a 0.114-mw dual-conduction class-c cmos vco …...a 0.114-mw dual-conduction class-c cmos vco with...

23
A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada , Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute of Technology, Japan 2009/6/18, VLSI Circuits, Kyoto

Upload: others

Post on 06-Jul-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

A 0.114-mW Dual-Conduction Class-C CMOS VCO

with 0.2-V Power Supply

K. Okada, Y. Nomiyama,

R. Murakami, and A. Matsuzawa

Tokyo Institute of Technology, Japan

2009/6/18, VLSI Circuits, Kyoto

Page 2: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Outline of Presentation

• Motivation

– Supply voltage scaling

– Jitter degradation

• Low-voltage VCO’s issues

• The proposed Dual-Conduction topology

– Low-power and Low-phase noise

with a very low supply voltage

• Measurement results

• Conclusions

Page 3: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Supply Voltage Roadmap

The voltage scaling is required again.

Low-voltage circuit design is challenging.

0

0.5

1

1.5

1999 2004 2009 2014 2019

Vd

d [

V]

Year

ITRS2000

ITRS2008

Leakage current

& Process fluctuation

Page 4: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Phase Noise Comparison

LC-VCO

2

0

2 2

1

offsetDD bias

nkT

V I Q

2

0

22 ( ) 1

offset

DD

DD bias DD TH

n p

VkTM

V I V V

Ring-VCO

M: #stages2

, , 3, 104 3

DD

TH n p

VV M Q

+30dB worse

[A.Mazzanti, et al., JSSC 2008]

[A.Abidi, JSSC 2006]

Page 5: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Jitter Scaling

2007 2010 2013 2016 2019 2022

Year

Ring-VCO

LC-VCO

31.6x

15

10

5

0

Clock

6J

itte

r/C

loc

k [

%]

Clo

ck

[G

Hz]

15

10

5

0

With the same power consumption, LC-VCO has much smaller jitter performance.

Vdd=0.7V

Page 6: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Clock Generation with Low Vdd

• Lowering of supply voltage is required to

realize high-speed and low-active-power

circuits.

• Jitter will become larger according to the

voltage scaling.

• Ring-VCO become infeasible due to too large

jitter or too large power consumption.

• To reduce the power consumption of the clock

generator, use of LC-VCOs is an unavoidable

way in such the low-voltage condition.

Page 7: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Low-Voltage LC-VCO

• Transformer-Feedback VCO can operate

with a low supply voltage.

• 0.5V and 0.35V VCOs are reported.

[1] K. Kwok, and H. C. Luong, JSSC 2005

• Class-C VCO archives 196dBc/Hz of

FoM.

• Startup is an issue of Class-C VCO

under the low-voltage condition.

[2] A. Mazzanti, and P. Andreani, JSSC 2008

Page 8: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Summary of This Work

• Sub-0.5V LSI

• A Dual-Conduction topology is proposed

for Class-C VCO in this work.

• It is modified to work with a very low

supply voltage.

• 0.2V VCO is realized by using a 0.18 m

CMOS process with 114 W of power

consumption.

Page 9: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Impulse Sensitivity Function (ISF)

Phase is NOT shifted

Phase is shifted

[3] A.Hajimiri, and T.Lee, JSSC 1998

ISF0

Case 1

Case 2

Voltage

Waveform

Page 10: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Ideal Current Conduction

0

ISF0

Ideal Current

0t

p n p n pConventional

LC-VCO

Page 11: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Current Conduction of Class-C VCOs

Ideal Current

0

0

p n p n pClass-C VCO

ISF0

Page 12: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Current Conduction of Class-C VCOs

0

p n p n pClass-C VCO

0

p n p n pDual-Conduction

Class-C VCO

(This work)

ISF0

Page 13: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Class-C VCO[2]

VDD

Vgbias

L

C

Ibias Ctail

InIp

0

0

Veff =Vgs –Vth

I

0

p p p

0

In n

t

t

t

t

Class-C VCO

[2] A. Mazzanti, et al.,

JSSC 2008

p n p n p

Conventional LC-VCO

Veff =Vgs –Vth

Page 14: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Condition for Class-C Operation

VDD

Veff

=Vgs –Vth

Vds

0

0 /2- /2-

[rad.]

-Vod

=Vgbias –Vth

Active region: Vds > Veff

Vod

Page 15: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Issue of Class-C VCO for Low Vdd

VDD

0

0 /2- /2-

[rad.]Vod has to be small due to the start-up problem,

so conduction angle cannot be reduced.

Veff

=Vgs –Vth

Vds

Vod-Vod

=Vgbias –Vth

Page 16: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Dual-Conduction Class-C VCO

(Proposed)VDD

Vod1>0 Vod2 0

L

C

Ids1 Ids2

for start-upfor Class-C operation

Page 17: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Dual-Conduction Current Waveform

Ids1+Ids2Dual Conduction

(proposed)

0 /2- /2- [rad]

Ids1

Vod1=0.12V ( 1=0.2 )

Vod2=0V ( 2=0.5 )

Ids2

Page 18: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Comparison of Current Waveforms

Ids1+Ids2Dual Conduction

(proposed)

Single Conduction

(conventional)

Dual Conduction realizes

a narrower current waveform.

0 /2- /2- [rad]

=0.5 & 0.2

0=0.4

Page 19: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Analytical Comparison

Vod=0.05V ( 0=0.4 )

PN: -106dBc/Hz-1MHz

Pdc: 168 W

FoM: 188dBc/Hz

Vod1=0.12V ( 1=0.2 )

Vod2=0V ( 2=0.5 )

PN: -109dBc/Hz-1MHz

Pdc: 162 W

FoM: 191dBc/Hz

( ) Vdd=0.2V, A=0.15V, Vth=0.5V, f0=5GHz, Q=10

Dual Conduction

(proposed)

Single Conduction

(conventional)

Page 20: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Chip Micrograph

• 0.18 m CMOS process

• 670 m x 440 m for core area

core area

I/O buffer

Page 21: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Phase Noise Measurement

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

10k 100k 1M 10M

Offset Frequency [Hz]

Ph

ase N

ois

e [

dB

c/H

z]

Vdd=0.2V

Vdd=0.3V

-104dBc/Hz@1MHz for 0.2V-109dBc/Hz@1MHz for 0.3V

Vgbias1=0.45, Vgbias2=0.55

f0=4.5GHz

Page 22: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Performance Comparison

[2] [1] This work

Technology0.13 m

CMOS

0.18 m

CMOS

0.18 m

CMOS0.18 m CMOS

Vdd [V] 1.0 0.5 0.35 0.3 0.2

PDC [mW] 1.3 0.57 1.46 0.159 0.114

f0 [GHz] 4.9 3.8 1.4 4.5 4.5

Phase noise

[dBc/Hz]

-130

@3MHz

-119

@1MHz

-129

@1MHz

-109

@1MHz

-104

@1MHz

FoM [dBc/Hz] 196 193 190 190 187

TopologyClass-C

(single)

Transformer

feedbackClass-C (dual)

[1] K. Kwok, et al., JSSC 2005 [2] A. Mazzanti, et al., JSSC 2008

Page 23: A 0.114-mW Dual-Conduction Class-C CMOS VCO …...A 0.114-mW Dual-Conduction Class-C CMOS VCO with 0.2-V Power Supply K. Okada, Y. Nomiyama, R. Murakami, and A. Matsuzawa Tokyo Institute

Conclusion

• A 0.2V LC-VCO is realized by using a dual-

conduction Class-C topology, which has a

smaller conduction angle than the conventional

Class-C VCO under the low supply voltage

condition.

• The significance of this work is improvement of

FoM for the low-voltage oscillators.

• A low-jitter and low-power clock generator can

be realized.

• Bias generation is a remaining issue.