9781461432616 3)_sm

Upload: lee-tin-yan

Post on 06-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 9781461432616 3)_sm

    1/151

     

    1

    Problem 11.1

    Estimate the bending moment distribution for the cases listed below. Use qualitative reasoning based on relative stiffness. Assume I constant.

    (a)

    (b)

  • 8/17/2019 9781461432616 3)_sm

    2/151

     

    2

    Problem 11.2Estimate the bending moment distribution. Use qualitative reasoning based on relative stiffness.Assume I constant.

  • 8/17/2019 9781461432616 3)_sm

    3/151

     

    3

    Problem 11.3

    Solve problem 11.1 cases (a) and (b) using moment distribution. Compare the approximate and

    exact results.

  • 8/17/2019 9781461432616 3)_sm

    4/151

     

    4

  • 8/17/2019 9781461432616 3)_sm

    5/151

     

    5

    Problem 11.4

    Consider the multi-story steel frame shown below. Determine the maximum positive and

    negative moments in the beams using the following approaches:

    (i)  Assume inflection points at .1L from each end of the beams.

    (ii) Use a computer software system. Assume g cI 2I  

  • 8/17/2019 9781461432616 3)_sm

    6/151

     

    6

    Moment diagram-

    max

    +

    max

    M 49 kN-m

    M 27.6 kN-m

     

    Problem 11.5

    Estimate the axial force, shear force, and bending moment distributions. Assume g cI 2I  

    (a)

  • 8/17/2019 9781461432616 3)_sm

    7/151

     

    7

    (b)

  • 8/17/2019 9781461432616 3)_sm

    8/151

     

    8

    Assume shear is divided equally between columns.

    Problem 11.6

    Members AC and FD are continuous. Estimate the bending moment distribution in AC and FD,

    and the axial forces in the pin ended members. Compare your results with results generated witha computer software system.

  • 8/17/2019 9781461432616 3)_sm

    9/151

     

    9

  • 8/17/2019 9781461432616 3)_sm

    10/151

     

    10

    Axial forces & reaction

  • 8/17/2019 9781461432616 3)_sm

    11/151

     

    11

    Moment distribution

    Problem 11.7

    Repeat problem 11.6 assuming fixed supports at A and F.

  • 8/17/2019 9781461432616 3)_sm

    12/151

     

    12

    Axial forces & reaction

    Moment distribution

  • 8/17/2019 9781461432616 3)_sm

    13/151

     

    13

    Problem 11.8

    Consider the steel frame shown below. Assume g cI 3 I   for all the members. Determine the

    moment at each end of each member using

    (a) The portal method.

  • 8/17/2019 9781461432616 3)_sm

    14/151

     

    14

    (b) The shear stiffness method.

  • 8/17/2019 9781461432616 3)_sm

    15/151

  • 8/17/2019 9781461432616 3)_sm

    16/151

     

    16

    XX

           C       1

    FX 2.300E+00

    XX

           C       2FX 9.398E-01

    XX

           C       4

    FX -9.398E-01

    XX

           C       3

    FX -1.782E+00

    XXG3

    FX -6.667E+00

    XX

           C       5

    FX 1.367E+00

    XXG4

    FX -3.040E+00

    XX

           C       6 FX -1.886E+00

    XXG1

    FX -7.289E+00

    XXG2

    FX -2.251E+00

     

    Axial forces( kip)

    XX

           C       1FY -2.459E+00

    XX

           C       2FY -1.749E+00

    XXG2

    FY 9.398E-01

    XX

           C       4

    FY -2.251E+00

    XXG1

    FY 1.360E+00

    XXG3

    FY 5.185E-01

    XXG4

    FY 1.886E+00

    XX

           C       6 FY -3.040E+00

    XX

           C       5

    FY -3.627E+00

    XX

           C       3

    FY -2.873E+00

     

    Shear forces (kip)

    Moment diagram (kip-ft)

  • 8/17/2019 9781461432616 3)_sm

    17/151

     

    17

    (a)

    XX

           C       1

    FX 1.694E+00

    XX

           C       2FX 5.063E-01

    XXG2

    FX -4.362E+00

    XXG1

    FX -7.690E+00

    XX

           C       3

    FX -1.010E+00

    XXG3

    FX -5.691E+00XX

           C       4

    FX -2.955E-01

    XXG4

    FX -3.073E+00

    XXG6

    FX -1.796E+00

    XXG8

    FX -4.256E-01

    XX

           C       1       0

    FX -2.582E-01

    XX

           C       9

    FX -8.080E-01

    XXG7

    FX -2.048E+00

    XX

           C       7

    FX -7.199E-01

    XX

           C       8

    FX -2.166E-01

    XXG5

    FX -3.822E+00

    XX

           C       5

    FX 8.441E-01

    XX

           C       6FX 2.640E-01

     

    Axial force (kip)

    XX

           C       1

    FX 1.694E+00FY -2.948E+00

    XX

           C       2

    FX 5.063E-01

    FY -6.378E-01

    XXG2

    FX -4.362E+00FY 5.063E-01

    XXG4

    FX -3.073E+00FY 2.108E-01

    XXG6

    FX -1.796E+00FY 4.748E-01

    XXG8

    FX -4.256E-01FY 2.582E-01

    XX

           C       1       0

    FX -2.582E-01FY -4.256E-01

    XXG7

    FX -2.048E+00FY 5.498E-01

    XX

           C       9

    FX -8.080E-01FY -2.473E+00

    XX

           C       7

    FX -7.199E-01FY -3.145E+00

    XX

           C       5

    FX 8.441E-01FY -3.146E+00

    XXG3

    FX -5.691E+00

    FY 4.730E-01 XX

           C       6

    FX 2.640E-01FY -1.277E+00 XX

           C       8

    FX -2.166E-01FY -1.370E+00XX

           C       4

    FX -2.955E-01FY -1.289E+00

    XXG1

    FX -7.690E+00FY 1.188E+00

    XX

           C       3

    FX -1.010E+00FY -3.288E+00

     

    Shear forces (kip)

  • 8/17/2019 9781461432616 3)_sm

    18/151

     

    18

    Bending moment diagram(kip-ft)

    (c) 

  • 8/17/2019 9781461432616 3)_sm

    19/151

     

    19

    XX

           C       2FX 2.003E+00

    XX

           C       1

    FX 4.911E+00

    XXG1

    FX -7.620E+00

    XX

           C       3

    FX -1.818E+00

    XXG3

    FX -4.832E+00

    XX

           C       5

    FX 1.808E+00

    XXG5

    FX -2.149E+00

    XX

           C       7

    FX -4.900E+00

    XX

           C       8

    FX -2.016E+00

    XXG6

    FX -3.178E+00XX

           C       1       0

    FX -9.926E-01

    XXG7

    FX -3.002E+00

    XX

           C       9FX 9.926E-01

    XXG2

    FX -4.884E+00

    XX

           C       4

    FX -3.577E-02

    XXG4

    FX -4.042E+00

    XX

           C       6

    FX 4.871E-02

     

    Axial forces (kip)

    XX

           C       1

    FX 4.911E+00FY -5.496E+00

    XXG1

    FX -7.620E+00FY 2.908E+00

    XX

           C       3

    FX -1.818E+00FY -6.629E+00

    XXG3

    FX -4.832E+00

    FY 1.125E+00

    XX

           C       5FX 1.808E+00

    FY -6.548E+00

    XX

           C       7

    FX -4.900E+00FY -5.327E+00

    XX

           C       8

    FX -2.016E+00FY -3.178E+00

    XXG5

    FX -2.149E+00FY 2.884E+00

    XXG6

    FX -3.178E+00FY 2.016E+00

    XXG4

    FX -4.042E+00FY 9.750E-01

    XX

           C       6

    FX 4.871E-02FY -3.866E+00

    XXG7

    FX -3.002E+00FY 9.926E-01

    XX

           C       9

    FX 9.926E-01FY -2.998E+00

    XXG2

    FX -4.884E+00FY 2.003E+00

    XX

           C       4

    FX -3.577E-02FY -3.841E+00

    XX

           C       2FX 2.003E+00

    FY -3.116E+00

     

    Shear forces (kip)

  • 8/17/2019 9781461432616 3)_sm

    20/151

     

    20

    Moment diagram (kip-ft)

    Problem 11.10

    For the steel frames shown, estimate the axial force, shear force, and moments for all of the

    members. Take 4cI 480 in   for all the columns and4

     bI 600 in   for all the beams. Use the

    Stiffness method.(a)

  • 8/17/2019 9781461432616 3)_sm

    21/151

  • 8/17/2019 9781461432616 3)_sm

    22/151

     

    22

    Problem 11.11

    Estimate the column axial forces in the bottom story for the distribution of column areas shown. 

  • 8/17/2019 9781461432616 3)_sm

    23/151

     

    23

  • 8/17/2019 9781461432616 3)_sm

    24/151

     

    24

    Problem 11.12

    Estimate the column shears for cases (a) and (b). Compare your results with computer basedsolutions.

    (a)

  • 8/17/2019 9781461432616 3)_sm

    25/151

     

    25

    (b)

  • 8/17/2019 9781461432616 3)_sm

    26/151

     

    26

  • 8/17/2019 9781461432616 3)_sm

    27/151

     

    27

  • 8/17/2019 9781461432616 3)_sm

    28/151

     

    28

    Problem 11.13

    Consider the rigid steel frame with bracing shown below. Estimate the column shears and brace

    forces. Take6 4 6 4 2

    c g bI 40(10) mm I 120(10) mm A 650 mm E 200 GPa . Compare your

    results with a computer based solution.

  • 8/17/2019 9781461432616 3)_sm

    29/151

     

    29

  • 8/17/2019 9781461432616 3)_sm

    30/151

     

    30

    Reactions and brace forces

    Column shear  

  • 8/17/2019 9781461432616 3)_sm

    31/151

     

    1

    Problem 12.1For the rigid frame shown below, use the direct stiffness method to find the joint displacements,

    and reactions for the following conditions.

    6 4

    2

    6 o

    I 240(10) mm

    A 3800 mm

    E 200 Gpa

    12(10) / F   

     

    Member m n   n   α 

    (1) 1 2 090  

    (2) 2 3 0

    Member m α  cos    sin    sin cos     2cos       2sin      

    (1) 090   0 1 0 0 1

    (2) 0 1 0 0 1 0

  • 8/17/2019 9781461432616 3)_sm

    32/151

     

    2

    2 2

    3 3 2

    2 2

    3 3 2m AA

    2 2

    2 2

    3 3

    m AB

    AE 12EI AE 12EI 6EI( cos sin ) ( )sin cos sin

    L L L L L

    AE 12EI AE 12EI 6EI= ( )sin cos ( sin cos ) cos

    L L L L L

    6EI 6EI 4EIsin cosL L L

    AE 12EI AE 12EI( cos sin ) ( ) sin cos

    L L L L

    =

     

     

     

     

    2

    2 2

    3 3 2

    2 2

    6EIsin

    L

    AE 12EI AE 12EI 6EI( )sin cos ( sin cos ) cos

    L L L L L

    6EI 6EI 2EIsin cos

    L L L

     

     

     

     

    2 2

    3 3 2

    2 2

    m BA   3 3 2

    2 2

    2 2

    3 3

    m BB

    AE 12EI AE 12EI 6EI( cos sin ) ( ) sin cos sin

    L L L L L

    AE 12EI AE 12EI 6EI= ( )sin cos ( sin cos ) cos

    L L L L L

    6EI 6EI 2EIsin cos

    L L L

    AE 12EI AE 12EI( cos sin ) ( )sin co

    L L L L

    =

     

     

     

     

    2

    2 2

    3 3 2

    2 2

    6EIs sin

    L

    AE 12EI AE 12EI 6EI( )sin cos ( sin cos ) cos

    L L L L L

    6EI 6EI 4EIsin cos

    L L L

     

     

     

     

    0 0

    0

                 

    (1) AA (1) AB (1) AA (1) AB

    (1) BA (1) BB (2) AA (2) AB (1) BA (1) BB (2) AA (2) AB

    (2) BA (2) BB (2) BA (2) BB

    k k 0 k k 00

    K = k k 0 k k = k (k +k ) k  

    0 0 0 0 k k 0 k k  

     

  • 8/17/2019 9781461432616 3)_sm

    33/151

     

    3

    1

    11 E 12 I

    E 21 22 I

     ( ) ( - - )

     

     

       

     

    '' ''

    E ' ' ' ' '' 'I11 12

     ___ 

    '' ' ' ' '' ''' ''' '' ''

    21 22E I

    'P U P|U P U P

    = ___ | ___ __ + __  P U U P

    |P U P

    K K K K 

    K K 

    K K 

     

    ' '11 12

    ' '21 22

    ( )

    0

           

    (1) BB (2) AA (1) BA (2) AB

    (1) AA(1) AB

    (2) BA   (2) BB

    k + k k k  

    k k 

    k    0 k 

    K K 

    K K 

     

    1

    1

    2

    1' ' '

    2

    3

    2

    3

    3

    u

    θ

      

      

      

             

     

     

    U U  

    1

    x 1

    y

    1' '

    x 3

    y 3

    3

    M

    M

             

     

    EP  

    (a) The loading shown

  • 8/17/2019 9781461432616 3)_sm

    34/151

     

    4

    ' ' ' '' '

    E I I

    0

    020 kN   0

    0

    40 kN 45 kN 000 22.5 kN-m

    45 kN

    22.5 kN-m

           

       

       

    P P P   U  

    Using Mathcad:

    2

    1

    2 11 E I

    2

    u   0.07056

     ( ) ( - ) -0.148

    0.0000193θ

       

       

    ' ' ' 'U P PK   

    1

    x 1

    y

    1

    E 21 I

    x 3

    y 3

    3

    R -2.12

    R  37.46

    M   2.87 

    -17.87R 

    2.53R -4.11

    M

             

    '' ' ' ''P U PK   

    (b) 

    Member 2 experiences to a uniform temperature change throughout its span. The

    temperature varies linearly through the depth, from 010 C at the top to 050 C at the

     bottom.

  • 8/17/2019 9781461432616 3)_sm

    35/151

     

    5

    um u

    62 6

    F   6

    3

    F

    62 6

    F m   6

    3

    F m

    T T   (10 50)T 30 T T T 10 (50) 40

    2 2ΔT (200)(240)(10) 40

    M EIα (12)(10) ( ) 57.6 kN-mh (10) 0.4

    ΔTM EIα 57.6 kN-m

    h

    (200)(240)(10)F EI α T (12)(10) (30) 17.28 kN

    (10)

    F EI α T 17.28 kN

    l l 

     

     

    ' ' ' '' '

    E I I

    0

    017.28 kN

    00 0 0

    17.28 kN57.6 kN-m

    0

    57.6 kN-m

     

           

       

     

    P P P   U  

    Using Mathcad:

    2

    1

    2 11 I

    2

    u   -0.0556

     ( ) ( - ) -0.0556

    0.00048θ

       

       

    ' ' 'U PK   

  • 8/17/2019 9781461432616 3)_sm

    36/151

     

    6

    1

    x 1

    y

    1

    E 21 I

    x 3

    y 3

    3

    R -14.1

    R  14.1

    M   13.5 

    14.1R 

    -14.1R 71.1

    M

             

    '' ' ' ''P U PK   

    (c) Support 1 settles 12 mm.

    ' ' ' '' '

    E I I

    0

    12 mm

    00 0 0

    0

    0

    0

       

         

     

    P P P   U  

    Using Mathcad:

    2

    1

    2 11 12

    2

    u   -0.342

     ( ) ( - ) -11.41

    0.00294θ

       

       

    ' ' ' ''U UK K   

  • 8/17/2019 9781461432616 3)_sm

    37/151

     

    7

    1

    x 1

    y

    1

    E 21 22

    x 3

    y 3

    3

    R  -86.72

    R  -149.40

    M   83.07 

    86.72R 

    149.40R -271.11

    M

             

    '' ' ' ' ''P U UK K   

    Problem 12.2

    For the rigid frame shown below, use the direct stiffness method to find the joint displacements,

    and reactions.4

    2

    2

    I 400 in

    A 10 inE 29,000 k/in

     

    Member m n   n   α 

    (1) 1 2 -   0116.56  

    (2) 2 3 0

  • 8/17/2019 9781461432616 3)_sm

    38/151

     

    8

    2 2

    3 3 2

    2 2

    3 3 2m AA

    2 2

    2 2

    3 3

    m AB

    AE 12EI AE 12EI 6EI( cos sin ) ( )sin cos sin

    L L L L L

    AE 12EI AE 12EI 6EI= ( )sin cos ( sin cos ) cos

    L L L L L

    6EI 6EI 4EIsin cosL L L

    AE 12EI AE 12EI( cos sin ) ( ) sin cos

    L L L L

    =

     

     

     

     

    2

    2 2

    3 3 2

    2 2

    6EIsin

    L

    AE 12EI AE 12EI 6EI( )sin cos ( sin cos ) cos

    L L L L L

    6EI 6EI 2EIsin cos

    L L L

     

     

     

     

    2 2

    3 3 2

    2 2

    m BA   3 3 2

    2 2

    2 2

    3 3

    m BB

    AE 12EI AE 12EI 6EI( cos sin ) ( ) sin cos sin

    L L L L L

    AE 12EI AE 12EI 6EI= ( )sin cos ( sin cos ) cos

    L L L L L

    6EI 6EI 2EIsin cos

    L L L

    AE 12EI AE 12EI( cos sin ) ( )sin co

    L L L L

    =

     

     

     

     

    2

    2 2

    3 3 2

    2 2

    6EIs sin

    L

    AE 12EI AE 12EI 6EI( )sin cos ( sin cos ) cos

    L L L L L

    6EI 6EI 4EIsin cos

    L L L

     

     

     

     

    B A

    B A B A

    0 0

    0

                 

    (1) AB (1) AA (1) A (1) A

    (1) B (1) B (2) AA (2) AB (1) B (1) B (2) AA (2) AB

    (2) BA (2) BB (2) BA (2) BB

    k k 0 k k 00

    K = k k 0 k k = k (k + k ) k  

    0 0 0 0 k k 0 k k  

     

  • 8/17/2019 9781461432616 3)_sm

    39/151

     

    9

    A B

    BA

    ' '11 12

    ' '21 22

    0

       

       

    (1) B (2) AA (1) B (2) AB

    (1) A(1) A

    (2) BA   (2) BB

    (k + k ) k k  

    k k 

    k    0 k 

    K K 

    K K 

     

    1

    11 E 12 I

    E 21 22 I

     ( ) ( - - )

     

     

       

     

    '' ''

    E ' ' ' ' '' 'I11 12

     ___ 

    '' ' ' ' '' ''' ''' '' ''21 22E I

    'P U P|U P U P

    = ___ | ___ __ + __  P U U P

    |P U P

    K K K K 

    K K K K 

     

    1

    1

    2

    1' ' '

    2

    3

    2

    3

    3

    u

    θ

      

      

      

     

           

     

     

    U U  

    1

    x 1

    y

    1' '

    x 3

    y 3

    3

    M

    M

       

         

     

    EP  

    ' ' ' '' 'E I I

    6 kip

    8 kip 0 0 0

    0

     

     

    P P P   U  

    Using Mathcad:

    2

    1

    2 11 E

    2

    u   0.00386

     ( ) ( ) -0.0062

    0.000008θ

       

       

    ' ' 'U PK   

    1

    x 1

    y

    1

    E 21

    x 3

    y 3

    3

    R 3.33

    R  7.54

    M   2.12 

    -9.33R 

    0.46R -2.36

    M

       

         

    '' ' 'P UK   

  • 8/17/2019 9781461432616 3)_sm

    40/151

     

    10

    Problem 12.3

    For the rigid frames shown below, use the direct stiffness method to find the joint displacements,and reactions.

    Member m n   n   α 

    (1) 1 2 0

    (2) 2 3 -   053.13  

    2 2

    3 3 2

    2 2

    3 3 2m AA

    2 2

    2 2

    3 3

    m AB

    AE 12EI AE 12EI 6EI( cos sin ) ( )sin cos sinL L L L L

    AE 12EI AE 12EI 6EI= ( )sin cos ( sin cos ) cos

    L L L L L

    6EI 6EI 4EIsin cos

    L L L

    AE 12EI AE 12EI( cos sin ) ( ) sin cos

    L L L L

    =

     

     

     

     

    2

    2 2

    3 3 2

    2 2

    6EIsin

    L

    AE 12EI AE 12EI 6EI( )sin cos ( sin cos ) cosL L L L L

    6EI 6EI 2EIsin cos

    L L L

     

     

     

     

  • 8/17/2019 9781461432616 3)_sm

    41/151

     

    11

    2 2

    3 3 2

    2 2

    m BA   3 3 2

    2 2

    2 2

    3 3

    m BB

    AE 12EI AE 12EI 6EI( cos sin ) ( ) sin cos sin

    L L L L L

    AE 12EI AE 12EI 6EI= ( )sin cos ( sin cos ) cos

    L L L L L

    6EI 6EI 2EIsin cosL L L

    AE 12EI AE 12EI( cos sin ) ( )sin co

    L L L L

    =

     

     

     

     

    2

    2 2

    3 3 2

    2 2

    6EIs sin

    L

    AE 12EI AE 12EI 6EI( )sin cos ( sin cos ) cos

    L L L L L

    6EI 6EI 4EIsin cos

    L L L

     

     

     

     

    0 0

    0

                 

    (1) AA (1) AB (1) AA (1) AB

    (1) BA (1) BB (2) AA (2) AB (1) BA (1) BB (2) AA (2) AB

    (2) BA (2) BB (2) BA (2) BB

    k k 0 k k 00

    K = k k 0 k k = k (k +k ) k  

    0 0 0 0 k k 0 k k  

     

    1

    11 E 12 I

    E 21 22 I

     ( ) ( - - )

     

         

     

    ' ' ''E ' ' ' ' '' 'I11 12

     ___ 

    '' ' ' ' '' ''' ''' '' ''21 22E I

    'P U P|U P U P

    = ___ | ___ __ + __  P U U P

    |P U P

    K K K K 

    K K K K 

     

    (a)

  • 8/17/2019 9781461432616 3)_sm

    42/151

     

    12

    1

    x 1

    2

    y

    2' ' ' ' ' ' '' '

    1 E I I

    2

    x 33

    y 3

    u   20 kN

    R  00 M 0 0

    θ   0R 

    θ   0R 

      

             

             

     

     

    EP P P PU U

    Using Mathcad:

    Expand the matrix K

       

         

    (1) AA (1) AB

    (1) BA (1) BB (2) AA (2) AB

    (2) BA (2) BB

    k k 0

    K = k (k + k ) k  

    0 k k 

     

    2

    2   1

    11 E

    2

    3

    u   0.076

    0.056 ( ) ( )

    θ   0.0000015

    -0.000029θ

      

           

     

    ' ' 'U PK   

  • 8/17/2019 9781461432616 3)_sm

    43/151

     

    13

    1

    x 1

    y

    1 E 21

    x 3

    y 3

    R -19.78

    R  -0.16

    M -0.41

    -0.22R 

    0.16R 

           

     

    '' ' 'P UK   

    (b)

    1

    x 1

    y

    2

    1' ' ' ' ' ' '' '

    2 E I I

    x 32

    y 3

    3

    R 0

    R  75kNu 0

    M   62.5 kN0 0 75 kN

    0R θ   -62.5 kN

    0R 

    0M

      

                       

     

    EP P P PU U

     ' '11 12

    ' '21 22

    0

           

    (1) BB (2) AA (1) BA (2) AB

    (1) AA(1) AB

    (2) BA   (2) BB

    (k + k ) k k  

    k k 

    k    0 k 

    K K 

    K K 

     

  • 8/17/2019 9781461432616 3)_sm

    44/151

     

    14

    Using Mathcad: 

    2

    1

    2 11 I

    2

    u   -0.22

     ( ) ( - ) -0.58

    0.0012θ

       

       

    ' ' 'U PK   

    1

    x 1

    y

    1

    E 21 I

    x 3

    y 3

    3

    R 57.56

    R  86.09

    M   82.46  57.56

    -57.56R 

    63.91R 11.49

    M

             

    '' ' ' ''P U PK   

    Problem 12.4

    For the rigid frame shown, use partitioning to determine   '11K  ,'21

    K    'EP , and  '

    IP  for the loadings

    shown. 6 4I 40(10) mm , A=3000 2mm , and E=200 GPa.

    Member m n   n   α 

    (1) 1 4 0

    (2) 2 4 0180  

    (3) 3 4 090  

  • 8/17/2019 9781461432616 3)_sm

    45/151

     

    15

    2 2

    3 3 2

    2 23 3 2m AA

    2 2

    2 2

    3 3

    m AB

    AE 12EI AE 12EI 6EI( cos sin ) ( )sin cos sin

    L L L L L

    AE 12EI AE 12EI 6EI= ( )sin cos ( sin cos ) cosL L L L L

    6EI 6EI 4EIsin cos

    L L L

    AE 12EI AE 12EI( cos sin ) ( ) sin cos

    L L L L

    =

     

     

     

     

    2

    2 2

    3 3 2

    2 2

    6EIsin

    L

    AE 12EI AE 12EI 6EI( )sin cos ( sin cos ) cos

    L L L L L

    6EI 6EI 2EIsin cosL L L

     

     

     

     

    2 2

    3 3 2

    2 2

    m BA   3 3 2

    2 2

    2 2

    3 3

    m BB

    AE 12EI AE 12EI 6EI( cos sin ) ( ) sin cos sin

    L L L L L

    AE 12EI AE 12EI 6EI= ( )sin cos ( sin cos ) cos

    L L L L L

    6EI 6EI 2EIsin cos

    L L L

    AE 12EI AE 12EI( cos sin ) ( )sin co

    L L L L

    =

     

     

     

     

    2

    2 2

    3 3 2

    2 2

    6EIs sin

    L

    AE 12EI AE 12EI 6EI( )sin cos ( sin cos ) cos

    L L L L L

    6EI 6EI 4EIsin cos

    L L L

     

     

     

     

  • 8/17/2019 9781461432616 3)_sm

    46/151

     

    16

    3 3

    3 3

    3 3

    0 0 0 0 0 0 0

    0 0

    0 0 0 0

    0

    (1) AA (1) AB

    (2) AA (2) AB

    ( ) AA ( ) AB

    (1) BA (1) BB (2) BA (2) BB ( ) BA ( ) BB

    (1) AA (1) AB

    (2) AA (2) AB

    ( ) AA (

    k 0 k 0 0

    0 k 0 k 0 00 0 0 0K =

    0 0 k k  0 0 0 0 0 0 0 0

    k 0 k k 0 k k k  

    k 0 k 

    0 k 0 k  

    0 0 k k  

    2 3 3

    ( )

                 

    ) AB

    (1) BA ( ) BA ( ) BA (1) BB (2) BB ( ) BB

    k k k k k k  

     

    3

    2 3

    3

    3

    '11

    '12

    '21

    '22

    ( )

    0

             

    (1) BB (2) BB ( ) BB

    (1) BA ( ) BA ( ) BA

    (1) AB

    (2) AB

    ( ) A B

    (1) AA

    (2) AA

    ( ) A A

    k k k 

    k k k 

    k 0

    0 k 0

    0 0 k 

     

    ' '

    E I

    0 0

    0 84 kN

    16 kN-m   84kN-m

     

    P P  

    Problem 12.5

    For the truss shown, use the direct stiffness method to find the joint displacements, reactions, and

    member forces.2A 1200 mm

    E 200 GPa

     

  • 8/17/2019 9781461432616 3)_sm

    47/151

     

    17

    Member m n

      n

      α  L (m)(kN/mm)

     AE 

     L  

    (1) 1 2 051.34   6.4 37.5

    (2) 1 3 0 8 30

    (3) 3 2 0128.66   6.4 37.5

    3 3

    3 3

    3 3

    3

    0 0 0

    0 0 0 0

    0

    ( )

    ( )

    (

         

         

    (1) AA (1) AB (2) AA (2) AB

    (1) BA (1) BB ( ) AA ( ) AB

    (2) BA (2) BB( ) BA ( ) BB

    (1) AA (2) AA (1) AB (2) AB

    (1) BA (1) BB ( ) AA ( ) AB

    (2) BA ( ) BA (2) B

    k k 0 k k   0

    K = k k 0 k k  

    k k 0 0 0 0 k k  

    k k k k  

    = k k k k  

    k k k 3

      )

             

      B ( ) BBk 

     

    2

    ( ) ( ) (m)

    (m)AA (m)BB ( ) ( )   2

    (m) (m) ( )

    2

    ( ) ( ) (m)

    (m)AB (m)BA ( ) ( )   2

    (m) (m) ( )

    cos α sinα cosαAE( )

    sinα cosα sin αL

    cos α sinα cosαAE( )

    sinα cosα sin αL

    m m

    m m

    m

    m m

    m m

    m

     

     

    k k k 

    k k k 

     

  • 8/17/2019 9781461432616 3)_sm

    48/151

     

    18

    (m) (m)

    F

    B ( ) (m) (m) B-+ nn

    AEF ( ) cos sin ( ) F

    L  m    

      U U  

    1

    11 E 12 I

    E 21 22 I

     ( ) ( - - )

     

         

     

    ' ' ''E ' ' ' ' '' 'I11 12

     ___ 

    '' ' ' ' '' ''' ''' '' ''21 22E I

    'P U P|U P U P

    = ___ | ___ __ + __  P U U P

    |P U P

    K K K K 

    K K K K 

     

    2' ' ' '

    E I I

    2

    u   30 kN0 0 0

    50 kN  

     

         

    ' ''P P PU U  

    Using Mathcad: 

    1

    2   1

    11 E

    2

    x 1

    y

    E 21

    x 3

    y 3

    u   0.04 ( )

    -0.043

    R 5

    R    6.25 

    -35R 

    43.75R 

      

       

     

    ' ' '

    '' ' '

    U P

    P U

     

    (1)

    (2)

    (3)

    B (1) (1) (1)

    B (2) (2) (2)

    B (3) (3) (3)

    -+

    -+

    -+

    nn

    nn

    nn

    AEF ( ) cos sin ( ) 8

    L

    AEF ( ) cos sin ( ) 0

    L

    AEF ( ) cos sin ( ) 56

    L

     

     

     

    U U

    U U

    U U

     

    Problem 12.6

    For the truss shown, use the direct stiffness method to find the joint displacements, reactions, and

    member forces for

  • 8/17/2019 9781461432616 3)_sm

    49/151

     

    19

    2A 2 in

    E 29,000 ksi

     

    Member m n   n   α  L (ft) (kip/in.) AE 

     L 

    (1) 1 2 053.13   20 241.67

    (2) 4 2 0 16 302.1

    (3) 3 2 0126.87   22.63 213.58

    3 3

    3 3

    0 0 0 0 0 0 0

    0 0

    0

    0 0 00 0 0

    0

    ( )

    (1) AA (1) AB

    (2) AB (2) AA(1) BA (1) BB

    ( ) AB ( ) AA

    (2) BB (2) BA ( ) BB ( ) BA

    (1) AA (1) AB

    (1) BA (1) BB (2) AB (2

    k k 0 0 0

    0 k 0 k 0 0k k 0 0K =

    0 k k 0 0 0 00 0 0 0

    k 0 k k k  0

    k k 0

    k k k 0 k  

    3 3

    3 3

    0

    0 ( )

                 

    ) AA

    ( ) AB ( ) AA

    (2) BB ( ) BB ( ) BA (2) BA

    0 k k 

    k k k k  

     

  • 8/17/2019 9781461432616 3)_sm

    50/151

     

    20

    2

    ( ) ( ) (m)

    (m)AA (m)BB ( ) ( )   2

    (m) (m) ( )

    2

    ( ) ( ) (m)

    (m)AB (m)BA ( ) ( )   2

    (m) (m) ( )

    cos α sinα cosαAE( )

    sinα cosα sin αL

    cos α sinα cosαAE

    ( ) sinα cosα sin αL

    m m

    m m

    m

    m m

    m m

    m

     

     

    k k k 

    k k k 

     

    (m) (m)

    F

    B ( ) (m) (m) B-+ nn

    AEF ( ) cos sin ( ) F

    L  m    

      U U  

    1

    11 E 12 I

    E 21 22 I

     ( ) ( - - )

     

     

       

     

    '' ''

    E ' ' ' ' '' 'I11 12

     ___ 

    '' ' ' ' '' ''' ''' '' ''21 22E I

    'P U P|U P U P

    = ___ | ___ __ + __  P U U P

    |P U P

    K K K K 

    K K K K 

     

    (a) The loading shown

    2' ' ' '

    E I I

    2

    u   6 kip0 0 0

    10 kip  

     

         

    ' ''P P PU U  

    1

    2   1

    11 E

    2

    x 1

    y

    x 3

    E 21y 3

    x 4

    y 4

    u   -0.03 ( )

    -0.017

    4.62R 6.16

    R 1.37

     R -1.37

    0R 5.2

      

       

     

    ' ' '

    '' ' '

    U P

    P U

     

    (1)

    (2)

    (3)

    B (1) (1) (1)

    B (2) (2) (2)

    B (3) (3) (3)

    -+

    -+

    -+

    nn

    nn

    nn

    AEF ( ) cos sin ( ) -7.7

    L

    AEF ( ) cos sin ( ) -5.2

    L

    AEF ( ) cos sin ( ) 1.94

    L

     

     

     

    U U

    U U

    U U

     

  • 8/17/2019 9781461432616 3)_sm

    51/151

     

    21

    (b) A support settlement of 0.5 inch at joint 4

    2' ' '   '

    E I I

    2

    0

    0

    u   00 0 0

    0

    0

    .5 in

      

             

       

       

    ' ''P P PU U  

    1

    2   1

    11 12

    2

    x 1

    y

    x 3

    E 21 22y 3

    x 4

    y 4

    u   0.0127 ( ) ( - )

    -0.268

    30R 40

    R -30

     R  30

    0R -70

      

       

     

    ' ' ' ''

    '' ' ' ' ''

    U U

    P U U

    K K 

    K K 

     

    (1)

    (2)

    (3)

    B (1) (1) (1)

    B (2) (2) (2)

    B (3) (3) (3)

    -+

    -+

    -+

    nn

    nn

    nn

    AEF ( ) cos sin ( ) -50

    L

    AEF ( ) cos sin ( ) 70

    L

    AEF ( ) cos sin ( ) -42.4

    L

     

     

     

    U U

    U U

    U U

     

    Problem 12.7For the truss shown, use the direct stiffness method to find the joint displacements, reactions, and

    member forces due to (a) the loading shown, (b) a temperature decrease of 0C10 for all members,

    (c) a support settlement of δ = 12 mm downward at node 4.2

    -6 0

    A 1200 mm

    E 200 GPa

    12x10 /C

    h 3 m

     

     

  • 8/17/2019 9781461432616 3)_sm

    52/151

     

    22

    Member m n   n   α  L (m)

    (kN/mm)

     AE 

     L  (1) 2 1 045   4.24 56.6

    (2) 3 1 0 3 80

    (3) 4 1 0135   4.24 56.6

    A 3 3

    3 3

    A 3 3

    0 0 0 0

    0 0 0 0

    0 0 0

    0 00 0 0 0 0 0

    ( )

    (1) A (1) AB (2) AA (2) AB ( ) AA ( ) AB

    (1) BA (1) BB

    (2) BA (2) BB

    ( ) BA ( ) BB

    (1) A (2) AA ( ) AA (1) AB (2) AB ( ) A

    k k 0 k k k 0 k  

    k k 0 0 0 0 0 0K =

    k 0 k 0 00 0 0 0

    k k 0 0

    k k k k k k  

    3 3

    0

    0 0

    0 0

                 

    B

    (1) BA (1) BB

    (2) BA (2) BB

    ( ) BA ( ) BB

    k k 0

    k k 

    k k 

     

  • 8/17/2019 9781461432616 3)_sm

    53/151

     

    23

    1

    11 E 12 I

    E 21 22 I

     ( ) ( - - )

     

     

       

     

    '' ''

    E ' ' ' ' '' 'I11 12

     ___ 

    '' ' ' ' '' ''' ''' '' ''21 22E I

    'P U P|U P U P

    = ___ | ___ __ + __  P U U P

    |P U P

    K K K K 

    K K K K 

     

    A 3

    3

    3

    3

    ( )

    0

    0 0

    0 0

             

    11 (1) A (2) AA ( ) AA

    '

    12 (1) AB (2) AB ( ) AB

    (1) BA

    '

    21 (2) BA

    ( ) BA

    (1) BB

    '

    22 (2) BB

    ( ) BB

    ' k k k 

    k k k 

    k 0

     

    2

    ( ) ( ) (m)

    (m)AA (m)BB ( ) ( )   2

    (m) (m) ( )

    2

    ( ) ( ) (m)

    (m)AB (m)BA ( ) ( )   2

    (m) (m) ( )

    cos α sinα cosαAE( )

    sinα cosα sin αL

    cos α sinα cosαAE( )

    sinα cosα sin αL

    m m

    m m

    m

    m m

    m m

    m

     

     

    k k k 

    k k k 

     

    (m) (m)

    F

    B ( ) (m) (m) B-+ nn

    AEF ( ) cos sin ( ) F

    L  m    

      U U  

    (a)

    1' ' '   '

    E I I

    1

    u   27 kN0 0 0

    45 kN  

           

    ' ''P P PU U  

    Using Mathcad: 

  • 8/17/2019 9781461432616 3)_sm

    54/151

     

    24

    1   1

    11 E

    1

    x 2

    y 2

    x 3

    E 21y 3

    x 4

    y 4

    u   0.477 ( ) ( )

    0.33

    -22.82R  -22.82

    R 0

     R -26.36

    -4.18R 4.18

      

       

     

    ' ' '

    '' ' '

    U P

    P U

     

    (1)

    (2)

    (3)

    B (1) (1) (1)

    B (2) (2) (2)

    B (3) (3) (3)

    -+

    -+

    -+

    nn

    nn

    nn

    AE

    F ( ) cos sin ( ) 32.27L

    AEF ( ) cos sin ( ) 26.36

    L

    AEF ( ) cos sin ( ) -5.91

    L

     

     

     

    U U

    U U

    U U

     

    (b)

    F 6F EA α ΔT (200)(1200)(12)(10) (10) 28.8 kNl   

  • 8/17/2019 9781461432616 3)_sm

    55/151

     

    25

    1' ' '   '

    E I I

    1

    20.36 kN20.36 kN

    u   0 00 0

    49.18 kN 28.8 kN

    20.36 kN

    20.36 kN

      

       

       

    ' ''P P PU U

     

    Using Mathcad: 

    1   1

    11 E I

    1

    x 2

    y 2

    x 3

    E 21 Iy 3

    x 4

    y 4

    u   0 ( ) ( - )

    -0.51

    -5.96R 

    -5.96R 

    0

     R  11.93

    5.96R -5.96

      

       

     

    ' ' ' '

    '' ' ' ''

    U P P

    P U P

     

  • 8/17/2019 9781461432616 3)_sm

    56/151

     

    26

    (1)

    (2)

    (3)

    B (1) (1) (1)

    B (2) (2) (2)

    B (3) (3) (3)

    -+

    -+

    -+

    nn

    nn

    nn

    AEF ( ) cos sin ( ) 8.43

    L

    AEF ( ) cos sin ( ) -11.93

    L

    AEF ( ) cos sin ( ) 8.43L

     

     

     

    U U

    U U

    U U

     

    (c)

    1' ' '   '

    E I I

    1

    0

    0

    u   00 0 0

    0

    0

    12 mm

      

             

       

       

    ' ''P P PU U  

    Using Mathcad: 

    1   1

    11 12

    1

    x 2

    y 2

    x 3

    E 21 22y 3

    x 4

    y 4

    u   6.0 ( ) ( - )

    -2.485

    -99.4R -99.4

    R 0

     R 198.8

    99.41R  -99.41

      

       

     

    ' ' ' ''

    '' ' ' ' ''

    U U

    P U U

    K K 

    K K 

     

    (1)

    (2)

    (3)

    B (1) (1) (1)

    B (2) (2) (2)

    B (3) (3) (3)

    -+

    -+

    -+

    nn

    nn

    nn

    AEF ( ) cos sin ( ) 140.59L

    AEF ( ) cos sin ( ) -198.82

    L

    AEF ( ) cos sin ( ) 140.59

    L

     

     

     

    U U

    U U

    U U

     

  • 8/17/2019 9781461432616 3)_sm

    57/151

     

    27

    Problem 12.8

    For the truss shown, determine   '11K   and'21

    K  .2A 2000 mm

    E 200 GPa

     

    Member m n   n   α  L (m) (kN/mm) AE 

     L 

    (1) 1 2 0 6 66.67

    (2) 4 2 090   5 80

    (3) 3 2 0135   7.07 56.58

    2

    ( ) ( ) (m)

    (m)AA (m)BB ( ) ( )   2

    (m) (m) ( )

    2

    ( ) ( ) (m)

    (m)AB (m)BA ( ) ( )   2

    (m) (m) ( )

    cos α sinα cosαAE( )

    sinα cosα sin αL

    cos α sinα cosαAE( )

    sinα cosα sin αL

    m m

    m m

    m

    m m

    m m

    m

     

     

    k k k 

    k k k 

     

  • 8/17/2019 9781461432616 3)_sm

    58/151

     

    28

    3 3

    3 3

    3

    0 0 0 0 0 0 0

    0

    0

    00 0 0 0 0 0 0

    0

    (

    (1) AA (1) AB

    (2) AA (2) AB ( ) AA ( ) AB(1) BA (1) BB

    ( ) BA ( ) BB

    (2) BA (2) BB

    (1) AA (1) AB

    (1) BA (1) BB (2) AA ( )

    k k 0 0 0

    0 k 0 k 0 k k  k k 0 0K =

    0 0 0 0 0 k k  0 0 0 0

    k 0 k 0

    k k 0

    k k k k  3

    3 3

    )

    0

    0

                 

    AA ( ) AB (2) AB

    ( ) BA ( ) BB

    (2) BA (2) BB

    k k 

    0 k k 

    k 0 k 

     

    3 3

    3 3

    0

    ( )

    0

    0

     

               

    (1) AA (1) AB

    (1) BA (1) BB (2) AA ( ) AA ( ) AB (2) AB

    ( ) BA ( ) BB

    (2) BA (2) BB

    k k 0

    k k k k k k  

    0 k k 

    k 0 k 

     

    3

    3

    ( )

    11 (1) BB (2) AA ( ) AA

    (1) AB'

    21 ( ) BA

    (2) BA

    'k k k 

     

    Problem 12.9

    For the truss shown, determine   '11K   and'22K  .

    2A 3 in

    E 29,000 ksi

     

  • 8/17/2019 9781461432616 3)_sm

    59/151

     

    29

    Member m n   n   α  L (ft) (kip/in.) AE  L

     

    (1) 1 2 037.57   32.8 221

    (2) 2 3 -   0116.56   22.36 324.2

    (3) 1 3 0 16 453

    3 3

    3 3

    3 3

    3

    0 0 0

    0 0

    00

    ( )

    ( )

    (

             

    (1) AA (1) AB ( ) AA ( ) AB

    (1) BA (1) BB (2) AA (2) AB

    ( ) BA ( ) BB(2) BA (2) BB

    (1) AA ( ) AA (1) AB ( ) AB

    (1) BA (1) BB (2) AA (2) AB

    ( ) BA (2) BA (2) B

    k k 0 k 0 k  

    K = k k 0 0 k k 0

    k k 0 0 0 k k  

    k k k k  

    k k k k  

    k k k 3

      )

             

      B ( ) BBk 

     

    Expand the K  matrix.

  • 8/17/2019 9781461432616 3)_sm

    60/151

     

    30

    ' ' '

    ' ' '

    ' ' '

    11 12 13

    21 ( 22 k) 23

    31 32 33

    k k k 

    k k k 

    k k k 

       

         

    11

    'K   

    Problem 12.10

    For the beam shown, use the direct stiffness method to find the joint displacements, reactions,

    and member forces for the loading shown.  

    4I 300 in

    E 29,000 ksi

     

    3 2   3 2

    AA AB

    2   2

    3 2 3 2

    BA BB

    2 2

    12EI 6EI   12EI 6EI-

    L L   L L

    6EI 4EI   6EI 2EI-

    L L   L L

    12EI 6EI 12EI 6EI- - -

    L L L L

    6EI 2EI 6EI 4EI-

    L L L L

     

    k k 

    k k 

     

  • 8/17/2019 9781461432616 3)_sm

    61/151

     

    31

    F

    A AB B AA A A

    F

    B BB B BA A B

     = +

    = +

    P k U k U P

    P k U k U P 

                           

    (1) AA (1) AB (1) AA (1) AB

    (1) BB (2) AA (2) AB (1) BB (2) AA (2) AB(1) BA (1) BA

    (2) BA (2) BB (2) BA (2) BB

    k k 0 k k 00 0 0

    K k k 0 0 k k k (k + k ) k  

    0 k k 0 0 0 0 k k  

     

    1

    11 E 12 I

    E 21 22 I

     ( ) ( - - )

     

     

       

     

    '' ''

    E ' ' ' ' '' 'I11 12

     ___ 

    '' ' ' ' '' ''' ''' '' ''21 22E I

    'P U P|U P U P

    = ___ | ___ __ + __  P U U P

    |P U P

    K K K K 

    K K K K  

    y 1

    1

    ' ' ' ' ' '' '

    2 E E y 2 I I

    y 3

    3

    '

    R  34.6 kip

    M   260 kip-ft

    θ 0 0 R -185 kip-ft 39.6 kip

    5 kipR 

    75 kip-ftM

     

    P P P PU U

     1

    11 I

    E 21 I

     ( ) ( - )

     

     

    ' ' '

    '' ' ' ''

    U P

    P U P

    K  

    Problem 12.11

  • 8/17/2019 9781461432616 3)_sm

    62/151

     

    32

    For the beam shown, use the direct stiffness method to find the joint displacements, reactions,

    and member forces for

    a) The loading shown

     b) A support settlement of 12 mm at joint 2

    6 4I 120(10) mm

    E 200 GPa

     

    3 2   3 2

    AA AB

    2   2

    3 2 3 2

    BA BB

    2 2

    12EI 6EI   12EI 6EI-

    L L   L L

    6EI 4EI   6EI 2EI-

    L L   L L

    12EI 6EI 12EI 6EI- - -

    L L L L6EI 2EI 6EI 4EI

    -L L L L

     

    k k 

    k k 

     

  • 8/17/2019 9781461432616 3)_sm

    63/151

     

    33

    F

    A AB B AA A A

    F

    B BB B BA A B

     = +

    = +

    P k U k U P

    P k U k U P 

    3 3

    3 3

    0 0 0 0

    0 0

    ( )

       

               

             

    (1) AA (1) AB

    (2) AA (2) AB(1) BB(1) BA

    ( ) AA ( ) AB(2) BA (2) BB

    ( ) BA ( ) BB

    (1) AA (1) AB

    (1) BB (2) AA (2) AB(1) BA

    (

    k k 0 0   0 0 0 0

    0 k k 0 0 0k k 0 0K 

    0 0 k k  0 k k 00 0 0 0

    0 0 k k  0 0 0 00 0 0 0

    k k 0 0

    k k k k 0

    0 k  3 3

    3 3

    ( )

               

       

    2) BA (2) BB ( ) AA ( ) AB

    ( ) BA ( ) BB

    k k k 

    0 0 k k  

     

    1

    1

    2

    2

    3

    3

    θ

    θ

      

      

      

    U  2

    3

    '   θ=θ

    U   'E   0P  

    Problem 12.12

    Given the system matrix listed below. Determine   '11K  ,'21K  ,

    ''U , ''I'I ,P P ,

    '

    EP and  ''

    EP for the

    loading and displacement constraint shown. L= 30 ft, 4I 300 in , and E=29,000 ksi.

  • 8/17/2019 9781461432616 3)_sm

    64/151

     

    34

    3 2 3 2

    2 2

    3 2 3 3 2

    2 2

    3 2 3 2

    2 2

    12EI 6EI 12EI 6EI0 0

    L L L L6EI 6EI

    - 0L L

    12EI 6EI 24EI 12EI 6EI- - 0 -

    L L L L L 

    6EI   6EI0   -L   L

    12EI 6EI 12EI 6EI0 0 - - -

    L L L L

    6EI 6E

    4EI 2EI0

    L L

    2EI   8EI 2EI

    L   L L

    2EI 4EI0   I0L   L

    -L   L

     

    K   

    1

    1

    2

    2

    3

    3

    θ

    θ

      

      

      

    U  

       

    '' ''

    EI11 12

     ___ 

    ' ''' '' ''21 22E I

    'P U P|

    = ___ | ___ __ + __  

    |P U P

    K K 

    K K  

  • 8/17/2019 9781461432616 3)_sm

    65/151

     

    35

    4EI 2EI0

    L L

    2EI 8EI 2EI

    L L L

    2EI 4EI0L L

     

    11

    'K   

    2 2

    2 2

    2 2

    6EI 6EI0

    L L

    6EI 6EI- 0

    L L

    6EI 6EI0 - -L L

     

    '

    21K   

    1

    2

    3

    θ   0

    θ 0

    0.25 inθ

     

    ' ''U U  

    0

    10 kip-ft

    0

    '

    EP  

    I

    51.84 kip-ft

    0

    -51.84 kip-ft

     

    'P   I

    5.184 kip

    13.632 kip

    5.184 kip

     

    ''P  

    Problem 12.13

    Investigate the effect of varying the spring stiffness on the behavior (moment and deflected

     profile) of the structure shown below. Consider a range of values of k v.

    6 4

    18 kN/mmm

    I 120(10) mm , E 200 GPa and k 36 kN/mm

    90 kN/mm

    v

     

     

  • 8/17/2019 9781461432616 3)_sm

    66/151

  • 8/17/2019 9781461432616 3)_sm

    67/151

     

    37

                         

     

    (1) AA (1) AB (1) AA (1) AB

    (1) BB (2) AA (2) AB (1) BB (2) AA (2) AB(1) BA (1) BA

    (2) BA (2) BB (2) BA (2) BB

    k k 0 k k 00 0 0

    K k k 0 0 k k k (k + k ) k  

    0 k k 0 0 0 0 k k  

     

    2

    2

    θ0

      

    ' ''U U  

    'E   = 14 kN-mP  

    Problem 12.14 Determine the bending moment and deflection profiles for the following structures.

    Take   4I 300 in , 2CableA 3 in , and2E 29,000 k/in .

    2

    (2) (2) (2)Cable

    (2)AA (2)BB (2) 2   2(2) (2) (2)Cable

    2

    (2) (2) 2)Cable(2)AB (2)BA (2) 2   2

    (2) (2) (2)Cable

    cos α sinα cosαA E( )

    sinα cosα sin αL

    cos α sinα cosαA E( )

    sinα cosα sin αL

     

     

    k k k 

    k k k 

     

    3 2   3 2

    AA AB

    2   2

    3 2 3 2

    BA BB

    2 2

    12EI 6EI   12EI 6EI-

    L L   L L

    6EI 4EI   6EI 2EI-

    L L   L L

    12EI 6EI 12EI 6EI- - -

    L L L L

    6EI 2EI 6EI 4EI-

    L L L L

     

    k k 

    k k 

     

  • 8/17/2019 9781461432616 3)_sm

    68/151

     

    38

    F

    A AB B AA A A

    F

    B BB B BA A B

     = +

    = +

    P k U k U P

    P k U k U P 

    1

    11 E 12 I

    E 21 22 I

     ( ) ( - - )

     

         

     

    '' ''E ' ' ' ' '' 'I11 12

     ___ 

    '' ' ' ' '' ''' ''' '' ''21 22E I

    'P U P| U P U P= ___ | ___ __ + __  

    P U U P|P U P

    K K  K K 

    K K K K 

     

    Case (a)

  • 8/17/2019 9781461432616 3)_sm

    69/151

     

    39

    3 2 3 2

    2 2

    3 2 3 2

    2 3 2

    12EI 6EI 12EI 6EI-

    L L L L

    6EI 4EI 6EI 2EI-

    L L L L

    12EI 6EI 12EI 6EI- - -L L L L

    6EI 2EI 12EI 6EI-

    L L L L

    K   

    y 1

    ' ' ' ''

    E 1 I I

    2

    R  9 kip

    0 M -90 kip-ft 60 kip-ft

    21 kipR 

    ''U P P P  

    2

    6EI-

    L

    11

    'K   

    Using Mathcad:

    12 11 Iθ ( ) ( - ) .011 ' ' 'U PK   

    y 1

    1 E 21 I

    3

    R  13.5

    M 105

    16.5M

    '' ' ' ''P U PK   

    Case (b)

  • 8/17/2019 9781461432616 3)_sm

    70/151

     

    40

    3 2 3 2

    2 2

    3 2 3 2

    2 3 2

    12EI 6EI 12EI 6EI-

    L L L L

    6EI 4EI 6EI 2EI-

    L L L L

    12EI 6EI 12EI 6EI- - -L L L L

    6EI 2EI 12EI 6EI-

    L L L L

    K   

    y 1

    ' ' ' ''

    2 E 1 I I

    2

    R  9 kip

    M 21 kip 60 kip-ft

    90 kip-ftM

      

    'U P P P   0''U  

    Using Mathcad:

    12 11 I( ) (- ) -9.38    ' ' 'U PK   

    y 1

    1 E 21 I

    2

    R  30

    M 375

    225M

    '' ' ' ''P U PK   

    Case (c)

  • 8/17/2019 9781461432616 3)_sm

    71/151

     

    41

    3 2 3 2

    2 2

    3 2 3 2

    2 3 2

    12EI 6EI 12EI 6EI-

    L L L L

    6EI 4EI 6EI 2EI-

    L L L L

    12EI 6EI 12EI 6EI- - -L L L L

    6EI 2EI 12EI 6EI-

    L L L L

    K   

    y 12   ' ' ' ''

    E I I

    2 1

    R θ 21 kip 9 kip

    -90 kip-ft 60 kip-ftM  

    'U P P P   0''U  

    Using Mathcad:

    2   1

    11 I

    2

    θ   -0.27 ( ) (- )

    0.01  

     

    ' ' 'U PK   

    y 1

    E 21 I

    1

    R    13.65 

    109.57M

     

    '' ' ' ''P U PK   

    Case (d)

    (d) Cantilever beam + Cable

  • 8/17/2019 9781461432616 3)_sm

    72/151

     

    42

    (1) (1)

    (1) (1)

    3 2   3 2

    AA AB

    2   2

    3 2 3 2

    BA BB

    2 2

    12EI 6EI   12EI 6EI-

    L L   L L

    6EI 4EI   6EI 2EI-

    L L   L L

    12EI 6EI 12EI 6EI- - -

    L L L L

    6EI 2EI 6EI 4EI-

    L L L L

     

    k k 

    k k 

     

    2

    (2) (2) (2)Cable(2)AA (2)BB (2) 2   2

    (2) (2) (2)Cable

    2

    (2) (2) 2)Cable(2)AB (2)BA (2) 2   2

    (2) (2) (2)Cable

    cos α sinα cosαA E( )

    sinα cosα sin αL

    cos α sinα cosαA E( )

    sinα cosα sin αL

     

     

    k k k 

    k k k 

     

                           

    (1) AA (1) AB (1) AA (1) AB

    (1) BB (2) AA (2) AB (1) BB (2) AA (2) AB(1) BA (1) BA

    (2) BA (2) BB (2) BA (2) BB

    k k 0 k k 00 0 0

    K k k 0 0 k k k (k + k ) k  

    0 k k 0 0 0 0 k k  

     

    y 1

    2   ' ' ' ''

    E 1 I I2

    y 3

    R θ 21 kip 9 kip

    M-90 kip-ft 60 kip-ft

    R   

    'U P P P   0''U  

    Using Mathcad:

    1

    11 I( ) (- )' ' 'U PK   

  • 8/17/2019 9781461432616 3)_sm

    73/151

     

    43

    E 21 I  '' ' ' ''P U PK   

    Problem 12.15Consider the guyed tower defined in the sketch. The cables have an initial tension of 220 kN.

    Determine the horizontal displacements at B, C, the change in cable tension, and the bending

    moment distribution in member ABC. Treat the cables as axial elements. Develop a computer based scheme to solve this problem. Take   6 4

    tower I 200(10) mm  2

    CableA 650 mm ,2

    tower A 6000 mm , and the material to be steel.

    strudl ' 2012 Problem 12.15 Guyed tower metric GTstrudl input file Connor & Faraji'type plane frameunits kN meter

    Joint Coordinates

    1 0.0 0.0

    2 15.0 60.03 30.0 0.0

    4 15.0 0.0

    5 15.0 30.0type plane truss

    member incidences

    1 1 2

    2 2 3

  • 8/17/2019 9781461432616 3)_sm

    74/151

     

    44

    3 3 5

    4 1 5

    type plane framemember incidences

    5 4 5

    6 5 2status support joints 1 3 4 joint releases

    4 moment z

    unit mmconstants

    E 200.0

    cte 12E-06

    Member properties1 2 3 4 AX 650

    5 6 AX 6000 IZ 200000000

    units m

    Loading 1

    member tempreture loads

    1 2 axial -1823 4 axial -187

    Loading 2

     joint load2 force x 45.

    5 force x 90.

    Loading 3

     joint load2 force x 45.

    5 force x 90.

    member tempreture loads1 2 axial -182

    3 4 axial -187

    stiffness analysislist reactions

    list forces

    unit mm

    list displacements

     _____________________________________

    Analysis results:

    { 54} > list reactions

    --- LOADING - 1 ---

    ----------------------------------------------------------------------------------------------------------------------------- ------

  • 8/17/2019 9781461432616 3)_sm

    75/151

     

    45

    RESULTANT JOINT LOADS SUPPORTS

    JOINT /---------------------FORCE---------------------//--------------------MOMENT--------------------/

    X FORCE Y FORCE Z FORCE X MOMENT Y MOMENT Z MOMENT

    1 GLOBAL -152.0266571 -410.8855896

    3 GLOBAL 152.0266571 -410.8855896

    4 GLOBAL 0.0000000 821.7711792 0.0000000

    -----------------------------------------------------------------------------------------------------------------------------------

    --- LOADING - 2 ---

    -----------------------------------------------------------------------------------------------------------------------------------

    RESULTANT JOINT LOADS SUPPORTS

    JOINT /---------------------FORCE---------------------//--------------------MOMENT--------------------/

    X FORCE Y FORCE Z FORCE X MOMENT Y MOMENT Z MOMENT

    1 GLOBAL -67.5721207 -180.0000000

    3 GLOBAL -67.5721207 180.0000000

    4 GLOBAL 0.1442504 0.0000000 0.0000000

    ----------------------------------------------------------------------------------------------------------------------------- ------

    --- LOADING - 3 ---

    ----------------------------------------------------------------------------------------------------------------------------- ------

    RESULTANT JOINT LOADS SUPPORTS

    JOINT /---------------------FORCE---------------------//--------------------MOMENT--------------------/

    X FORCE Y FORCE Z FORCE X MOMENT Y MOMENT Z MOMENT

    1 GLOBAL -219.5987854 -590.8856201

    3 GLOBAL 84.4545364 -230.8856049

    4 GLOBAL 0.1442504 821.7711792 0.0000000

    { 55} > list forces

    ACTIVE UNITS M KN RAD DEGF SEC

    ----------------------------------------------------------------------------------------------------------------------------- ------

    --- LOADING - 1 ---

    ----------------------------------------------------------------------------------------------------------------------------- ------

  • 8/17/2019 9781461432616 3)_sm

    76/151

     

    46

    MEMBER FORCES

    MEMBER JOINT /-------------------- FORCE --------------------//-------------------- MOMENT --------------------/

    AXIAL SHEAR Y SHEAR Z TORSIONAL BENDING Y BENDING Z

    1 2 220.2403717

    2 3 220.2403717

    3 5 220.4998169

    4 5 220.4998169

    5 4 821.7711792 0.0000000 0.0000000

    5 5 -821.7711792 0.0000000 0.0000000

    6 5 427.3291016 0.0000000 0.0000000

    6 2 -427.3291016 0.0000000 0.0000000

    ----------------------------------------------------------------------------------------------------------------------------- ------

    --- LOADING - 2 ---

    ----------------------------------------------------------------------------------------------------------------------------- ------

    MEMBER FORCES

    MEMBER JOINT /-------------------- FORCE --------------------//-------------------- MOMENT --------------------/

    AXIAL SHEAR Y SHEAR Z TORSIONAL BENDING Y BENDING Z

    1 2 92.47249602 3 -92.4724960

    3 5 -100.9456024

    4 5 100.9456024

    5 4 0.0000000 -0.1442504 0.0000000

    5 5 0.0000000 0.1442504 -4.3275118

    6 5 0.0000000 0.1442504 4.3275118

    6 2 0.0000000 -0.1442504 0.0000000

    ----------------------------------------------------------------------------------------------------------------------------- ------

    --- LOADING - 3 ---

    ----------------------------------------------------------------------------------------------------------------------------- ------

    MEMBER FORCES

    MEMBER JOINT /-------------------- FORCE --------------------//-------------------- MOMENT --------------------/

    AXIAL SHEAR Y SHEAR Z TORSIONAL BENDING Y BENDING Z

    1 2 312.7128906

  • 8/17/2019 9781461432616 3)_sm

    77/151

     

    47

    2 3 127.7678833

    3 5 119.5542145

    4 5 321.4454041

    5 4 821.7711792 -0.1442504 0.0000000

    5 5 -821.7711792 0.1442504 -4.3275118

    6 5 427.3291016 0.1442504 4.3275118

    6 2 -427.3291016 -0.1442504 0.0000000

    { 56} > unit mm

    { 57} > list displacements

    ACTIVE UNITS MM KN RAD DEGF SEC

    -----------------------------------------------------------------------------------------------------------------------------------

    --- LOADING - 1 ---

    -----------------------------------------------------------------------------------------------------------------------------------

    RESULTANT JOINT DISPLACEMENTS SUPPORTS

    JOINT /-----------------DISPLACEMENT-----------------//-------------------ROTATION-------------------/

    X DISP. Y DISP. Z DISP. X ROT. Y ROT. Z ROT.

    1 GLOBAL 0.0000000 0.0000000

    3 GLOBAL 0.0000000 0.0000000

    4 GLOBAL 0.0000000 0.0000000 0.0000000

    RESULTANT JOINT DISPLACEMENTS FREE JOINTS

    JOINT /-----------------DISPLACEMENT-----------------//-------------------ROTATION-------------------/

    X DISP. Y DISP. Z DISP. X ROT. Y ROT. Z ROT.

    2 GLOBAL 0.0000000 -31.2275105 0.0000000

    5 GLOBAL 0.0000000 -20.5442810 0.0000000

    ----------------------------------------------------------------------------------------------------------------------------- ------

    --- LOADING - 2 ---

    ----------------------------------------------------------------------------------------------------------------------------- ------

    RESULTANT JOINT DISPLACEMENTS SUPPORTS

    JOINT /-----------------DISPLACEMENT-----------------//-------------------ROTATION-------------------/

    X DISP. Y DISP. Z DISP. X ROT. Y ROT. Z ROT.

    1 GLOBAL 0.0000000 0.0000000

    3 GLOBAL 0.0000000 0.0000000

    4 GLOBAL 0.0000000 0.0000000 -0.0014003

  • 8/17/2019 9781461432616 3)_sm

    78/151

     

    48

    RESULTANT JOINT DISPLACEMENTS FREE JOINTS

    JOINT /-----------------DISPLACEMENT-----------------//-------------------ROTATION-------------------/

    X DISP. Y DISP. Z DISP. X ROT. Y ROT. Z ROT.

    2 GLOBAL 181.3883820 0.0000000 -0.0046460

    5 GLOBAL 58.2378464 0.0000000 -0.0030231

    -----------------------------------------------------------------------------------------------------------------------------------

    --- LOADING - 3 ---

    -----------------------------------------------------------------------------------------------------------------------------------

    RESULTANT JOINT DISPLACEMENTS SUPPORTS

    JOINT /-----------------DISPLACEMENT-----------------//-------------------ROTATION-------------------/

    X DISP. Y DISP. Z DISP. X ROT. Y ROT. Z ROT.

    1 GLOBAL 0.0000000 0.0000000

    3 GLOBAL 0.0000000 0.0000000

    4 GLOBAL 0.0000000 0.0000000 -0.0014003

    RESULTANT JOINT DISPLACEMENTS FREE JOINTS

    JOINT /-----------------DISPLACEMENT-----------------//-------------------ROTATION-------------------/

    X DISP. Y DISP. Z DISP. X ROT. Y ROT. Z ROT.

    2 GLOBAL 181.3883820 -31.2275105 -0.00464605 GLOBAL 58.2378464 -20.5442810 -0.0030231

  • 8/17/2019 9781461432616 3)_sm

    79/151

     

    49

  • 8/17/2019 9781461432616 3)_sm

    80/151

     

    50

    Problem 12.16

    Consider the rigid frame shown above. Investigate how the response changes when 1A  is varied.

    Use computer software. Vary 1A from2

    2 in to  2

    10 in . Take   4I 600 in , 2A 5 in , L 200 ft ,4

    1I 300 in , 1 k/ftw . Material is steel.

  • 8/17/2019 9781461432616 3)_sm

    81/151

     

    51

    Analysis Results for 1A  22 in :

    { 37} > list reactions

    ACTIVE UNITS FEET KIP RAD DEGF SEC

    RESULTANT JOINT LOADS SUPPORTS

    JOINT /---------------------FORCE---------------------//--------------------MOMENT--------------------/

    X FORCE Y FORCE Z FORCE X MOMENT Y MOMENT Z MOMENT

    1 GLOBAL 0.2750448 26.2271576 0.0000000

    4 GLOBAL 0.0000000 26.3188362 0.0000000

    5 GLOBAL -0.2750448 147.4540253 -0.0000033

    { 38} > list forces

    ACTIVE UNITS FEET KIP RAD DEGF SEC

    MEMBER FORCES

    MEMBER JOINT /-------------------- FORCE --------------------//-------------------- MOMENT --------------------/

    AXIAL SHEAR Y SHEAR Z TORSIONAL BENDING Y BENDING Z

    1 1 0.2750448 26.2271576 0.0000000

    1 2 -0.2750448 40.4394569 -473.7429199

    2 2 -75.6282272 33.4004898 421.63412482 3 75.6282272 33.2659035 -417.1477966

    3 3 0.0000000 40.3481750 467.6471252

    3 4 0.0000000 26.3188343 0.0000000

    4 5 105.8844528 -1.4583676 -16.6390419

    4 2 -105.8844528 1.4583676 -52.1087914

    5 5 105.5302505 -1.4242343 -16.6390438

    5 3 -105.5302505 1.4242343 -50.4993286

    { 39} > unit in

    { 40} > list displacements

    ACTIVE UNITS INCH KIP RAD DEGF SEC

    RESULTANT JOINT DISPLACEMENTS SUPPORTS

    JOINT /-----------------DISPLACEMENT-----------------//-------------------ROTATION-------------------/

    X DISP. Y DISP. Z DISP. X ROT. Y ROT. Z ROT.

    1 GLOBAL 0.0000000 0.0000000 -0.0604358

    4 GLOBAL 0.4157400 0.0000000 0.0615096

    5 GLOBAL 0.0000000 0.0000000 -0.0006194

  • 8/17/2019 9781461432616 3)_sm

    82/151

     

    52

    RESULTANT JOINT DISPLACEMENTS FREE JOINTS

    JOINT /-----------------DISPLACEMENT-----------------//-------------------ROTATION-------------------/

    X DISP. Y DISP. Z DISP. X ROT. Y ROT. Z ROT.

    2 GLOBAL -0.0015175 -1.4619952 0.0132183

    3 GLOBAL 0.4157400 -1.8713145 -0.0138291

     ____________________________________________________________________

    Analysis Results for 1A  210 in :

    { 37} > list reactions

    ACTIVE UNITS FEET KIP RAD DEGF SEC

    RESULTANT JOINT LOADS SUPPORTS

    JOINT /---------------------FORCE---------------------//--------------------MOMENT--------------------/

    X FORCE Y FORCE Z FORCE X MOMENT Y MOMENT Z

    MOMENT

    1 GLOBAL 0.2801770 26.0890694 0.0000000

    4 GLOBAL 0.0000000 26.1824589 0.0000000

    5 GLOBAL -0.2801770 147.7284851 -0.0000043

    { 38} > list forces

    ACTIVE UNITS FEET KIP RAD DEGF SEC

    MEMBER FORCES

    MEMBER JOINT /-------------------- FORCE --------------------//-------------------- MOMENT --------------------

    /

    AXIAL SHEAR Y SHEAR Z TORSIONAL BENDING Y BENDING

    Z

    1 1 0.2801770 26.0890694 0.0000000

    1 2 -0.2801770 40.5775414 -482.9487305

    2 2 -76.3793488 33.4019623 420.8519592

    2 3 76.3793488 33.2644310 -416.2675171

    3 3 0.0000000 40.4845543 476.7389832

    3 4 0.0000000 26.1824589 0.0000000

    4 5 106.5178833 -1.8944246 -27.2068596

    4 2 -106.5178833 1.8944246 -62.0968056

    5 5 106.1567535 -1.8599567 -27.2068634

  • 8/17/2019 9781461432616 3)_sm

    83/151

     

    53

    5 3 -106.1567535 1.8599567 -60.4714508

    { 39} > unit in

    { 40} > list displacements

    ACTIVE UNITS INCH KIP RAD DEGF SEC

    RESULTANT JOINT DISPLACEMENTS SUPPORTS

    JOINT /-----------------DISPLACEMENT-----------------//-------------------ROTATION-------------------/

    X DISP. Y DISP. Z DISP. X ROT. Y ROT. Z ROT.

    1 GLOBAL 0.0000000 0.0000000 -0.0581310

    4 GLOBAL 0.4198557 0.0000000 0.0592253

    5 GLOBAL 0.0000000 0.0000000 -0.0006280

    RESULTANT JOINT DISPLACEMENTS FREE JOINTS

    JOINT /-----------------DISPLACEMENT-----------------//-------------------ROTATION-------------------/

    X DISP. Y DISP. Z DISP. X ROT. Y ROT. Z ROT.

    2 GLOBAL -0.0015458 -0.2953888 0.0129835

    3 GLOBAL 0.4198557 -0.7126988 -0.0136053

  • 8/17/2019 9781461432616 3)_sm

    84/151

     

    54

    Problem 12.17

    (a) Develop a computer code to automate the generation of the member stiffness matrices

    defined by Equation (12.6). Assume A, E, I, L given.(b) Develop a computer code to carry out the operations defined by Equation (12.13).

    (c) Develop a computer code to carry out the operation defined by Equation (12.20) and

    (12.21).

    BB   3 2

    2

    AE0 0

    L

    12EI 6EI= 0 -

    L L

    6EI 4EI0 -

    L L

    k    BA   3 2

    2

    AE- 0 0

    L

    12EI 6EI0 - -

    L L

    6EI 2EI0

    L L

    k   

  • 8/17/2019 9781461432616 3)_sm

    85/151

     

    55

    AA   3 2

    2

    AE0 0

    L

    12EI 6EI= 0

    L L

    6EI 4EI0 L L

    k    AB   3 2

    2

    AE- 0 0

    L

    12EI 6EI0 -

    L L

    6EI 2EI0 - L L

    k   

    g

    cosα -sinα 0

    = sinα cosα 0

    0 0 1l 

    R   

    cosα sinα 0

    = -sinα cosα 0

    0 0 1

     g l 

    R   

    BB BA

    T T

    BB g BA gg g

    T T

    AA AA g AB AB gg g

      =

    =

    l l l l 

    l l l l 

    k R k R k R k R  

    k R k R k R k R  

     

    B A

    B A B A

    0 0

    0

                 

    (1) AB (1) AA (1) A (1) A

    (1) B (1) B (2) AA (2) AB (1) B (1) B (2) AA (2) AB

    (2) BA (2) BB (2) BA (2) BB

    k k 0 k k 00

    K = k k 0 k k = k (k + k ) k  

    0 0 0 0 k k 0 k k  

     

       

    '' ''

    EI11 12

     ___ 

    ' ''' '' ''21 22E I

    'P U P|

    = ___ | ___ __ + __  

    |P U P

    K K 

    K K 

     

    1

    11 E 12 I

    E 21 22 I

     ( ) ( - - )

     

    ' ' ' ' '' '

    '' ' ' ' '' ''

    U P U P

    P U U P

    K K 

    K K 

     

  • 8/17/2019 9781461432616 3)_sm

    86/151

     

    56

    Problem 12.18

    For the space truss shown, use the direct stiffness method to find displacements at joint1. 2A 3 in

    E 29,000 ksi

     

    X-Y Plan

  • 8/17/2019 9781461432616 3)_sm

    87/151

     

    57

    X-Z Plan

    Member l x  l y  l z  l   xβ   yβ   zβ  

    (1) 12 6 18 22.45 0.53 0.27 0.8

    (2) 10 6 18 21.45 0.47 0.28 0.84

    (3) 2 12 18 21.72 0.092 0.55 0.83

    Using Mathcad:

    Lm

      X2m

      X1m

    2

    Y2m

      Y1m

    2

      Z2m

      Z1m

    2

     

    2

    ( ) ( ) (m)

    (m)AA (m)BB ( ) ( )   2

    (m) (m) ( )

    2

    ( ) ( ) (m)

    (m)AB (m)BA ( ) ( )   2

    (m) (m) ( )

    cos α sinα cosαAE( )

    sinα cosα sin αL

    cos α sinα cosαAE( )

    sinα cosα sin αL

    m m

    m m

    m

    m m

    m m

    m

     

     

    k k k 

    k k k 

     

    E

    0

    10 kip

    20 kip

     

    'P  

    1

    1

    1 11 E

    1

    u .011 in

     ( ) .066 in

    .03 inw

       

    ' ' 'U PK   

    Problem 12.19For the space frame shown, use the direct stiffness method to find displacements at joint B. The

    load P is applied perpendicular to the plane ABC. The cross section is circular tube. Take L=4 m,

    P=30 kN, E = 200 GPa , and G=77 GPa.

  • 8/17/2019 9781461432616 3)_sm

    88/151

     

    58

    Cross section

    Member m n   n   1θ (xg ,x )l    2θ (xg ,x )l    3θ (xg ,x )l   

    (1) 1 2 π/2  -π/2  0

    (2) 2 3 0 π/2  -π/2 

    i i

    11 12 13

    21 22 23

    31 32 33

    i i i

    i i i

    i

    α α α

    α α α

    α α α

             

    '

    iR   

  • 8/17/2019 9781461432616 3)_sm

    89/151

     

    59

    i

    lg

    ii

    0

    0

     

    R'R 

    R' 

    T

    global gl  g k R k R   

    1 AA 1 AB

    1 BA 1 BB 2 AA 2 AB

    2 BA 2 BB

    k k 0

    K = k (k + k ) k  

    0 k k 

     

      (1) (1)T

    global lg (1)BB lg

    1 BBk R k R  

     

      ( 2) (2)T

    global lg (2)AA lg2 AAk R k R   

  • 8/17/2019 9781461432616 3)_sm

    90/151

     

    60

    11   1 BB 2 AA'K = (k +k )  

    1joint2

    2 joint2

    3joint2'

    1joint2

    2 joint2

    3joint2

    u

    u

    u

    θ

    θ

    θ

           

     

    U E

    0

    0

    30

    0

    0

    0

     

         

       

    'P  

    1

    11 E

    0

    023.55

     ( ) ( ).003

    .003

    0

     

    ' ' 'U K P  

  • 8/17/2019 9781461432616 3)_sm

    91/151

     

    61

     

    1joint 2 2 joint 2 3 joint2

    1joint 2 2 joint 2 3 joint 2

    23.55 mm

    .003 rad

    u u 0 u

    θ θ θ 0

     

  • 8/17/2019 9781461432616 3)_sm

    92/151

     

    1

    Problem 13.1

    (a) 

    (b) Use a software package to determine:

    (i)  The maximum values of3

    R  , 2M , and 1-1M  cause by a uniformly distributed dead

    load of 2 k/ft.

  • 8/17/2019 9781461432616 3)_sm

    93/151

     

    2

    (ii) The maximum value of 2M caused by a uniformly distributed live load of 1k/ft.

    -

    2 maxM 146.7 kip-ft  

    Problem 13.2

    8(28) 32(14)x 9.33 ft

    72e

    e 14 9.33 4.66 ft 2.33 ft2

     

  • 8/17/2019 9781461432616 3)_sm

    94/151

     

    3

    maxM 1703 kip-ft  

    Moment envelop

    maxM 1700 kip-ft  

    Problem 13.3

    Lane load: 10 kN/mw  

     uniformTruck load:

  • 8/17/2019 9781461432616 3)_sm

    95/151

     

    4

    (a) 1 2L L 30 m , EI constant

    Global moment envelope-Lane

    Global moment envelope-Truck

    (b) 1L 15 m   2L 30 m , EI constant

    Global moment envelope-Lane

    Truck

  • 8/17/2019 9781461432616 3)_sm

    96/151

     

    5

    (c) 1 2L L 30 m , EI constant

    Moment diagram-Lane

    Global moment envelope-Truck

    (d)  Compare the global moment envelopes for the structure shown below with the

    envelopes generated in part (a). Is there any effect of varying I?

    Global moment envelope-Lane

  • 8/17/2019 9781461432616 3)_sm

    97/151

     

    6

    Global moment envelope-Truck

    Problem 13.4

    Consider the multi span bridge shown below. Suppose the bridge is expected to experience a

    temperature change of ∆T over its entire length. Where would you place a hinge support: at A orat B? Determine the end movement corresponding to your choice of support location.

    Case (a)

    u   α T L  

    Case (b)

    u   α T L  

    Case (b) is better because there is less movement of span.

    Problem 13.5

    Most design codes limit the deflection due to live loading to some fraction of length, say L/α 

  • 8/17/2019 9781461432616 3)_sm

    98/151

     

    7

    where α is on the order of 500. Generate the global “deflection” envelope for the multi-span

     beam and truck loading shown below. Take E = 29,000ksi and I = 60,000 in4.

    maxmax req

    L L 90(12)2.16 in I (I)

    L500 500( )

      

      

     

     

     

    Problem 13.6

    Investigate convergence of the internal forces for the parabolic arch shown as the discretizationis refined. Take the interval as 2.4 m, 1.2 m, and .6 m.

    Axial Force

  • 8/17/2019 9781461432616 3)_sm

    99/151

     

    8

    Bending Moment

    Axial Force

    Bending Moment

  • 8/17/2019 9781461432616 3)_sm

    100/151

     

    9

    Axial Force

    Bending Moment

    Problem 13.7

    Suppose a uniform loading is applied to span ABC. Investigate how the response changes as x

    varies from L/2 to L. Take h=L/2, 2 2CA 50 in , A 2 in ,2

    21k/ft, f 1

    L

     x

    w

    .

  • 8/17/2019 9781461432616 3)_sm

    101/151

     

    10

    Deformation profile (

      L

    , f 22 x 

    )

    Deformation profile (   L, f 5 x  )

  • 8/17/2019 9781461432616 3)_sm

    102/151

     

    11

    Problem 13.8

    Determine the structural response (forces and displacements) of the idealized tied arch shown

     below under a uniformly distributed gravity load of 30 kN/m.

    Assume 2 6 4 6 2arch Arch hanger  A 26000 mm , I 160(10) mm ,A 2(10) mm  

     Note: roadway girder and arch are pined to together at pints A and B.

    Deformation profile

  • 8/17/2019 9781461432616 3)_sm

    103/151

     

    12

    Axial force

    Bending moment

    Problem 13.9

    Determine the distribution of internal forces and displacements for the cable stayed structureshown below. Member AB acts as counterweight for loading applied on member BC. The 2

    members are connected by 9 parallel equally spaced cables. Self weight of members AB and BC

    is 16 kN/m and 8 kN/m respectively. Assume 2CableA 50000 mm  and E=200GPa. Consider the

    following cases:

  • 8/17/2019 9781461432616 3)_sm

    104/151

     

    13

    (a)  9 4AB BCI I 40(10) mm  

    Deformation profile

  • 8/17/2019 9781461432616 3)_sm

    105/151

     

    14

    Axial force

    Bending moment

    (b)  9 4AB BC BCI 4I I 40(10) mm  

  • 8/17/2019 9781461432616 3)_sm

    106/151

     

    15

    Deformation profile

    Bending moment

    (c) Uniform Live load of 2 kN/m applied to member BC in addition to self weight.9 4

    AB BC BCI 4I I 40(10) mm  

  • 8/17/2019 9781461432616 3)_sm

    107/151

     

    16

    Deformation profile

    Bending moment

    Problem 13.10

    Consider the symmetrical cable structure shown below. Determine a set of cable areas ( 1 10C C )

    such that the maximum vertical displacement is less than 375 mm under a uniformly distributed

    live load of 10 kN/m. Assume   6 4 3 2girder girder  I 400(10) mm ,A 120(10) mm . Take the allowablestress as 700MPa.

  • 8/17/2019 9781461432616 3)_sm

    108/151

     

    17

    maxδ 371 mm  

  • 8/17/2019 9781461432616 3)_sm

    109/151

     

    18

    Cable A,2mm   Tension, kN

    C1 100,000 325.5

    C2 500,000 62.7

    C3 50,000 167

    C4 50000 132C5 50000 129

    C6 50000 120

    C7 50000 113

    C8 50000 108

    C9 50000 103

    C10 50000 104

  • 8/17/2019 9781461432616 3)_sm

    110/151

     

    1

    Problem 14.1 Consider the plan view of one story rigid frames shown below. Determine the center of twist

    corresponding to the brace stiffness patterns shown.(a)

    (b)

  • 8/17/2019 9781461432616 3)_sm

    111/151

     

    2

    (c)

  • 8/17/2019 9781461432616 3)_sm

    112/151

     

    3

    Problem 14.2

    The one story frame shown has an unsymmetrical mass distribution.

    Distribution of mass

    Stiffness distribution

    (a) Determine the center of mass.

  • 8/17/2019 9781461432616 3)_sm

    113/151

     

    4

    (b) Determine the stiffness parameters1k   and

    2k  such that the center of stiffness coincides

    with the center of mass.

  • 8/17/2019 9781461432616 3)_sm

    114/151

     

    5

    (c) Determine the earthquake floor loads corresponding toa

    S =0.3g. Consider both direction,

    i.e., N-S and E-W.

    Problem 14.3 

    For  the rigid frame shown below, determine (a) The center of twist (T

    C ) (b) the seismic floor

    loads applied at the center of mass (M

    C ) for a N-S earthquake witha

    S =0.3g. Assume

     properties are equal for each floor.

    Elevation 

    Typical floor plan

  • 8/17/2019 9781461432616 3)_sm

    115/151

     

    6

  • 8/17/2019 9781461432616 3)_sm

    116/151

     

    7

    Problem 14.4 Consider the two story rigid frame defined below. Assume the weight of the floor slabs are

    equal to floor w . Concentrated masses are located on each floor as indicated.

    Plan-Floor 1

    Plan – 

    Floor 2

    (a) Determine the position of the center of mass for each floor.

  • 8/17/2019 9781461432616 3)_sm

    117/151

     

    8

    (b) Assume the structure is subjected to an earthquake acting in the east direction. Determine

    the earthquake forces for the individual floors. Assume floor w =1000 kips,

    1 2w w 1000 kips , and aS = 0.3g.

    (c) 

    Suppose the story stiffness distribution shown below is used. Describe qualitatively howthe structure will displace when subjected to an earthquake. Consider the stiffness

    distribution to be the same for each floor.

  • 8/17/2019 9781461432616 3)_sm

    118/151

     

    9

    Problem 14.5 Consider the single story multi frame structure shown below. Determine the lateral force in

    the frames due to a global load P. Consider both wind and earthquake loading. Assume theslab is rigid.

  • 8/17/2019 9781461432616 3)_sm

    119/151

     

    10

    Problem 14.6 Consider the stiffness distribution for the one story rigid frame shown below. Determine the

    displaced configuration under the action of the loading shown. Assume the slab is rigid.

  • 8/17/2019 9781461432616 3)_sm

    120/151

     

    11

    Problem 14.7

    (a) Determine the center of twist.

  • 8/17/2019 9781461432616 3)_sm

    121/151

     

    12

    (b) Using Equation (14.47), determine oK  .

  • 8/17/2019 9781461432616 3)_sm

    122/151

     

    13

    Problem 14.8 Consider the plan view of a one story frame shown below. Using the matrix formulation

     presented in section 14.3.5, generate the equations of motion for the story. Take 1m 1000 ,

    2m 500 , and k=10 kips/in.

  • 8/17/2019 9781461432616 3)_sm

    123/151

     

    14

  • 8/17/2019 9781461432616 3)_sm

    124/151

     

    15

  • 8/17/2019 9781461432616 3)_sm

    125/151

     

    16

    Problem 14.9

    Consider the one story plan view shown below.

    (a)  Locate the center of mass.

    (b)  Locate the center of twist. Take 1 2 3 4k k k k k   .

    (c)  Take 1 3k k 10 . Suggest values for 2k   and 4k   such that the center of mass

    coincides with the center of twist.

  • 8/17/2019 9781461432616 3)_sm

    126/151

     

    17

  • 8/17/2019 9781461432616 3)_sm

    127/151

     

    18

    Problem 14.10 Consider the floor plan shown below. Assume the mass is uniformly distributed over the

    floor area. Establish the equations of motion referred to point o.

  • 8/17/2019 9781461432616 3)_sm

    128/151

     

    19

  • 8/17/2019 9781461432616 3)_sm

    129/151

     

    20

  • 8/17/2019 9781461432616 3)_sm

    130/151

     

    21

    Problem 14.11 Consider the roof plan for a one story structure shown below. Assume the shear walls haveequal stiffness and the roof dead load is uniform.

    (a) Determine the center of mass and