a 0.84ps-lsb 2.47mw time-to-digital converter using charge ......a 0.84ps-lsb 2.47mw time-to-digital...

23
A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu , Seungjong Lee, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan

Upload: others

Post on 21-Aug-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

A 0.84ps-LSB 2.47mW Time-to-Digital

Converter Using Charge Pump and

SAR-ADC

Zule Xu, Seungjong Lee, Masaya

Miyahara, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

Page 2: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

2Outline

• Motivation

• Issues of conventional techniques

• Proposed TDC

• Measured performance

• Conclusion

Page 3: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

3Motivation

• A fine resolution TDC contributes low in-band phase

noise to a digital PLL

• Example: fv = 4GHz, fref = 40MHz, PN = -120dBc/Hz

tres = 0.87ps !

• Delay-chain’s resolution is limited to its unit delay

fv

fref

...td td td

Dout

...

Encoder

Counter

TDC

DLF DCO

Σ

FCW fv

fref

Page 4: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

4Motivation

• For finer resolution, more energy, more area, or

more conversion times are traded off

• Is there a solution for the best balance?

0

100

200

300

400

0 0.02 0.04 0.06 0.08 0.1

Fo

M [

fJ/b

it]

Area [mm2]

5.5ps

1.25ps [JSSC`12]3.75ps

4.7ps

4.8ps Noise shaping1ps [JSSC`09]

Page 5: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

5Issues of Recent Techniques

• Vernier chain

– PVT and jitter effects

– Arbiter’s metastability

(unacceptable when

the input <= 1ps)

CK1

CK2

...td1 td1

...

...td2 td2

...D[0]

Delay

chain

CK1

CK2

Encoder

...

Dout

TADelay

chain

• Pipeline

– Nonlinearity of the time

amplifier (TA)

– Mismatch

Page 6: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

6Issues of Recent Techniques

• Stochastic

– Short linear range

– Highly dependent on

layout and process

N arbiters w/ mismatches

CK1

CK2

Dout

• Noise shaping

– Low input signal

bandwidth

– Requires a fast clock

for the counter

Σ

(Counter)

Digital-to-time

converter

QTin

Dout

CKfast

Page 7: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

7Issues of a Previous Technique

• Time-to-amplitude conversion has achieved

fine resolution but…

• Fast clock necessary

• Large capacitance

• Susceptible to

leakage

• Low speed

Dout

Counter

CKfastRST V1

Tin

I

RST

I/N

EN

Fa

lling

ed

ge

trigg

ere

d

C

M*C

V2

V1

V2

...

Tin

EN

CKfast

tres = Tckfast/(M*N)

[E.R.Ruotsalainen, et.al,

pp.1507-1510, JSSC 2000]

tres = 32ps, 0.5um BiCMOS

Page 8: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

8Time-to-Charge Conversion

• Time-to-charge conversion suggests the

potential for extremely fine resolution

ADCDout

Tin

Vout

CI RST

C 1pF

I 1mA

Vlsb 1mV

tres 1ps

tres = C*Vlsb/I

• Thermal noise restricts C and I

Page 9: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

9Thermal Noise

• Noise increases with integration time (Δt)

• Trade-off exists between power (I) and area (C)

d

m

res

lsbvn

I

g

t

V

C

tkT

4

2

A constant for transistor sizing

Crdsin2

σvn2

ΔtΔt

256 512 768 1024

0.1

0.2

0.3

0.4

0.5

t [ps]

vn [

LS

B]

tres

= 1ps, 10-bit, Vlsb

= 1mV, gm

/Id = 9

0.5pF, 0.5mA

1pF, 1mA

2pF, 2mA

Page 10: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

10Proposal

• Time-to-charge conversion on a SAR-ADC

• Short Ton is required to suppress the noise; Ton ≈

200ps in this design

SAR-ADC

Dout

...

...

Cu 2n*Cu

...

...

Cu 2n*Cu

Charge pump

...

CKadc

Vp

Vn

Ton

UP

CK2

CK1R

RDN

QD

QD

PFD

Page 11: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

11Noise and Speed

1) Thermal noise from the charge pump accumulated

during (Tin+Ton)

2) SAR-ADC should be faster than 40MS/s

Tin

Ton

CK1,CK2

UP, DN

Vp, Vn

Tin

ΔV

CKadc

Sampling Conversion Sampling

...

... ...

...

Dout

< 24ns

Dn Dn+1

~25ns

Page 12: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

12SAR-ADC

• 12-bit topology

– 10-bit ENOB@40MS/s

[email protected] power supply

[S. Lee, SSDM 2013, to be presented]

• Dynamic comparator

– Low power

• Metal-Oxide-Metal capacitor

– High density

• Same pitch of cap. and switch

– Better matching and

scalabilityUnit capacitor

and switch

Top

Bottom

MOS

SW

Top

Bottom

MOS

SW

...

Page 13: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

13Scaling of the SAR-ADC

• Down scaling lower power and smaller area

shorter range but not harmful for an integer-N PLL

• Resolution and intrinsic SNR are not degraded since

the required charges are not changed

oninpmnm

cpreslsb

diffvn

lsb

TTgg

ItCV

kT

V

1

2

12

,

2

Other

LSBs8Cu 32Cu 64Cu16Cu

Other

LSBs8Cu 16Cu

Other

LSBs

12-bit

10-bit 8-bit Unchanged Q2

Intrinsic SNR:

Page 14: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

14Charge Pump

• The CMFB matches the currents of PMOS and

NMOS

Vbp_fb

Vcp

RSTUP UP

DN

RST

UP

DNDN

DN

Vcn

Vbn VbpVcm

Φ2

Φ1

Vp Vn

UPVm

Φ1 Φ2

Settled

voltage

• Conventional

– Amplifier-based

CMFB

• Proposal

– Switched-capacitor

CMFB

– For low power and

low voltage

Reset mode

Page 15: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

15Charge Pump

• Other mismatches contribute to a static offset

• It can be canceled in the digital domain

Vbp_fb

Vcp

RSTUP UP

DN

RST

UP

DNDN

DN

Vcn

Vbn VbpVcm

Φ2

Φ1

Vp Vn

UPVm

Φ1 Φ2

Held voltage

Charging mode

-4 -3 -2 -1 0 1 2 3 40

10

20

30

40

50

(Vp-Vn) [mV]

Co

un

t

σ ≈ 1mV

Monte-Calo simulation

of the output voltage

(Δt=0, 1pF load cap.)

Page 16: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

16Implementation

• CMOS 65nm, core area = 0.06mm2

• Measurement setups

SG1

SG2

TDCLogic

analyzer

40MHz

40MHz + 5Hz

Pulse

generator

Splitter TDCLogic

analyzerΔt

~100ps rising time

Page 17: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

17Measurement

• DNL and performance summary

0 32 64 96 128 160 192 224 256

-1

0

1

DNL and INL in 8-bit with 0.84ps/LSB

DN

L [

LS

B]

0 32 64 96 128 160 192 224 256

-2

0

2

Code

INL

[L

SB

]

Performance Value

CMOS [nm] 65

Supply [V] 1.0

Conv. Rate [MS/s] 40

Power [mW] 2.47

Resolution [ps] 0.84

Range [bits] 8

DNL [LSB] -0.7/1.0

INL [LSB] -2.7/1.7

Page 18: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

18

113 114 115 116 1170

0.5

1

1.5

2

2.5x 10

5

Code

Co

un

ts

67 68 69 70 71 72 73 74 75 76 770

0.5

1

1.5

2

2.5x 10

5

Code

Co

un

ts

Measurement

• Single-shot precision: < 1LSB

• The thermal noise increases with longer input

time interval

Δt=11ps

σ=0.24LSBΔt=47ps

σ=0.45LSB

Page 19: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

19Performance Comparison

• Best balance is achieved

JSSC’10 VLSI’11 VLSI’12 ESSIRC’10 This workImproved

(Simulated)

Type Vernier Pipeline Noise Shaping Stochastic Charge Charge

CMOS [nm] 65 130 130 65 65 65

Supply [V] 1.2 1.3 1.2 1.2 1.0 1.2

Resolution [ps] 4.8 0.63 3 3 0.84 1

Range [bits] 7 11 11 4 8 10

DNL [LSB] <1 0.5 N/A 1.4 -0.7/1.0 -0.2/0.2

INL [LSB] 3.3 2 N/A 1.5 -2.7/1.7 -2.7

Frequency

[MHz]50 65

90

(OSR:16)40 40 100

Power [mW] 1.7 10.5 3.2 8 2.47 4

Area [mm2] 0.02 0.32 0.43 0.04 0.06 0.018

Page 20: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

20Energy and Area Efficiencies

• Best balance is achieved

NFrequencyPowerFoM 2//

Energy efficiency:NBWPowerFoM 2//2/or

0

100

200

300

400

0 0.02 0.04 0.06 0.08 0.1

Fo

M [

fJ/b

it]

Area [mm2]

5.5ps

1.25ps [JSSC`12]3.75ps

4.7ps

4.8ps Noise shaping1ps [JSSC`09]

0.84ps [This work]

1ps[Improved, simulated]

Page 21: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

21Conclusion

• The proposed TDC has achieved 0.84ps resolution,

2.47mW power consumption, and 0.06mm2 area

• The proposed TDC suggests the best balance

among resolution, energy, area, and conversion

times

• The proposed TDC has no issues from delay chains,

TAs, or arbiters

• The proposed TDC can be a practical solution for

digital PLLs

Page 22: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

22Acknowledgement

• This work was partially supported by

HUAWEI, Berkeley Design Automation for the

use of the Analog Fast SPICE(AFS) Platform,

and VDEC in collaboration with Cadence

Design Systems, Inc.

Page 23: A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge ......A 0.84ps-LSB 2.47mW Time-to-Digital Converter Using Charge Pump and SAR-ADC Zule Xu, Seungjong Lee, Masaya Miyahara,

23

Thank you

for your interest!

Zule Xu,

[email protected]