a 0.55 v 7-bit 160 ms/s interpolated pipeline adc …a 0.55 v 7-bit 160 ms/s interpolated pipeline...

27
James Lin , Daehwa Paik, Seungjong Lee, Masaya Miyahara, and Akira Matsuzawa Tokyo Institute of Technology, Japan A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab .

Upload: others

Post on 14-Jul-2020

40 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

James Lin, Daehwa Paik, Seungjong Lee, Masaya Miyahara, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers

Matsuzawa

& Okada LabMatsuzawa Lab.Tokyo Institute of Technology

Page 2: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

2

Outline

• Motivation

• Prior Arts

• Circuit Design

• Measurement Results

• Conclusion

Page 3: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

3

Motivation

• Ultra-low-voltage (ULV) operation

– Immediate power saving potential

– Explore new circuit techniques for future technology [1]

[1] ITRS, 2011. 2010 2015 2020 2025

0.5

0.6

0.7

0.8

0.9

1.0

Su

pp

ly v

olt

ag

e (

V)

Year

Key Challenges

• Reduced SNR

• Reduced headroom

• Reduced gain

• Increased mismatch

Page 4: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

4

Outline

• Motivation

• Prior Arts

• Circuit Design

• Measurement Results

• Conclusion

Page 5: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

Prior Arts

• Successfully demonstrated very good

energy efficiency but all suffer in speed

5 [2] S. Chatterjee et al., JSSC 2005.

[4] A. Shikata et al., JSSC 2012.

Body-Driven [2] Sub-threshold [3] SAR-based [4],[5]

[3] D. C. Daly et al., JSSC 2009.

[5] P. Harpe et al., ISSCC 2013.

Vin

CDAC

SAR LogicVbiasn

Vin

Vin

CLK

Page 6: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

6

Outline

• Motivation

• Prior Arts

• Circuit Design

• Measurement Results

• Conclusion

Page 7: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

Circuit Techniques Overview

• ADC architecture

• Dynamic amplifier

• Interpolation technique

• Sub-ADC structure

• Self-clocking scheme

7

Page 8: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

Dynamic Amplifier

• Minimally stacked amplifier achieves high

speed at low supply voltage [6]

8 [6] J. Lin, et al., ISCAS 2011.

Pd = fCVDD2

Pre-charge

Phase

Amplification

Phase

Time

Vo

lta

ge

Voutp

VoutnCLK

Voc

Vo

ut

Vo

ut

CMD: Common-mode voltage detector

CLK

Vinp Vinn

CMDVoutp Voutn

CLK

Page 9: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

ADC Block Diagram

• Ultra-low-voltage interpolated pipeline ADC

9

Vin

Vref

Sample

& CDAC

CMP1

Sample

& CDAC

IntCaps

Correction Logic

7b

D1st

(3b)

D2nd

(2b+1b)

D3rd

(2b)

IntCaps

CMP2

A1a A2a

A2b

CMP3

PS-RDACSTAGE1 STAGE2 STAGE3

A1b

Dynamic Amplifiers

Page 10: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

Interpolation Technique

• Interpolation shifts the gain requirement:

absolute relative gain accuracy [7], [8]

10 [7] A. Matsuzawa, et al., ISSCC 1990. [8] C. Mangelsdorf, et al., ISSCC 1993.

Different absolute gain, same decision levels!

Vout

Vin

Voa

Vob

V oa:V

ob =

3:1

V oa:V

ob =

1:1

V oa:V

ob =

1:3

Vout

Vin

Voa

Vob

Page 11: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

Interpolated Pipeline

• Same path for both signal and references

11

01 11 01Vrefn

Vrefp

Conventional

Vin

01 11 01Vrefn

Vrefp

Interpolation

Vin4X

4XAny Gain

Fixed references Embedded references

Page 12: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

High-Speed Dynamic Amplifier

• Dynamic amplifier with an inverter-based

CMD for high-speed operation

12

Gain = a(VDD-Voc)/Veff , 1<a<2

Vout

Vinp Vinn

CLKCLK

IntCaps IntCaps

Inverter-based

CMDfrom

PS-RDACfrom

PS-RDAC

Vxn Vxp

Page 13: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

Pseudo-Static RDAC

• Pseudo-static RDAC is proposed to calibrate

the common-mode voltage during startup

13

VRDAC

VCOM

Voc

VRDAC

CMP +

Counter

IntCaps

IntCaps

Voc=

(Voa+Vob)/2N

ex

t S

tag

ePS-RDAC

A1a

A1bTime

Target

(Vcom)Voa

Vob

AMP

V

Vxa

Vxb

CMP Interpolate

Page 14: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

Capacitive Interpolation [9]

• Absolute gain relative gain accuracy

• Interpolation is controlled by the sub-ADC

14 [9] M. Miyahara, et al., VLSI Circuits 2011.

A1a

A1b

A1a

A1b

Sampling Phase Interpolation Phase

to A2a

to A2b

Vxa

Vxb

from PS-RDAC from PS-RDAC

to A2a

to A2b

Via

Vib

Via

Vib

Vxa

Vxb

Page 15: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

Sub-ADC

• Gate-weighted interpolation comparators

with a time-based offset calibration

15

[10] Y. Asada, et al., A-SSCC 2009.

[11] M. Miyahara, et al. A-SSCC 2010.

Dynamic Comparator

A1a

A1b

3-bit sub-ADC

Gate-weighted interpolation

Vinpa Vinnb

VDD VDD

CLKP CLKN

VDD VDD

Vinpb Vinna

- +Dout

Wa Wb Wa Wb

Timing

cal.

CLK

Page 16: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

Generated CLK2 AMP CMP Hold Reset

AMP1

AMP1's Trigger

CMP2's Trigger

Output of STAGE2

AMP2

CMP2

AMP2's Trigger

Start

CMP2

Start

AMP2

Time Start CMP3

1

2

3

Generated CLK3 Reset

STAGE3

Start

CMP2

Reset

STAGE3

Self-Clocking

• Internal signals trigger the subsequent stages

to maximize speed performance [12], [13]

16 [12] J. Yang, et al., JSSC 2010. [13] R. Kapusta, et al., ISSCC 2013.

Page 17: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

17

Outline

• Motivation

• Prior Arts

• Circuit Design

• Measurement Results

• Conclusion

Page 18: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

Measured DNL and INL

• Startup calibration: timing cal. + common-mode cal.

18

0 32 64 96 128-4-3-2-101234

DN

L (

LS

B)

0 32 64 96 128-4-3-2-101234

0 32 64 96 128-4-3-2-101234

0 32 64 96 128-4-3-2-101234

INL

(L

SB

)

0 32 64 96 128-4-3-2-101234

0 32 64 96 128-4-3-2-101234

+3.8 / -1 LSB +1.7/ -0.86 LSB +0.77 / -0.47 LSB

+3.4 / -3.1 LSB

+1.5 / -0.91 LSB +0.74 / -0.66 LSB

Digital code

Uncalibrated Timing Cal. Vcm Cal.

Page 19: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

Measured SFDR and SNDR

• >38 dB of SNDR is measured up to 160 MS/s with

an ERBW >80 MHz

• Consumes 2.43 mW at 160 MS/s, FoM=240 fJ/c.-s.

19

SFDR & SNDR vs. fs SFDR & SNDR vs. fin

0 50 100 150 200

20

30

40

50

60

SF

DR

an

d S

ND

R (

dB

)

Conversion rate (MS/s)

fin = 1 MHz

SFDR

SNDR

0 20 40 60 80

20

30

40

50

60

SF

DR

an

d S

ND

R (

dB

)

Input frequency (MHz)

fs = 160 MS/s

SFDR

SNDR

Page 20: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

Clock-Scalable Power Performance

• Dynamic amplifier enables clock-

scalability in ADC’s power performance

20

0 50 100 150 2000.0

0.5

1.0

1.5

2.0

2.5

3.0

Po

we

r c

on

su

mp

tio

n (

mW

)

Conversion rate (MS/s)

Page 21: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

Chip Photo

• Prototype ADC is fabricated in 90 nm CMOS

with the low threshold and deep N-well options

• Occupied area is 0.25 mm2

21

ST

AG

E1

ST

AG

E2

ST

AG

E3

DEC

760 mm

32

0 m

m

Page 22: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

Performance Comparison

• Fastest ULV ADC compared to other state-

of-the-art ULV high-speed ADCs

22

[14] [15] [16] [17] This work

Architecture Flash Pipeline Pipeline Pipeline Pipeline

Resolution (bit) 5 8 10 12 7

Supply voltage (V) 0.6 0.5 0.5 0.6 0.55/0.5*

fs (MS/s) 60 10 10 10 160

Power (mW) 1.3 2.4 3.0 0.56 2.43

ENOB (bit) 4.01 7.7 8.5 10.8 6.0

FoM (fJ/c.-s.) 1060 1150 825 30.9 240

Technology (nm) 90 90 130 65 90

Active area (mm2) 0.11 1.44 0.98 0.36 0.25

[14] J. E. Proesel, et al., CICC 2008.

[16] Y. J. Kim, et al., CICC 2007.

[15] J. Shen, et al., JSSC 2008.

[17] S. Lee, et al., JSSC 2012.

*Analog VDD = 0.55 V, Digital VDD = 0.5 V

Page 23: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

Summary of ULV Pipeline ADC

• Proposed ADC demonstrates the feasibility

of ULV high-speed analog circuit design

23

20 30 40 50 60 70 800.01

0.1

1

10

100

1000

VDD

=0.6 V

VDD

=0.55 V

VDD

=0.5 V

VDD

=0.4 V

Co

nv

ers

ion

ra

te (

MS

/s)

SNDR (dB)

This work

JSSC 2009 [3]

CICC 2008 [14]

JSSC

2012 [17]

CICC

2007 [16]

JSSC 2008 [15]

JSSC 2012 [4]A-SSCC

2006

ISSCC 2013 [5] JSSC

2007

Page 24: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

24

Outline

• Motivation

• Prior Arts

• Circuit Design

• Measurement Results

• Conclusion

Page 25: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

Conclusion

• 0.55 V, 7-bit, 160 MS/s, 2.43 mW pipeline

ADC is realized using dynamic amplifiers

and interpolation

• Demonstrates the feasibility of ultra-low-

voltage high-speed analog circuit design

• Proposed techniques are suitable for ULV

and nominal-voltage high-speed circuits

25

Page 26: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

Acknowledgement

26

This work was partially supported by NEDO,

Huawei, Berkeley Design Automation for the use

of the Analog FastSPICE (AFS) Platform, and

VDEC in collaboration with Cadence Design

Systems, Inc.

Page 27: A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC …A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers Matsuzawa & Okada Lab Mat suzawa Lab. Tokyo Inst it

27

Thank you

for your interest!

James Lin,

[email protected]