket. The mirror M1 has a reflectivity of 99.5% a t M 2 , w h i c h has a curvature of 0.3 m , i s changed t o several values for the maximum 1 aser o u t p u t .

The Tamarack sol ar-simul a t o r provides 4-kW opt ica l beam power [Ref. 383 a t the electrical i n p u t power of 45 kW w h i c h i s obtained w i t h the i n p u t current of 600 A and the DC voltage of 75 v o l t s . Assuming t h a t there i s no loss on the conical reflector and using the same optical conversion efficiency as the one achieved by H. Arash, et a1 [Ref. 91, the expected maximum laser o u t p u t power can be calculated for a Nd:YAG crystal as follows:

The slope efficiency of the Nd:Cr:GSGG crystal can be assumed t o be twice

= 1.06 m and a curvature of 0.3 m. The reflectivity of the mirror

= (0.0164)(4kW) = 65.6 W . 'Nd :YAG

34

Page 38: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

c P

L

4- 0

35

Page 39: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

.I c 0

N v k

L$ (0 r

x ,u 0 0

iJ L$ E

(0 r co

aJ L 3 Is,

36

Page 40: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

E P

0 - 00

CD

w

N

0

Q 0 Q Q

SlNfl03' tJW0

37

+, ld

€ ld Q .m L 0 +, id

3 €

cn I L ld

0 u)

Q s +,

4. 0

t 0

+, 3 9

L +, v)

Q

ld

+, id

c

.c

c

.c

.c

.c

c

.c

Page 41: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

E C 6)

II)

2 x +

1 1 1 1

0 0 0 0 d 0 0 0 0 0 0 0 - 0 0 0 0 ob CD * N

SlNfl03 UWO

38

E E

cn x

W z 0 u Q I- CIS cc J 3 u Q z W Q E W Q

W u z I- u)

L7

J

u I-. tE W >

- H

a

H

a H

a H

+ A

€ ld a m L 0 +, ld

3 €

u) I L r d e - a

c

.c

o s c n o 0

Page 42: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

1 1 1 I 1

0 0

0 tn

SlNll03 HWO

in r(

cu w4

00

d

0

0 I

00 I

cu I

CD

w4

F=4

0 01 0 0 N

€ €

u)

x

W 2 0 u 0 I- CY J 3 u Q 2 W e E W e W 0 z I- u)

Q

1 k z 0 N .

QL 0 I

a

H

a

a

n

a H

a

H

O S a 0 u 0)

+ 4 . 0 0 0

S - o o - u +, 3 0 SI: - + L +4. M O

c 3 M 3

- 0 a 0 - G +

c

.c

39

Page 43: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

w -- CL * c n

Page 44: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

c

L L 0 0 c,c, 5 m

0 7

r P 5 L CY

41

Page 45: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

.

L Y o u c c a

L

42

Page 46: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

- (D

cn >r

w

L

L Q) cn (D 4

43

Page 47: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

,

h ighe r than t h a t of the Nd:YAG c r y s t a l according t o Refs. 30 and 36. expected l a s e r ou tpu t w i t h a Nd:Cr:GSGG c r y s t a l w i l l be

Then the

= 2 x 65.6 W = 131.2 W. 'Nd : Cr : GSGG

G . Concl usi on

Nd:YAG, Nd:Cr;GSGG and Nd:YLF c r y s t a l s a r e good cand ida te s f o r the Among them, Nd:Cr:GSGG has the l a r g e s t solar-pumped CW l a s e r m a t e r i a l .

abso rp t ion of the s o l a r spectrum, and poss ib ly can be s c a l e d u p t o a high power l a s e r . Nd:Cr:GSGG up t o 4,000 s o l a r c o n s t a n t s pump power w i t h a f l o w r a t e less than g a l o n h i n u t e . done du r ing the next p r o j e c t per iod t o determine the maximum pump power f o r each c r y s t a l be fo re the thermal problem becomes s i g n i f i c a n t .

The thermal problem i s not s i g n i f i c a n t f o r the c r y s t a l s except the

The d e t a i l e d c a l c u l a t i o n and experimental measurements should be 2

44

Page 48: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

\

Appendix A. Absorpt ion o f t h e so la r beam by var ious 1ase r . c rys ta l s .

Nd:YA6

RANGE (nm) SOLAR SPECTRUM 115.0 - 1000000.0 ABSORPTION SPECTRUM OF LASANT 300.0 - 910.0 INCIDENT ANGLE (in deprte) = 45

ROD PUMPING DOPING ABSORBED RATIO ABSORBED DIA. LENGTH DENSITY SOLAR INTENSITY ( f ibs . S.I./ POWER AT CENTER (cm) (cn) (ions/cn^3 ) (nW/cm"2 1 Intcp. S.I. I ( % ) dis=lmm,(mW/cmn2)

.10 .14 6.50E+19 1.30E+20 1.43E+20 1.90E+20 2.60E+20 2.86E+20 3.25Et20 3.90E+20 5. ?0E+20 6.50E+20

.20 .28 6.50E+19 1.30E+20 1.43E+20 1.90E+20 2.60E+20 2.86Et20 3.25E+20 3.90E+20 5.20E+20 6.50E+20

.30 .42 6.50E+19 1.30E+20 1.43E+20 1.90E+20 2.60Et20 2.86E+20 3.25Et20 3.90E+20 5.20Et20 6.50E+20

.50 .71 6.50E+19 1.30Et20 1.4'3E+20 1.90E+20 2.60E+20 2.86E+?0 3.25E+20 3.90E+20 5.20E+20 ,

6.50E+20

1.363 2.607 2.843 3.668 4.81 9 5.225 5.816 6.753 8.481 10.047

. . 2.607. 4.819 5.225 6.613 8.481 9.125 10.047 11.483 14.050 16.304

3.754 6.753 7.291 9.100 11.483 12.292 13.441 15.21 1 18.320 21.003

5.816 10.047 10.780 13.202 16.304 17.338 18.793 21.003 24.81 1 28.025

1 .O1 1.93 2.10 2.71 3.56 3.86 4.30 4.99 6.27 7.43

1.93 3.56 3.86 4.89 6.27 6.74 7.43 8.49 10.38 12.05

2.77 4.99 5.39 6.73 8.49 9.09 9.93 11.24 13.54 15.52

4.30 7.43 7.97 9.76 12.05 12.81 13.89 15.52 18.34 20.71

.70 .99 6.50E+19 7.640 5.65

45

1.363 2.607 2.843 3.668 4.819 5.225 5.816 6.753 8.481 10.047

1.300 2.391 2.589 3.259 4.146 4.447 4.874 5.528 6.664 7.626

1.244 2.212 2.382 2.944 3.662 3.899 4.231 4.730 5.569 6.257

1.147 1.934 2.066 2.488 3.002 5.167 3.394 3.727 4.30 4.699

1.065

Page 49: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

1.30E+20 1.43E+20 1 .90E+20 2,68E+20 2.86E+20 3.25E+20 3.90E+20 5.20E+20 6.50E+20

1.00 1.41 6.50E+19 1.30E+20 1.43E+20 1 .90E+20 2.60E+20 2.86E+20 3.25E+20 3.90E+20 5.20E+20 6.50E+20

1.50 2.12 6.50E+19 1.30E+20 1.43E+20 1 .90E+20 2.60E+20 2.86E+20 3.25E+20 3.90E+20 5.20E+20 6.50E+20

2.00 2.83 6.50E+19 1.30E+20 1.43E+20 1 .90E+20 2.60E+20 2.86E+20 3.25E+2@ 3.90E+20 5.20E+20 6.50Et20

3.00 4.24 6.50E+19 1.30E+20 1.43E+20 1.90E+20 2.60E+20 2.86E+20 3.25E+20 3.90E+20 5.20E+20 6.50E+20

12.812 13.687 16.547 20.148 21.335 22.995 25.495 29.740 33.261

10.047 16.304 17.338 20.678 24.81 1 26.157 28.025 30.809 35.449 39.21 1

13.441 21.003 22.221 26.106 30.809 32.315 34.385 37.420 42.352 46.228

16.304 24.81 1 26.157 30.404 35.449 37.042 39.21 1 42.352 47.347 51.176

21.003 30.809 32.315 36.983 42.352 44.006 46.228 49.378 54.225 57.802

9.47 10.12 12.23 14.89 15.77 17.00 18.84 21.98 24.58

7.43 12.05 12.81 15.28 18.34 19.33 20.71 22.77 26.20 28.98

9.93 15.52 16.42 19.30 22.77 23.88 25.41 27.66 31.30 34.17

12.0s 18.34 19.33 22.47 26.20 27.38 28.98 31.30 34.99 37.82

15.52 22.77 23.88 27.33 31.30 32.53 34.17 36.50 40.08 42.72

1.727 1.834 2.169 2.567 2.692 2.862 3.109 3.504 3.808

.966 1.498 1.580 1.834 2.127 2.218 2.340 2.515 2.786 2.984

,841 1.238 1.297 1.475 1.675 1.736 1.816 1.926 2.085 2.188

.749 1.063 1.108 1.244 1.391 1.434 1.490 1.563 1.659 1.71 1

.619 ,837 .867 .955

1.042 1.065 1.093 1.126 1.156 1.158

+ * + + * * * * * * * * * * * * * * + + + * + * * + * + * * * * * * * +

46

Page 50: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

RANGE (nm) SOLAR SPECTRUM 115.0 - 1000000.0 ABSORPTION SPECTRUM OF LASANT 300.0 - 900.0 INCIDENT ANGLE ( in degree 1 = 45

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INTEGRATED SOLAR INTENSITY (mW/cm^Z) = 135.3

ROD PUMPING DOPING DIA. LENGTH DENSITY (c m ) ( c m ) (ions/cm"3 1

.10 .14 1.30€+20 1.43E+20 1.95E+20 2.60E+20 3.90E+20

.20 .28 1.30E+20 1.43E+20 1 .95Et20 2.60€+20 3.90E+20

.30 .42 1.30Et20 1.43E+20

. 1.95E+20 2.60Et20 3.90Et20

ABSORBED SOLAR INTENSITY (mW/cm"Z 1

2.594 2.829 3.734 4.793 6.714

4.793 5.197 6.714 0.429 11.407

6.714 7.248 9.224

1 1 .407 15.099

RAT IO (Abs. S.I./ Integ. S.I. ) ( X I

1.92 2.09 2.76 3.54 4.96

3.54 3.84 4.96 6.23 8.43

4.96 5 .'36 6.82 8.43 11.16

ABSORBED POWER AT CENTER dial1 mm , ( mW/cmn2 1

2.594 2.829 3.734 4.793 6.714

2.378 2.574 3.308 4.121 5.490

2.199 2.368 2.981 3.636 4.693

.50 .71 1.30E+20 ' . 9.983 7.38 1.922 1.43E+20 10.710 7.92 2.052 1 .95E+?0 13.348 9.87 2.510 2.60E+20 16.181 11.96 2.978 3.90E+20 20.826 15.39 3.692

.70 .99 1.30E+20 12.724 9.40 1.715 1.43E+20 13.591 10.05 1.820 1 .95E+20 16.700 12.34 2.183 2.60E+20 19.982 14.77 2.543 3.90E+20 25.259 18.67 3.076

t * * + * * * * * * * * * * * * + * * * * * * * * * * * * * * * * * * *

47

Page 51: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

Nd:YLF CPHI-POLARIZED)

RANGE Cnml 'SOLCIR SPECTRUM 115.0 - 1000OOO.O ABSORPTION SPECTRUM Of LCISANT 300.0 - 9 0 0 . 0 INCIDENT ANGLE Cin degree3 = 45

RATIO ABSORBED ROD PUMPING DUPING AESORBED DICI. LENGTH DENSITY SOLAR INTENSITY CAbs. S. I. / POWER AT CENTER C c m l Ccm) C;ons/cmA3 1 CmW/cmA2) Integ . S.I.)CX> dia=lmm,CmW/cma2)

.10 .14 1.30E+20 1.647 2.60E+20 3.165

1.22 2.34

1.647 3.165

.20 .28 1.30E+20 3.165 2.34 2.60E+20 5.863 4.34

1.580 2.921

.30 .42 1.30E+20 2.60E+20

4.568 3.38 8.208 6.07

1.518 2.705

. 50 .71 1.30E+20 7.080 2.60E+20 12.053

5.23 8.91

1.403 2.338

.70 -99 1.30E+20 9.262 2.6OE+20 15.095

6.85 11.16

1.301 2.043

1.00 1.41 i.30E+20 12.053 . - 2.60E+20 18.662

8.91 13.79

1.168 1.698

1.50 2.12 1.30E*20 15.761 2.60E+20 22.992

11.55 16.99

-988 1.300

2.00 2.33 1.30E+20 18.662 2.60E+20 26.165

13.79 19.34

.849 1.039

3.00 4.24 1.30E*20 22.992 16.99 .650 2.60E+2O. 30.733 22.71 -728

i ~ i * l * * f X * * * ~ f ~ * ~ ~ i * ~ ~ * * * f ~ * ~ ~ ~ * * * * *

Page 52: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

bN<:YLF CS;GXA-FOLARIZED)

RANGE Cnm) SOLAR SPECTSlPl 115.0 - 1000000.0 ABSORPTICN SPECTRUM OF LASAHT 3 0 0 . 0 - 900 .0 INCIDENT ANGLE (in degree) = 45

f f f ~ ~ ~ * * * i * f ~ f f ~ i ~ i f f * ~ * * ~ * ~ f ~ ~ f f ~ i

INTEGRATED SOLAR INTENSITY CmW/cm'2) = 135.3

ROD DIA. Ccm)

. 1 0

.20

.30

. 5 0

- 7 0 ..

PUMP I NG LENGTH Ccm)

. i s

.23

. 4 2

.71

.99

DOP I NG DENS I TY Cions/cma3

6. 5OE+ 19 1.30E+20 1-9SE+20 2.60E+20 2.86E+20 3 .2SE+20 3 .90E+20 5.20E+20 6 .50E+20

6 .50E+19 : 1.30E+20

1.95E+20 2.60E.20 2 .86E 2 0 3 .25E*20 3 .90E+20 5 . 2 0 € + 3 0

ABSORBED RAT1 0 ABSORBED SOLAR INTENSITY CAbs. S. I ./ POWER AT CENTER

.618 1.216 1.794 2.355 2.574 2.897 3.423 4.427 5.372

1.216 2.355 3.423 4.427 4.811 5.372 6.263 7.900 9.37:

1.794 3.423 4.906 6 .263 6.773 7.508 8.655

10.700 12.473

2.897 5.372 7.508 9.371

10.052 11.013 12.473 14.969 17.043

3.932 7.104 9.716

11.909 12.692 13.784 15.413 1s. 135

Integ. S. I . 1 C % ) -. diaolmm, CmW/cma2)

. 46 - 9 0

1.33 1 . 7 4 1 . 9 0 2 .14 2.53 3.27 3.97

- 9 0 1 .74 2.53 3 . 2 7 3.56 3.97 4 .63 5 . 8 4 6.93

.618 1.216 1.794 2.355 2.574 2.897 3 .423 4.427 5.372

.608 1.176 1.709 2 .207 2.397 2.674 3.112 3.908 4 .611

1.33 .598 2.53 1.139 3.63 1.628 4 .63 2.072 5 . 0 1 2.238 5.55 2.474 6 . 4 0 2.840 7.91 3.474 9.22 4.000

2 .14 3.97 5.55 6.93 7 . 4 3 8 . 1 4 9 .22

1 1 . 0 6 1 2 . 6 0

1579 1.068 1.483 1.836 1.962 2.136 2.392 2 .800 3.102

2.91 .560 5.25 7.18 8. SO 9.38

10 .19 11.39 1 3 . 4 0

1.004 1.356 1.638 1.734 1.863 2.045 2.314

Page 53: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

2.496 6.50E+20 20.354 15.04

1 . C O . 1.41 6.50E+19 1 .30Ei20 1.95E+20 2.60E+ZO 2.86E+20 3.25E+20 3.90E+20 5.20E+20 6.50Ei20

1.50 2.12 6.50E+19 1.30E+20 1.95€+20 2.60E+20 2.36E +20 3.25E+20 3.90E+20 5.20E+20 6 .50Ei20

2 .00 2.E3 6.50E+19 1.30E+2!l 1.9SE+20 2.60E+20 2.86E+20 3.25E+20 3.30E+20 5.20E+20 6.50E+20

5.372 3.371

12.473 14.969 15.842 17.043 18.811 21.723 24.079

7.508 12.473 16.050 18.811 19.760 21.057 22.956 26.071 28.598

9.371 14.969 18.811 21.723 22.719 24.079 26.071 29.348 32.012

3.00 4.24 6.50E+19 12.473 1.30E+20 18.811 1- 95E+20 22.956 2.60E+20 26.071 2.86E+20 27. :38 3.25E+20 28.598

5.20E+20 34.274 6.50E+20 37.156

3.90E+20 30.740

~ * * f ~ i i * ~ i * i * i * i i * t * * i * i f

3.97 6.93 9.22

11.06 11.71 12.60 13.90 16.06 17.80

5.55 9.22

11.86 13.90 14.60 15.56 16.97 19.27 21.14

6.93 11.06 13.90 16.06 16.79 17.80 19.27 21.69 23.66

.534

.317 1.195 1.397 1.462 1.547 1.659 1.812

'1.905

I

.494

.796

.984 1.105 1.141 1.186 I. 242 1.317 1.369

.455

.698

.829 1905 .926 .553 .988

1.077 I - a37

9.22 .398 13.90 .552 16.97 .621 19.27 .658 20.06 .669 21.14 -684 22.72 .705 25.33 .740 27.46 -770 i x i * i * * i i * i

t

Page 54: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

= * Nd:GLQSS -

RAtJGE Cnm) SOLRR SPECTRUM 115.0 - 1 0 0 0 0 0 0 . 0 ABSORPTION SPECTRUM OF LASANT 300.0 - 900.0 INCIDENT CINGLE Cin degree) = 45

GLASS COMPOSITION x Si02 66 ut X , Nd203 = 5 w t 2 Na20 = 16 wt X , B a O - 5 ut X A12038 2 wt 2, Sb203 = 1 w t X

~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I NTEGRCITED SOLAR INTENSITY CmW/cm^2) = 135.3

ROD DIAWETER Ccm>

.10

. 2 0

.30

.70

1.00

PUMP I NG LENGTH Ccm)

.14

.2s

-42

- 71

.99

1.41

DOPI NG ABSORBED RAT IO ABSORBED DENS I TY SOLAR INTENSITY Cabs. S. I. / POWER AT CENTER Cut 2 Nd203) CmW/cmV) Intej. S . ! . ) C X ) dia=lmm,CaU/cm'2)

1.00 2.00 3.00 5.00 7.00 9.00 10.00

1.00 2 . 9 0 3.00 5.00 7.00 9.00 10.00

1.00 2.00 3.00 5.00 7.00 9. oc 10.00

1.00 2.00 3.00 5.00 7.00 9.00

10.00

1.00 2.00 3.00 5.00 7.00 9.00 10.00

1.00 2.00 3.00 5.00 7.00

1.300 2.534 3.703 5.891 7.877 9.692 10.542

2.534 4.826 6.907 10.542 13.512 16.244 17.426

3.708 6.907 9.692 14.307 17.988 21.012 22.337

5.891 10.542 14.307 20.065 24.325 27.669 29.100

7.877 13.612 17.988 24.325 28.825 32.285 33.751

Z0.542 17.426 22.337 29.100 33.751

.961 1.87 2.74 4.35 5.82 7.16 7.79

1.873 3.57 5.10 7.79

10.06 12.01 12.88

. .

2.741 5.10 7.16 10.57 13.30 15.53 16.51

4.354 7.79 10.57 14.83 17.98 20.45 21.51

5.822 10.. 06 13.30 17.98 21.30 23.86 24.95

7.792 12.88 16.51 21.51 24-35

1.300 2.534 3.705 5.891 7.877 9.692 10.542

1.267 2.409 3.440 5.217 6.680 7.890 8.416

1.235 2.292 3.199 4.651 5.735 6.552 6.884

1.174 2.081 2.785 3.765 4.376 4.768 4.911

1.118 1 e 898 2.447 3.119 3.478 3.682 3.751

1.040 1 - 665 2.047 2.443 2.620

Page 55: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

9 . 0 0 1 0 . 0 0

3 7 . 2 6 8 2 7 . 5 4 2 . 7 1 0 2 8 . 6 4 2 . 7 3 8 3 8 . 7 4 4

1.50 2 .12 1 . 0 0 1 4 . 3 0 7 2 . 0 0 2 2 . 3 3 7 3 . 0 0 2 7 - 669 5 . 0 0 3 4 . 7 1 5 7 . 0 0 3 9 . 4 2 7 9 . 0 0 4 2 . 9 2 7

1 0 . 0 0 4 4 . 3 8 0

1 0 . 5 7 4 16.51 2 0 . 4 5 25.66 2 9 . 1 4 3 1 . 7 3 3 2 . 8 0

2 . 0 0 2 . 8 3 1 . 0 0 1 7 . 4 2 6 1 2 . 8 8 0 2 . 0 0 2 6 . 0 8 8 19.28 3 . 0 0 3 1 . 6 0 8 23.36 5 . 0 0 3 8 . 7 4 4 2 8 . 6 4 7 . 0 0 4 3 . 4 3 0 32.10 9.00 4 6 . 8 6 4 3 4 . 6 4

1 0 . 0 0 4 8 . 2 7 8 35.68 * * ~ f i * i * * i f f f * ~ f i i i i ~ ~ ~ ~ ~ * ~ i ~ ~ ~ ~ ~ ~

. 9 2 7 ' I. 3 6 4 1.581 1 . 7 6 3 1 . 8 3 0 1 . 8 6 0 1 . 8 6 7

.832 1 . 1 4 3 1 . 2 7 2 1.366 1.396 1 . 4 0 3 1.402 *i

52

Page 56: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

Nd:Cr:GSGG

RFtNGE ( n m ) SOLAR SPECTRUM 115.8 - 1000000.0 ABSORPTION SPECTRUM OF LASANT 308.e - 920.0 INCIDENT ANGLE (in degree) = 45

DOPING DENSITY (ions/cm"3): C r = 1 .E+?0 Nd = 2. E+20

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . INTEGRATED SOLAR INTENSITY (mW/cm"Z) = 135.3

ROD PUMPING DOPiNG ABSORBED RAT IO ABSORBED DIA. LENGTH DENSITY SOLAR INTENSITY ( Abs. S . I, / POWER AT CENTER (cm) (cm) ions/cm"3 ) (nW/cm"Z ) Integ. S.I. ) ( X j dia=lmm,(mW/cm"?)

.30 .42 1.00E+00 34.282 25.34 10.774 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nd:Cr:GSGG

RFtNGE Cnm SOLAR SPECTRUM 115.8 - 1000000.0 AESORPTION SPECTRUM OF LASANT 300.0 - 900.0 INCIDENT ANGLE ( in degree 1 = 45

DOPING DENSITY ( ionst'cm''5 ) : C r = 1 .E+Z0 Nd = 2 . E+20

* * + * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * INTEGRATED SOLAR INTENSITY (mW/cm",3 = 135.3

ROC PUMPING DOPING ' ABSORBED RATIO ABSGREED D I A . LENGTH OENSITY SOLAR INTENSITY ( Abs. S . I. / POWER PIT CENTER (cm) ( c m ) ( ions/cmA3 ) (mW/cm"L") Integ. S.I. ) ( % I dia=lmm,(mW/cm"Z)

* 30 .4? 1.00Et00 34.236 25.30 18.758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page 57: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

Appendix B. Temperature distribution in various laser crystals.

CRYSTAL x i f * fit f

CRYSTAL = Nd:YAG

ROD DiAMETER C c d = .32 ROD LENGTH Ccm) = 7.5

EFFECTIVE PUMPING L E N ~ T H Ccm) = 7 THERMAL CONDUCTIVITY CW/cm/dcgrce C) = .14

PUMPING SOURCE 3 +# 3 X TOTAL ABSORBED SOLAR INTEIISITY CW/cma2> = -006753 SOLAR CONSTANT = 4000

SURFACE ABSORPTION FACTOR = .8

COOLING SYSTEM a * 3 X 3 NCIME O F COOLANT = WATER THERMAL CONDUCTIVITY CW/cm/degree C) = .OS69 VOLUtlETRIC THERMAL EXPANSION COEFF.Cl/degree 6.43E-5 SPECIFIC HEAT CCal /g /degree C) = 1

DENSITY C g/cm"3) = 1 VISCOSITY C g /cn /sec) = . O l

ENTERING TEMPERATURE OF COOLANT Cdegree C) = 20

CJ/g/degree C) = 4.186

DIAMETER OF LriATER JCICKET Ccm) = 1.308

COOLANT MASS FLOW-RATECGal/min>= .5 C - 31.6 crna3/5ec)

54

Page 58: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

\

PATE OF TOTAL HEAT DESSIPATION BY THE ROD (W/cm"2) = 152.07037576 RATE OF HEAT GENERATION PER UNIT VOLUME IN THE CRYSTAL CW/cmV) = 270.12

P r s n d t l Number .735676625659 G r a n s h o f Number w i t h o u t T e m p e r a t u r e Term = 607.726091598 R e y n o l d Number = 1480.49291043 , COOLANT MASS FLOW-RATECGal/min)= - 3 C = 18.9 cmA3/rec)

LAMINAR FLOW Ilt * Ilt E i HEAT TRANSFER COEFFICIENT = 2.61334646526 ROD TEMPERATURE AT THE COOLCINT ENTRANCE (degree C) * 27.4775901055

AXIAL TEMPERATURE GRADIANT O F ROD L COOLANT = 1.91908751961

I l t I l t f i ~ I l t . I l t . f * i i * l t f i i i i f i I l t I l t * i f * f

RADIAL TEMPERATURE DISTRIBUTION O F CRYSTAL C DISTANCE FROM ENTRAHCECcm) 3.75

RADIAL DISTANCE FROM TEMPERPTURE ROD CENTER Cmm) Cdegrec C)

0 . 0 0 0 40.7854767224 .160 40.6619932939 .320 40.2915430081 .480 39.6741258653 .640 38.8097418653 .800 3 7 - 698531 0081 .960 36.34 0 0732939

1.120 34.7347887224 1 .280 32.8825372939 1.440 30.7833190081 1.600 28.4371338653

I l t * * * i I l t i * i ~ t I l t f t i * f * i i I l t i * I l t ~ I l t I l t I l t i I l t

RATE OF TOTAL HEAT DESSIPATION BY THE ROD CW/cm^2) = 152.07037576 RATE OF HEAT GENERATION PER UNIT VOLUME I N THE CRYSTAL CW/cm^23 = 270.12

P r a n d t l Number = -735676625659 G r a n s h o f Number w i t h o u t T e m p e r a t u r e Term = 607.726091598 R e y n o l d Number - 12337.4409203 COOLANT MASS FLOW-RATECGal/min)= 2 .5 C = 157.8 cmm3/sec)

TURBURANT FLOW Ilt * i i HEAT TRANSFER COEFFICIENT = 4.11570935606 ROD TEMPERATURf AT THE COOLANT ENTRANCE (degree C) - 25.2505165284

AXIeL TEMPERATURE GRADIANT OF ROD 8 COOLANT = .230290502353

* * ~ * ~ I l t * * i * i i ~ I l t ~ I l t ~ I l t ~ * ~ i i ~ I l t I l t i E I l t i

SADIAL TEMPERATURE DISTRIBUTION OF CRYSTCIL C DISTANCE FROM ENTRANCECcm) 3.75

RADIAL DISTANCE ROD CENTER (mm)

0.000 .160 .320 -480 . 6 4 0 .e00 .960

1.120 1.280 .

FROM TEMPERATURE (degree C) 37.7140046367 37.5905212081 37.220O709224 36.6026537796 35.7382697796 34.6269189224 J3.2686012081 31.66331 66367 29 .811 0652081

55

Page 59: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

RATE OF TOTAL HEAT DESSIPATION BY THE ROD <W/cm^2) = 152.07037576 RATE OF HEAT GENERATION PER UNIT VOLUME I N THE CRYSTAL CW/cm'2) = 270.12

P r a n d t l Number = .735676625659 G r a n s h o f Number w i t h o u t T e m p e r a t u r e Term = 607.726091598

COOLANT MASS FLOW-RATECGal/nin)= .5 C= 31.6 cmn3/sec) R e y n o l d Number - 2467.48aia405

BOUNDARY Be tween LAMINAR and TURBULENT f l o w s S f i f

HEAT TRANSFER COEFF. Cus ing LAMINAR f l o w equation) = 3.288m35a43 ROD TEMPERflTURE e t COOLANT ENTRANCE ( d e g r e e C) = 26.0073594604

HEAT TRANSFER COEFF. Cus lng TURBULENT f l o w e q u a t i o n ) = 1.1357132553 ROD TEMPERATURE at COOLENT ENTRCINCE Cdegree C) = 39.02733a0279

A X I A L TEMPERATURE GRADIANT 3F ROD COOLANT - 1.15145251177

f * f * * f * i i * ~ l f i f ~ * * * f f * f ~ * * * * ~ ~

R A D I A L TEMPERATURE DISTRIBUTION OF CRYSTAL C DISTANCE FROM ENTRANCECcm) 3.75

RADIAL DISTANCE FROM TEMPERATURE ROD CENTER Cmm) Cdegree C)

0.000 40.024069113 .160 39.90 05856a45 .320 39.5301353987 . . .480 38.9127182559 -640 38.0483342559

.960 35.5786656845

. 800 36.9369833987

1.280 32.12ii296a45 1.120 33.973381113

1.440 30.0219113987 1.600 27.675726S59

f f * % * * ~ * i i * i f * * f f f * * * * * f ~ * * * f f

f f * * * l i i * f * * ~ t * * f ~ i * f * * * * t * * * f

TEMPERATURE DISTRIBUTION ALONG THE LENGTH OF THE CRYSTAL AT CYSTAL SURFACE

DISTANCE FROM TEMPERATURE ENTRANCE Ccm) Cdcgrcc C)

0.000 27.1 .750 27.2151452512

1.5co 27. S302905024 2.250 27.4454357535 3.000 27.5605810047 3.750 27.6757262559

5.250 27.90601675S2 6.000 28.0211620094 6.750 28.1363072606

4.500 27.790a715071

7.500 25.2514525115 * ~ f * t i f ~ i i * f * l * * ' * i . f ~ * ~ f * f * * ~ ~ ~

56

Page 60: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

CRYSTAL J: f J: a CRYSTAL ROD DIAMETER Ccm) = ROD LENGTH Ccm) = EFFECTIVE PUMPING LENGTH Ccm) = THERMAL CONDUCTIVITY CW/cm/degrcc C) =

NdrYLF C 1 at X Nd) .32 7 . 5 7 .06

PUMPING SOURCE i f f S f f

TOTAL ABSORBED SOLAR INTENSITY CW/cm’2) = .003996 SOLAR CONSTANT = 4000 SURFACE ABSORPTION FACTOR = .a

COOLING SYSTEM f f i f

NAME OF COOLANT = WATER THERMAL CDNDUCTSVITY CW/cn/dcgrcc C) - .OS69 VOLUMETRIC THERMAL EXPANSION COEFF.Cl/degree 6.43E-5 SPECIFIC HEAT C C a l / g / d e g r c c C) = 1

DENSITY C g/cm-3> = 1 VISCOSITY C g/crn/scc) - - 0 1

ENTERING TEMPERATURE OF COOLANT ( d e g r e e C) = 20

C J / g / d c g r e e C3 = 4.186

DIAMETER OF WATER JACKET Ccm) = 1.308

COOLANT MASS FLOW-RATECGal/min)= .5 C= 31.6 cm‘3/sec)

57

Page 61: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

\

KATE OF TOTAL HEAT DESSIPATION BY THE ROD CW/cmA2) = 89.9856688192 RATE @F HEAT GENERATION PER UNiT VOLUME I N THE CRYSTAL C W I c m " 2 ) = 159.84

P r a n d t l Number .735676625659 G r a n s h o f Number w i t h o u t T e m p e r a t u r e Term = 607.726091598 R e y n o l d Number 1480.49291043 COOLANT MASS FLOW-RATECGsl/min)= .3 C- 18.9 cm"3 lsec )

LAMINAR FLOW x % s S

HEAT TRANSFER COEFFICIENT = 2.61334646526 ROD TEMPERATURE AT THE COOLANT ENTRANCE ( d e g r e e C) = 24. 5367139586

-. A X I A L TEMPERATURE GRADIANT O F ROD & COOLAHT = 1.13559510267

S i S S i ~ * S i s S i S S ~ x i x . * ~ i S s S S s S s S

RADIAL TEMPERATURE DISTRIBUTION OF CRYSTAL @ DISTANCE FROM ENTRANCECcn) 3.75

RADIAL DISTANCE FROM TEMPERATURE ROD CENTER Cmm) ( d e g r e e C)

0.000 42.15411151 .160 41.98361551 .320 41.47212751 . 4 8 0 40.61964751 -640 39.42617551 .800 37.89171151 .960 36.01625551

1.120 33.79980751 1.280 31.24236751 1 . 4 4 0 28.34393551 1.600 25.10451151

* * f S * I * * i i * t * i ~ i f f f i ~ i ~ S ~ ~ i s ~ S

RATE OF TOTAL HEAT DESSIPATION BY THE ROD CW/cmA2) = 89.9856688192 RATE OF HEAT GENERATION PER UNIT VOLUME I N THE CRYSTAL CW/cmA2> = 159.84

P r a n d t l Numher = .735676625659 G r a n s h o f Number w i t h o u t T e m p e r a t u r e Term = 607.726091598 R e y n o l d Number = 12337.4409203 COOLANT MASS FLOW-RATECGal/min)= 2.5 C - 157.8 cmn3/sec)

TURBURANT FLOW S S

HEAT TRANSFER COEFFICIENT - 4.11570935606 ROD TEMPERATURE AT THE COOLANT ENTRANCE ( d e g r e e C) = 23.1069249293

AXIAL TEMPERATURE GRFIDIANT OF ROD 4 COOLANT = -136271412321

~ * * t ~ ~ * ~ ~ * * x * * f * f ~ . i S S s i * * x ~ i S RPDIAL TEMPERATURE DISTRIBUTION OF CRYSTAL

C DISTANCE FROM ENTRANCE Ccm) 3.75

PADIAL DISTANCE ROD CENTER Cmm)

0 . 0 0 0 -160 .320 - 480 - 6 4 0 .800 .960

1.120 1 .280

FROM TEMPERATURE ( d e g r e e C) 40.2246606354 40.0541646354 39.5426766354 38.690 1966354 37.4967246354 35.9622606354 34.0868046354 31.8703566354 29.3129166354

58

Page 62: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

\

' 1 .440 1 .600

26.4144846354 23.1750606354 .

RATE OF TOTAL HEAT DESSIPATION BY THE ROD C#/cma2) - 89.9856688192 RATE OF HEAT GENERATION PER UNIT VOLUME I N THE CRYSTAL CW/cm'V) = 159.84

P r s n d t l Number = .735676625659 G r a n s h o f Number w i t h o u t T e m p e r a t u r e Term = 607.726091598 R e y n o l d Number = 2467.48818405 COOLANT MASS FLOU-RATECGal/min)= .5 C= 31.6 cm*3/sec)

BOUNDARY Between LAMINAR and TURBULENT f l o v s S i I HEAT TRANSFER COEFF. ( u s i n g LAMINAR f l o w e q u a t i o n ) - 3 .28873535843 ROD TEMPERATURE at COOLANT ENTRANCE ( d e g r e e C) = 23.644713221

HEAT TRANSFER COEFF. (using TURBULENT f l o w equation) * 1.1357132553 ROD TEMPERATURE a t COOLENT ENTRANCE Cdegrea C) = 31.2591800266

A X I A L TEMPERATURE GRADIANT OF ROD c COOLANT = .681357061605

l i * ~ * i * i * i t i * + * l l 3 E f i * * * * ~ * ~ ~ * ~

RADIAL TEMPERATURE DISTRIBUTION OF CRYSTAL C DISTANCE FROM EHTRANCECcm) 3.75

RADIAL DISTANCE ROD CENTER Cmm)

0.000 .160 .320 .480 .640 .800 .960

1 .120 1.280 1.440 1 .600

* * * 3 E * i t * i

FROM TfMPERATURE ( d e g r e e C) 41.7902785308 41.6197825308 41.1082945308

39.0623425308 37.5278785308

33.4359745308

40. 255814530a

s . 6 5 2 4 2 2 5 3 o a

30. a785345308 27 .9801 025308 24.7406785308

i * f i i f f i ~ 3 E . * * f i ~ * i f f i *

TEMPEPRTURE DISTRIBUTION &LONG THE LENGTH OF THE CRYSTAL AT CYSTAL SURFACE

D I STANCE FROM TEMPERhTURE ENTRANCE Ccml ( d e g r e e C)

0.000 24.4 .750 24.4681357062

1.500 24 .5362714123 2.250 24.6044 0 7 1 1 8 5 3.000 24 .6725428246 3 .750 24.7406785308 4.500 24 .808814237 5.250 24.8769499431 6.000 24 .9450856493 6.750 25.0132213554 7.500 25.0813570616

* ~ ~ ~ * i i i i 3 E * f * X * f i W . * * * i * i f i f f 3 E *

Page 63: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

CRYSTAL a is L R fi[ a CRYSTAL = NdaGLASS (ABOUT 1.3 w t XI ROD DIAMETER Ccm) = .32 ROD LENGTH ( c m ) = 7.5 EFFECTlVE PUMPING LENGTH Ccm) = 7 THERMAL CONDUCTIVITY CW/cm/degree C> = . .0135

PUMPING SOURCE I f i It I f TOTAL ABSORBED SOLAR INTENSITY (W/cmn2) = -0045 SOLAR CONSTANT = 4000 SURFACE ABSORPTION FFICTOR = .8

COOLING SYSTEM f f f f f Z NAME OF COOLANT - WATER THERMAL CONDUCTIVITY CW/cm/degrec C) - .OS69 VOLUMETRIC THERMAL EXPANSION COEFF.Cl/degrce 6.43E-S SPECIFIC HEAT c C a l / g / d e g r c e C) = . 1

DENSITY C g/cn'3) - 1 VISCOSITY C g/cm/sec) = -01

ENTERING TEMPERATURE O F COOLANT (degree C) = 20

C J / g / d e g r e e C) = 4.186

DICIMETER OF WATER JACKET Ccm) = 1 .308

COOLANT MASS FLOW-RATECGal/nin)- .3 C - 18.9 cmn3/acc)

RATE OF TOTAL HEAT DESSIPATION BY THE ROD CW/cnA2) = 101.335212634 RATE OF HEAT GENERATION PER UNIT VOLUME I N THE CRYSTAL CW/cmn2> - 180

P r a n d t l Number = -735676625659 G r s n s h o f Number w i t h o u t T e m p e r a t u r e Term = 607.726091598 R e y n o l d Number - 1480.49291043 COOLANT MRSS FLOW-RATECCal/min)= .3 C= 18.9 cm'3/sec)

LAMINCIR FLOW I f f f s HECLT TRANSFER COEFFICIENT - 2.61334646526

. ROD TEMPERATURE AT THE COOLANT ENTRANCE ( d e g r e e C) = 25.0800958497

A X I A L TEMPERATURE GRADIANT OF ROD C COOLANT - 1.27882331382

f * t Y f ~ f I f f f f ~ * * f i f * * f ~ ~ f f f f ~ ~ ~

R A D I A L TEMPERATURE DISTRIBUTION OF CRYSTAL @ DISTANCE FROM ENTRANCECcm) 3.75

RBDICIL DISTANCE FROM TEMPERATURE ROD CENTER Cmm) ( d e g r e e C)

0 . 0 0 0 11 I. 05284 084 . 1 6 0 110.199507507 .320 107.639507507 . 4 8 0 103.37284084 . 6 4 0 97.3995075066 .800 09.7195O75066 .960 80.3328408399

1.120 69.2395075066 1.280 56.4395075066

1 . 6 0 0 25.7195075066 1 .440 41.93284oe399

~ f * f f f f f f I f f I f ~ f ~ ~ ~ f f ~ ~ f f f f ~ f f

Page 64: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

RFITE OF TOTAL HEFIT DESSIPATION EY THE ROD CW/cmA2) = 101.335212634 RATE OF HEAT GENERATION PER UNIT VOLUME I N THE CRYSTAL CW/crn'P> = 180

P r a n d t l Number = .735676625659 G r a n s h o f Number w i t h o u t T e m p e r a t u r e Term = 607.726091598 Reyno 1 d Number - 12337.4409203 COOLCINT MASS FLOW-RATECGel/min>= 2.5 C= 157.8 cmA3/sec>

,

TURBURANT FLOW f S It f

HEAT TRANSFER COEFFICIENT - 4.11570935606 ROD TEMPERATURE AT THE COOLANT ENTRANCE Cdegrec C) - 23.4987893348

AXIAL TEMPERATURE GRADIANT OF ROD i COOLANT = . I53458797659

~ * f t i f f f i i i f * * I f ~ f * f i * i i ~ f i * i ~

RADIAL TEMPERATURE DISTRIBUTION O F CRYSTAL @ DISTANCE FROM ENTRANCECcm) 3.75

RADIAL DISTANCE FROM TEMPERATURE ROD CENTER C u n ) Cdegrec C)

0.000 108.908852067 .160 i08.055518734

' .320 i 05.4955 18734 . 4 8 0 101.228852067 - 6 4 0 95.2555187336 .800 87.5755187336 .960 78.1888520669

1.120 67.0955187336 1.280 54.2955187336 1.440 39.7888520669 1.600 23.5755187336

~ ~ ~ t t f f ~ I t t i ~ t S i ~ S S ~ * ~ i * t ~ f i ~ ~ f

61

Page 65: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

QATE OF TOTAL HEAT DESSIPPTION EY THE ROD CW/cmA21 = 101.335212634 RATE OF HE4T GENERATION PER UNIT VOLUME I N THE CRYSTAL CW/cmA2> = 180

P r a n d t l Number = .735676625659 Grsnshof Number vi t h o u t T e m p e r a t u r e T e r m = * 607.726091598 R e y n o l d Number = 2467.48818405 COOLANT MASS FLOW-RATECGal/min)= .5 (= 31.6 cmA3/scc>

BOUNDARY Be tween LAMINAR and TURBULENT flows i i i i HEAT TRANSFER COEFF. C u s i n g LAMINAR f l o w e q u a t i o n ) = 3.28873535843 ROD TEMPERATURE st COOLCINT ENTRANCE ( d e g r e e C) - 24.0812563181

HEAT TRANSFER COEFF. Cusing TURBULENT f l o w equation) - 1.1357132553 ROD TEMPERATURE et COOLENT ENTRANCE ( d e g r e e C) = 32.6792567867

C I X I A L TEMPERhTURE GRCl@IANT OF ROD & COOLANT - -767233988294

f * t ~ i i i i i i * i * f f * * f . ~ * i * i i * ~ * i *

RADIAL TEMPERATURE DISTRIBUTION OF CRYSTAL C DISTANCE FROM ENTRANCECcd 3.75

RADIAL DISTANCE FROM TEPlPERflTURE ROD CENTER C m d Cdegrce C) 0.000 11 0.616980327 -160 109.763646994 .320 107.203646994 .480 102.936980327 .640 96.963646994 1 ,800 89.2836469942 - . -960 79.8969803275

1.120 68.8036469941 1.280 56.0036469941 1.440 41.4969803275 1.600 25.2836469941

i * i ~ f f f i i i * f t * * f l * i f * ~ i ~ i * i ~ ~ i

i i i P i i i i i f i * i t i * f i * i i i i ~ ~ i i * i *

TEMPERATURE DISTRIBUTION ALONG THE LENGTH OF THE CRYSTIIL AT CYSTAL SURFACE

DISTANCE FROM TEMPERATURE ENTRANCE C cm) Cdegree C)

0.000 24.9 .750 24.97C7293988

1.500 25.0534587977 2.250 25.1301881965 3.000 25.2069175953 3.750 25.2836469941 4.500 25.360376393 5.250 25.4371 057918 6.000 25.5138351906 6.750 25.5905645895 7.500 25.6672939883 t

i i * i i f i f * i i f * i ~ l i f . i i ~ i i i i i ~ * i i

62

Page 66: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

,

CRYSTAL E i E 8 E CRYSTAL - ROD DIANETER Ccml = ROD LENGTH Ccm) = EFFECTIVE PUMPING LENGTH Ccm) = THERMAL CONDUCTIVITY CW/cm/dcgree C) =

NdrCrrGSGG CNd-2E20l .32 7.5 7 . oa

PUMPING SOURCE R illt f f f i

T O T M ABSORBED SOLAR INTENSITY CW/cm’P> = .034282 SOLAR CONSTANT = 4000 SURFACE ABSORPTION FACTOR = .8

COOLING SYSTEM f i i f f HI NhNE OF COOLANT - WATER THERMAL CONDUCTIVITV CU/cm/dcgree Cl = .OS69 VOLUMETRIC THERMAL EXPANSION COEFF. Cl/degrce 6.43E-5 SPECIFIC HEAT CCal/g/degrec C3 = I

DEHSITY C g/cma3> = I

ENTERING TEMPERATURE OF COOLANT Cdegree C) = 20

CJ/g/degrce C3 = 4.186

VISCOSITY C g/cm/sac) = -01 DXhMETER OF WATER JACKET C c d = 1.300

COOLCINT MASS FLOW-RATECGal/min>= 2.5 C = 157.8 cma3/scc)

6 3

Page 67: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

h

RnTE 3F TClTAL HEAT DESSIPATION EY THE ROD CW/cmn21 = 771.994168783 RATE OF HEAT GENERATIOH PER UNIT VOLUME I N THE CRYSTAL CW/cmn2) - 1371.28

P r s n d t l Number -735676625659 G r a n s h o f Number v i t h o u t T e m p e r a t u r e Term * 607.726091598 R e y n o l d Number * 1480.49291043 COCLANT MASS FLOW-RATECGal/min)= .3 C - 18.9 cm'3/sec)

LAMINAR FLOW i N f i S

HEAT TRANSFER COEFFICIENT = 2.61334646526 ROD TEMPERATURE AT THE COOLANT ENTRANCE Cdegree C) = 55.134397703

AXIAL TEMPERATURE GRADIANT OF ROD i COOLfiNT = 9.74236018766

. * i ~ * i i i i i i i f i i f f i * i i i i ~ i ~ N * i i f

R A D I A L TEMPERATURE DISTRIBUTION OF CRYSTAL C DISTANCE FROM ENTRAHCECcn) 3.75

RADIAL DISTANCE FROM TEMPERATURE ROD CENTER Cmm) ( d e g r e e C)

0.000 169.707977797 -160 168.61 0953797

. .32Q 165.319881797 .480 159.034761 797 .640 152.155593797 .800 142.282377797 .960 130.215113797 I. 120 1 1 5.9538 0 1797 1.280 99.4984417968 1.440 SO. 8490337968 1.600 60.0055777966

i ~ f i i f * N i i f f f f f i ~ * i i N ~ i i i i i i f i

RATE OF TOTAL HEAT DESSIFATION BY THE ROD CW/cma2) = 771.994168783 RATE OF HEAT CENERCITION PER UNIT VOLUME I N THE CRYSTAL CW/cmn2> = 1371.28

P r a n d t l Number = .735676625659 G r s n s h o f Number w i t h o u t T e m p e r a t u r e Term = 607.726091598 R e y n o l d Number = 12337.4409203 COOLANT MASS FLOW-RATECGal/min)= 2.5 C = 157.8 cmn3/scc>

TURPURANT FLOW f i i * HEAT TRANSFER COEFFICIENT = 4.11570935606 ROD TEMPERATURE AT THE COOLANT ENTRANCE Cdegree C) = 46.654554661

A X I A L TEMPERATURE GRADIANT OF ROD b COOLANT = 1.16908322252

I f i i t f * i i f * * f * i f f ~ * f i ~ i i ~ i ~ i i i

RADIAL TEMPERATURE DISTRIBUTION OF CRYSTAL C DISTANCE FROM ENTRANCE Ccm) 3.75

RAD I AL D I STANCE ROD CENTER Cmml 0.000 .160 -320 . 4 8 0 .640 .8QO .96Q

1.120 1.280

FROM TEMPERATURE Cdegree C) 156.941496272 155.844472272 152.55340 0272 147.06S20Q272 139.389112272 : 29.515896272 117.448632272 lC3.18732Q272 86.7319602723

64

Page 68: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

,

I

RATE OF TOTAL HEAT DESSIPATION BY THE ROD CW/cm’2) = 771.994168783 RATE OF HEAT GENERATION PER UNIT VOLUME I N THE CRYSTAL CW/cm”2) = 1371.28

P r a n d t l Number = .735676625659 G r a n s h o f Number w i t h o u t T e m p e r a t u r e T e r m = 607.726091598 Reynold Number = . 2467.48518405 COOLANT MASS FLOW-RATE<Gsl/min)= .5 C - 31.6 cmA3/sec)

BOUNDARY B e t w e e n LAMINAR a n d TURBULENT flows S S S S

HEAT TRANSFER COEFF. C u s i n g LAMINAR flow equation) - 3.28873535843 ROD TEMPERATURE a t COOLANT ENTRANCE Cdegree C) - 48.2263340796

HEAT TRANSFER COEFF. <using TURBULENT f l o w equation) - 1.1357132553 ROD TEMPERATURE a t COOLENT ENTRANCE (degree C) - 116.593395813

A X I A L TEMPERATURE GRADIANT OF ROD & COOLANT - 5.a454161126

i * i S f * i i . I f t i S * f i f l S S S ~ S ~ S S ~ S S

RADIAL TEMPERATURE DISTRIBUTION O F CRYSTAL DISTANCE FROM ENTRANCECcd 3.75

RADIAL DISTANCE FROM TEMPERATURE ROD CENTER (mm) < d e g r e e C>

0.000 167.025108056 - 1 6 0 165.928084056 .320 162.6370 12056 .480 157.151892056 -640 149.472724056 . 8 0 0 139.599508056 .960 i27.532244056

1 .120 . 113.270932056 1 .280 96.8155720563 1 .440 78.1661640563 1 .600 57.3227080563

~ * t t * * * S ~ . S i f i * S i i l S S * S ~ i S S ~ S S

~ S i f S ~ i f S i i i i S ~ i ~ f * i S S i S ~ i S S i ~

TEMPERATURE DISTRIBUTION FILONG THE LENGTH OF THE CRYSTAL AT CYSTAL SURFACE

DISTANCE FROM TEMPERRTURE ENTR’CINCE Ccm) (degree C>

0 . 0 0 0 54.4 .750 54.98454 161 13

1.500 55.5690832225 2.250 56.1536248338 3 . 0 0 0 56.738166445 3 .750 57.3227080563 4 .500 57.9072496676 5 .250 58.4917912788 6 .000 59.0763328901 6 .750 59.6605745013 7 .500 60.2454161126

S i f f i * * S i i i i i S l ~ f S l S ~ S i S S S S S S ~ S

65

Page 69: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

1.

2 .

3.

4.

5.

6.

7.

8.

9.

J . References

Z.J. K iss, H.R. Lewis, and R.C. Duncan, Jr. "Sun Pumped Continuous Phys. L e t t . 2 ( 5 ) , 93 (1963). Op t i ca l Lasers'' Appl . -

G.R. Simpson, "Continuous Sun-Pumped Room Temperature G1 ass Laser

Operation" Appl. Optics, - 3(6 ) , 783 (1964).

G.W. Reno, "Solar-Pumped Modulated Laser", RCA Review, pp. 149, March 1966.

C.G. Young, " A Sun-Pumped cw One-Watt Laser'' Appl. Optics, - 5(6) , 993 (1966).

L. Huff, "Sun-Pumped Laser'' F i n a l Report, AFAL-TR-72-310, Sept . 1972.

J. Falk , L. Huf f , and J.D. Taynai, "Solar-Pumped, Mode-Locked, Frequency

Doubled Nd:YAG Laser" Appl. Optics, - 15(6) , 1383 (1976).

D. Radeck, E. Reed, and C. Chadwick, "Sun-Pump and Lamp-Pump Nd:YAG Lasers

f o r Space Communications" S P I E Vol . 150, Laser & F i b e r Opt ics Communications, 23 ( 1978).

V.M. Batenin, A.L. Golger, ,and 1.1. K l imovsk i i , " F e a s i b i l i t y o f a

so l a r - r a d i a t i on-pumped c o l or-center c r y s t a l 1 aser' l Sov. J. Quantum E lec t ron i cs , - 11(3) , 382 (1981).

H. Arashi, Y. Oka; and N. Sasahara, " A solar-pumped cw 18 W Nd:YAG lase r ' '

Jap. J. Appl. Phys. - 23, 1051 (1984).

10. M. Weksl er , J. Shawrtz, and Wei zmann, "Sol ar-pumped Nd: YAG Laser Produces

High Output" Laser Focus/Elect ro-opt ics , - 22(10), 46 (1986).

11. L. Zapata, p r i v a t e communications (1986) - 12. W. Koechner , "Sol i d S ta te Laser Engi nee r i ng" Sp r i nger-Verl ag , New York,

1976.

66

Page 70: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

,

' 1 3 . J.C. McCathy, M.G. Knights, and E.P. C h i c k l i s "Laser Performance o f

Nd:YLF" Proceedings o f S P I E VO1. 335, Advanced Laser Technology and

App l ica t ions , A r l i ng ton , VA, May 6-7 (1982) pp. 2 .

14. J.E. Murray, "Pulsed Gain and Thermal Lensing o f Nd:YLF4" IEEE J. Quantum

E lec t ron i cs , QE-19(4), 488 (1983).

15. E.J. Sharp, D.J. Horowitz, and J.E. M i l l e r , "High-Efficiency.Nd3+:LiYF4 Laser" J. Appl. Phys., - 44(12), 5399 (1973).

16. D. LeGoff, A. Be t t i nge r , and A . Labadens, "ETUDE D ' U N OSCILLATEUR A BLOCAGE DE MODES UTILISANT UN CRYSTAL DE LiYF4 DOPE AU NEODYME"

Opt ics Comm. 26(1), 108 (1978). -

17. T.M. Pol lak, W.F. Wing, R.J. Grasso, E.P. C h i c k l i s , and H.P. Jensen, "CW

Laser Operation o f Nd:YLF" IEEE J . Quantum E lec t ron i cs , QE-18(2), 159

(1982).

18. M.D. Thomas, M.G. Knight , and E.P. C h i c k l i s , "High Gain Nd:YLF A m p l i f i e r "

Proc. o f S P I E Vol. 622, High Power and S o l i d S ta te Lasers, Los Angeles,

CA, Jan. 23-24 (19861, pp. 142.

19. A. L. Harmer, A. L i n z and D. R. Gabbe, "Fluorescence o f Nd3+ i n L i t h i u m

Y t t r i u m F l u o r i d e " J. Phys. Chem. Sol ids, 30, 148 (1969). -

20. T. Y. Fan, G. J. Dixon, and R. L. Byer, " E f f i c i e n t GaAlAs

diode-laser-pumped opera t i on o f Nd:YLF a t 1.047 um w i t h i n t r a c a v i t y

doub l ing t o 523.6nm" Opt ics L e t t . - 11 (41, 204 (1986).

21. G. A. Rines, M. D. Thomas, M. G. Knights, and E. P. C h i c k l i s , "Laser Performance o f Nd:YLF a t 1.3um" Conference on Laser and e lec t ro -Op t i cs

(CLEO), Bal t imore, Md, May 21-24 (1985) Session WJ2.

22. H. P Jesson, D. R . Gabbe, A. Linz, and C . S . Naiman, "Spect ra l D i v e r s i t y C r y s t a l l i n e F l u o r i d e Lasers'' Proc. of t h e I n t e r n a t i o n a l Conf. on Laser

'81, New Orleans, Lu is iana, Dec. 14-18, 1981.

67

Page 71: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

I

* 23. T. Duvillier, 3. Luce and A Diard, "Simple .Numerical Control Loop f o r S t a b i l i z i n g Nd:YLF Single-Mode O s c i l l a t o r s " Optics Comm., - 59 ( 2 1 , 127 (1986) .

24. D. Pruss, G . Huber, A. Be io ivsk i , V . V . Lapter , I . A . Shcherbakov, and Y . V . Zharikov, "Efficient Cr3+ S e n s i t i z e d Nd3+ :GdScGa-Garnet Laser a t 1.06um" Appl. Phys. B. - 28, 355 (1982).

25. E . Reed, "A Flashlamp-Pumped, Q-switched Cr:Nd:GSGG Laser" IEEE J . of Quantum E l e c t r o n i c s , QE-21 - (101, 1625 (1985).

26. E . V . Zharikov, N. N . I I i c h e v , V . V . Laptev, A . A . Maylutin, V. G . Ostroumov, P. P. Pash in in , A. S. Pimenov, V . A . Smirnov, and I . A . Shcherbakov, "Spec t ra l , luminescence, and l a s i n g p r o p e r t i e s of gadolinium g a r n e t c r y s t a l s a c t i v a t e d w i t h neodymium and chromium ions" Sov. J . Quantum E l e c t r o n i c s , - 13 (1 1, 82 (1983).

27. Laporta, V . Magni, and 0. S v e l t o , "Comparative Study of the Opt ica l Pumping Efficiency i n S o l i d - s t a t e Lasers" IEEE. J . o f Quantum E l e c t r o n i c s QE-21 (81, 122 (1985).

28. S. Stokowski, J . Cai rd , M. Shinn, L . Smith, and R. Wilder, "GSGG Crys ta l Growth and Qua l i ty : A S t a t u s Report" Opt ica l Sc ience and Engineering S e r i e s 6. AIP. Conf. Proc. 146 New York (19861, E d i t o r s : W . C . S twa l ly and M . Lapp.

29 W . F. Krupke, "Modern S o l i d S t a t e Laser Mate r i a l s " Report UCID-20119 (1984) Order No. DE 85003665.

30. E . V . Zhari kov, e t . a1 , " O u t p u t c h a r a c t e r i z a i t o n of a gadolinium scandium ga l l ium g a r n e t l a s e r o p e r a t i n g i n the pu l se -pe r iod ic regime" Sov. J . Quantum E l e c t r o n i c s 13 (101, 1306 (1983) . -

31 J . Buchort, and R. R. Afano, "Emerald-A New 'Gem Laser Material 'I Laser Focus E lec t ro -Opt i c s , pp.117 Sept. (1983) .

Page 72: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

'32. A. Budgor , "Overview o f Chromi um Doped Tunabl e V i b ron i c Lasers'' Proc.

S P I E . Vol. 461 New Lasers f o r Ana ly t i ca l and I n d u s t r i a l Chemistry pp.62

(1984).

33. J. C. Wall ing, 0. G. Peterson, H. P. Jessen, R. C. Morr is , and E. W.

O 'Del l , "Tunable A laxandr i te Lasers'' IEEE. J. o f Quantum E lec t ron i cs ,

QE-16 - (12), 1303 (1980).

34. M. L. Shand and S. T. La i , "CW Laser Pumped Emerald l a s e r " I E E E J. of

Quantum E lec t ron i cs , QE-20 - ( 2 ) , 105 (1984).

35. S. T. La i , "Review o f Spectroscopic and Laser P roper t i es o f Emerald" S P I E

Vol . 622 High Power and So l i d S ta te Lasers, 146 (1986).

36. D. D. Venable and L. Brown i n Hampton Un ive rs i t y , by P r i v a t e

Communications (1987).

37. W. Koechner, "Absorbed Pump Power, Thermal P r o f i l e and Stresses i n CW

Pumped Nd:YAG C r y s t a l " Appl. Opt ics , - 9 (6) 1429 (1970).

38. J. H. Lee and W. R. Weaver, " A Solar Simulator-Pumped Atomic I o d i n e Laser"

Appl.. Phys. L e t t . - 39 ( 2 ) , 137 (1981).

69

Page 73: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

I I I . K i n e t i c Model i ng of Sol ar-Pumped Iod ine Laser

Th is r e p o r t r e l a t e s t h e work performed du r ing t h e pe r iod o f Sept. 1, 1986

through February 28, 1987. During t h i s t ime, t h e work t o cons t ruc t a k i n e t i c

model a lgo r i t hm which p r e d i c t s t h e output parameters o f a solar-pumped i o d i n e

l a s e r ( l a s i n g time, t ime t o threshold, and pulse energy) has progressed. To

t h i s da te t h e k i n e t i c model has improved such t h a t t he re i s good agreement

between t h e t h e o r e t i c a l model and t h e experimental da ta f o r t h e system, de f i ned

i n t h e prev ious progress r e p o r t as f 1 ash1 amp-pumped i o d i n e 1 aser osc i 11 a t o r

system (charac ter ized by a cy1 i n d r i c a l resonator c a v i t y and pumping t imes o f

about one mi.11 i second). The th ree experimental da ta se ts g iven graphica l l y i n

F i g . 1, 2, and 3 are f o r t h r e e iod ides i - C 3 i 7 1 , n-C4FgI, and t-C4FgI used as

l asan ts i n t h i s experimental setup. The subsequent k i n e t i c r a t e s found f o r t h e

d i f f e r e n t gases are g iven i n Table I. These k i n e t i c r a t e s are impor tant t o

es tab l i s h scal ab i 1 i ty f o r space t o space power t ransmi s s i on. By i n t r o d u c i n g t h e

heat equation, a d i f f u s i o n t ime constant, t h e pumping ra tes , and t h e

pho tod issoc ia t i on c ross-sec t ion f o r t h e th ree i od ides (May 1986 Progress

Repor t ) i n t o t h e k i n e t i c model (NASA TP-2241); t h e model has been mod i f ied t o

i ncorporate a cy1 i n d r i c a l 1 aser c a v i t y .

O f t h e t h r e e l asan ts t h e r a t e c o e f f i c i e n t s have been bes t i d e n t i f i e d f o r i

- C3F71; and as repo r ted p rev ious l y w i t h i n exper imenta l l y found bounds f o r these c o e f f i c i e n t s , a bes t f i t i s found f o r t h e da ta g iven by t h i s experiment.

To f i n d t h e best f i t t o t h e experimental da ta by t h e t h e o r e t i c a l model an

i n i t i a l I2 d e n s i t y i s in t roduced as a f u n c t i o n o f f i l l pressure (Oct. 1986

Progress Repor t ) f o r t h e t h r e e lasants. I n F ig . 2 and 3 f o r t h e gases n - C4FgI and t - C4FgI, t h e i n i t i a l I2 dens i t y i s r e t a i n e d and C3, C4, and Q2 (Table I ) are kept constant i n t h e t h e o r e t i c a l model, thereby a bes t f i t t o t h e

da ta us ing t h e i n fo rma t ion known about t h e two iod ides i s found by a d j u s t i n g

t h e r a t e c o e f f i c i e n t s . Therefore, t h e r e a c t i o n r a t e s are i d e n t i f i e d i n t h e

same system w i t h s i m i l a r i n i t i a l cond i t i onsg iv ing t h e comparative r e a c t i o n

r a t e s which are tabu la ted i n Table I.

O f t h e t h r e e i od ides t h e l e a s t i s known about t h e r a t e c o e f f i c i e n t s f o r n

- C4FgI. I n s p i t e o f t h i s , very good agreement has been obta ined between t h e

t h e o r e t i c a l p r e d i c t i o n s and t h e experimental da ta (F ig . 2) f o r t h i s gas. The

p red ic ted l a s i n g t imes are sho r te r than t h a t g iven by experiment, b u t F i g . 7, 8, and 9 show good agreement w i t h t h e t h e o r e t i c a l power ou tpu t and t h e

70

Page 74: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

. 'exper imenta l da ta f o r t h e power output, except very l a t e i n t h e pulse. The

d i f fe rence very l a t e i n t h e pulse imp l ies a pumping mechanism which remains t o

be inc luded i n t h e model , wa l l e f f e c t s are be ing i nves t i ga ted .

The i o d i d e t - C4FgI has been i d e n t i f i e d as t h e p r e f e r a b l e l asan t

m a t e r i a l . As t h e r e a c t i o n r a t e s demonstrate (Table I) , t h i s l a s a n t recyc les

eas ie r s ince t h e recombination r a t e t o t h e parent molecule i s h igher and t h e

format ion o f t h e r a d i c a l dymer i s r e l a t i v e l y small . I n F i g . 3 t h e t ime t o

t h r e s h o l d p red ic ted by t h e model i s l a t e r than t h a t o f t h e experimental da ta

f o r t h e gas t - C4FgI. Th is i m p l i e s t h a t t h e r e i s an omission i n t h e o r e t i c a l

model us ing t h e r a t e c o e f f i c i e n t s found thus f a r . On t h e r hand, as shown i n

F i g . 10, 11 and 12, t h e power output as a f u n c t i o n o f t ime agrees w i t h t h e

experimental da ta as t h e pu lse decays. Th is problem i s be ing i n v e s t i g a t e d and

w i l l be repo r ted l a t e r . (Probably i n i t i a l I2 dens i t y i s t o o l a r g e s ince t h e

system maybe c leaner . ) To " i d e n t i f y t h e r e l a t i v e c o n t r i b u t i o n o f a s p e c i f i c r e a c t i o n upon t h e ga in

i n t h e medium, t h e d e r i v a t i v e o f t h e i nve rs ion dens i t y as a f u n c t i o n o f pu lse

d u r a t i o n d i v i d e d by t h e sum o f t h e photod issoc ia t ion r a t e s i s g iven i n F ig . 13

through 21 f o r t h e t h r e e gases and o r d i f f e r e n t f i l l pressure.

f o r t h e r e a c t i o n

For instance,

h I* t R 4 R I

d I / d t = -K1 [I*] [ R I

Where t h e negat ive s i g n i n d i c a t e s a loss o f i n v e r s i o n dens i ty , where as, a

p o s i t i v e s ign would have i n d i c a t e d a pumping reac t i on .

f o r each r a t e i s g iven i n t h e key along w i t h t h e r e a c t i o n ' s s i g n (+ o r -1 . I f

t h e c o n t r i b u t i o n i s bleow i t i s omi t ted f rom t h e graph.

t h e t h e o r e t i c a l p r e d i c t i o n f o r t h e power ou tpu t normalized t o one and g iven i n

t h e key i s t h e peak power (W/cm 1. These graphs show e x p l i c i t l y t h a t quenching

by I2 t u r n s o f f t h e l a s e r - a r e a c t i o n t h a t increases a t h igher pressures.

Furthermore, t h e graphs g i v e t h e r e l a t i v e s i z e o f t h e c o n t r i b u t i o n o f each of

t h e reac t i ons t o t h e i n v e r s i o n dens i ty .

Upon examination o f F ig . 1, 2 and 3, i t can be seen t h a t by a d j u s t i n g t h e

r a t e c o e f f i c i e n t s w i t h i n t h e known bounds as repo r ted p rev ious l y i n l i t e r a t u r e

good agreement i s found f o r t h e t h e o r e t i c a l p r e d i c t i o n o f experimental data.

The r e l a t i v e peak va lue

Also shown i s

2

71

Page 75: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

Therefore, a comparison of t h e important r a t e c o e f f i c i e n t s i s accomplished

(Tabel I ) f o r these t h r e e i od ides i n the experiment des ign s t a t e d above. I n

add i t i on , t h e t h e o r e t i c a l model as found i s used t o i n d i c a t e g r a p h i c a l l y t h e

i n d i v i d u a l c o n t r i b u t i o n by each o f t h e chemical reac t i ons t o t h e i n v e r s i o n

dens i t y o f t h e l asan t , showing t h e r e l a t i v e magnitudes and t imes t h e r e a c t i o n

c o n t r i b u t e s t o t h e ou tpu t power o f t h e l ase r .

d i f f e r e n t pressures and comparing t h e t h e o r e t i c a l r e s u l t s t o t h e experimental

data.

i n a d d i t i o n t o be her understanding the k i n e t i c s . A f t e r t h i s i s accomplished

and us ing t h e in fo rmat ion about t h e k i n e t i c ra tes , t h e model w i l l be mod i f i ed

t o p r e d i c t da ta f o r o the r experimental systems. This w i l l f u r t h e r d e f i n e t h e

r e a c t i o n k i n e t i c s o f t h r e e i od ides ( i - C3F71, t - C4FgI, and n - C4FgI) and

a1 1 ow t h e es tab l i shment of sca l ab i 1 i ty o f t h e so l ar-pumped i o d i n e 1 aser f o r

space-power app l i ca t i ons .

It remains t o s imu la te m u l t i p l e pumping pulses us ing t h e same gas f i l l f o r

Th is would f u r t h e r cha rac te r i ze t h e I2 d i f f u s i o n and t h e w a l l r e a c t i o n s

72

Page 76: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

. Table I - Reaction r a t e c o e f f i c i e n t s found by f i t t i n g the d a t a shown i n f i g u r e

1 , 2 , and 3 . pub1 i shed va lues .

The r e a c t i o n r a t e s found a r e w i t h i n p rev ious ly

Reaction r a t e c o e f f i c i e n t , (cm3)'//sec

Symbol Reaction R = i -C3F7 R = n-C4Fg R = t -C4Fg

R + I* = RI 3.48 x 10-l' 7.75 1 0 - l ~ 1.66 1 0 - l ~

R + RI = R 2 + I 7.66 1 0 - l ~ 7.76 7.58 1 0 - l ~

K1 K2 K3 K4 K g

R + I = R I 1.38 x 2.88 x 1.49 x R + R = R 2 4.15 x 10-l' 6.05 x 3.56 x

I 2 + R = RI + I 6.27 1 0 - l ~ 1.94 x 2.34 x

c1 I* + I + R I = + R I 1.09 x 1 0 - ~ 3 1.11 1.09 10-33 c , I + I + R I = I, + R I 2.42 x 2.76 2.28 10-32

8 x 8 x -32 L L

c3 I * + I t 1 2 = 1 2 + 1 2 8 x 1 0

c4 I + I + = t 3.8 3.8 3.8

I* + RI = I + RI 1.08 x 1.17 x 8.45 x Ql Q2 4.96 x 4.96 x 4.96 x 10-l ' 2 I* + I 2 = I + I

. 73

Page 77: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

L i s t of i i gures

Figures 1 , 2 and 3. Theoretical predictions compared w i t h experimental d a t a

for a f 1 ash1 amp pumped 1 aser osci 11 ator w i t h cy1 i ndri cal

geometry.

Figures 4 t h r o u g h 12 . Theoretical predictions compared w i t h experimental d a t a

for the power o u t p u t for a flashlamp pumped laser

oscillator w i t h cy l indr ica l geometry for three different

iodides and three pressures.

Figures 13 th rough 21 Using the kinetic rate coefficients given i n Table I for

different iodine gases.

time of , the inversion density versus time i s plotted for

the different reactions given i n Table I . The

derivatives are renormalized t o the sum of the

photodissociation rates f o r RI and I2 and the pulse

power o u t p u t i s normalized t o i t s peak.

the derivatives and the power are given i n the key for

the different reactions.

The derivative w i t h respect t o

The peaks of

74

Page 78: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

u w - El- m - w a oc01

c3 w o L W X I

. WI-

L I. I I I m = r m cu - 0

0

0

b i (33s 13W I1 3N I Stfl

I (33s 13W I1 alOHS3t lHl

75

Page 79: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

1

(33s 13W I1 3N I SHl

Lo

b

0

b o 0 0

1%

O m o L O ~ m o - 2 0 t n ( u c u (33s 13W I1 QlOHS3YHl

0 9

0 0

0 0 cu

0 il CI

z E 0 e

w E L

1

76

Page 80: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

(33s 13WIl 3NIStJl

(33s 13W I 1 QlOHS3tlHl

1% 1

77

Page 81: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

> tx 0 W I I- tx W x 0 e tx W rn -I a

3 I 0

X

4

A

R"'

78

Page 82: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

t

ar ar 0 c- 0 cu

+ .

I

c

W

H

I- N

0

I

aJ L 3

79

Page 83: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

0 d

co

I I I I I 1 I I I I

c u o 8

4 +

1

80

Page 84: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

-10 AI- a

a a a a t-c-

m a

E E 0 I-

I n

0 00 co zr cu 0

X

00 - I

W

0

I h

4 4

tl3MOd

81

Page 85: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

-lo Jl- a

E W x 0 e

W m -l

a

a

W v) -l 3 e

E W x 0 e E W

A 2

E E 0 I-

O c\J

cu 8 0 a3 co =r c u o 8 8

r I 0

X

0

4

4

a3

W

I- cu

0

82.

Page 86: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

\

QL QL 0 I-

O =r

c u o oc) co =r cue 0 0 0

0

tl3MOd

83

Page 87: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

a a a a a a

el- 00

w w x x 00 e a w z UJW 1 0 3 e-J =3a

+ -

I n

0 00 N O a a a a a 8

41 aJ L 3 m LL -r

WMOd

84

Page 88: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

W 3 -I > Y W e

a

a

5 W X c 0 I-

> 0 W X I-

W x 0 e a W v)

J

a

a

a

a a I- L3

a W x 0 e W v3 J 3 e

a a I-

a a W x 0 e e W (I)

J a

z z 0 f-

0 cu

c u o 03 co 9 c u o s e 8 s s e

3 I 0 4

X

0 4

03 I

W

W =r>

- H

cu

0

tl3MOd

85

Page 89: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

0

QC

Page 90: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

9 I 0

X

4

1,’ 1 - m

t-l

07

Page 91: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

I

' W m W E

t-

I

H

aa

Page 92: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

Y r. cu 0 9 0 I I I r.

0 0 0 b 0 0 0

1

89

Page 93: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

8 a g k 5

% 9 : c s

9 I 0

X

0

4

4

03

r. CU 9 IJY I o b 7 e 0 I

0 0 0 b 0

90

Page 94: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

I I l l I I I

cu

0

1

Page 95: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

LLJ. (D

W

92

Page 96: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

s m

3 VJ 0 I I I

0 0 T 0

Y d c.

4 d + 0 d

0 4

0 0 4 4

93

Page 97: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

,

p:

I-- 8 s 0 (u

0 cu

94

Page 98: ,'A,' -3 6 - NASA · Abstract Direct Solar-Pumped Iodine Laser Amplifier Contents i I. Feasibility study of solar-pumped dye laser A. Introduction B. Experiment and Results

Q I- C? 0 3

9 I 0 4

X

s v) c I 0 o b Y r.

d 0 I 0 0 0 0

95