8.2. microtech.ion implant.3

18
Ion Implantation -III

Upload: bhargav-veepuri

Post on 13-Jul-2015

383 views

Category:

Engineering


1 download

TRANSCRIPT

Page 1: 8.2. microtech.ion implant.3

Ion Implantation -III

Page 2: 8.2. microtech.ion implant.3
Page 3: 8.2. microtech.ion implant.3

Dr. G. Eranna Integrated Circuit Fabrication Technology © CEERI Pilani

Page 4: 8.2. microtech.ion implant.3

Dr. G. Eranna Integrated Circuit Fabrication Technology © CEERI Pilani

Damage Annealing

Damage Removal: Two Regimes

Below & Above Amorphous Threshold

Page 5: 8.2. microtech.ion implant.3
Page 6: 8.2. microtech.ion implant.3
Page 7: 8.2. microtech.ion implant.3

Damage Annealing and Dopant Activation

• When the substrate is amorphous, SPE provides an ideal way of repairing the damage and activating dopants (except that EOR damage may remain).• Sub Amorphous leading to secondary defect : difficult to anneal

.

400 500 600 700 800 900 0

0.2

0.4

0.6

0.8

1.0

TA (ÞC)

Sub AmorphousAmorphous

3 x 1012 cm-2

1 x 1015 cm-2

1 x 1014 cm-2

Fraction Active

Fractional activation vs anneal temperature

Page 8: 8.2. microtech.ion implant.3

Damage Annealing and Dopant Activation• If the substrate is amorphous, it can regrow by Solid Phase Epitaxy

(SPE). In the SPE region, all damage is repaired and dopants are activated onto substitutional sites.

• In case of buried amorphous layer SPE regrowth occurs from top &bottom interfaces &leaves band of dislocations in the center

• Cross sectional TEM images of amorphous layer regrowth at 525˚C, from a 200keV, 6e15 cm-2 Sb implant.

5 min 10 min 15 min 20 min

Amorphous

100 nm

EORdamage

Page 9: 8.2. microtech.ion implant.3
Page 10: 8.2. microtech.ion implant.3

Dopant Activation….

• B Implant below amorphization threshold

• High Dose: Low initial activation: Annealing of deep traps

•Interstitial damage responsible of reverse annealing (450-550C)

•Si interstitials competing with B for substitutional sites

Isochronal Annealing30min at each temperature

Page 11: 8.2. microtech.ion implant.3

Transient Enhanced Diffusion (TED)

• TED is the result of interstitial damage from the implant enhancing the dopant diffusion for a brief transient period.

• It is the dominant effect today that determines junction depths in shallow profiles.

• It is anomalous diffusion, because profiles can diffuse more at low temperatures than at high temperatures for the same Dt (20000 at 700 to 400 at 1000C enhancement). RTA is preferred to reduce TED.

.

0 0.08 0.16 0.24 0.32 0.4Depth (µm)

10 sec 1000ÞC

2 min 800ÞC

Con

cent

rati

on (

cm-3

)

1019

1018

1017

1016

.

Con

cent

ration

(cm

-3)

1019

1018

1017

1016

1020

1021

As profile

Boron profiles

InitialFinal

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4Depth (microns)

Page 12: 8.2. microtech.ion implant.3
Page 13: 8.2. microtech.ion implant.3
Page 14: 8.2. microtech.ion implant.3
Page 15: 8.2. microtech.ion implant.3
Page 16: 8.2. microtech.ion implant.3

Summary of Key Ideas

• Ion implantation provides great flexibility and excellent control of implanted dopants.

• Since implanted ion energies are >> Si-Si binding energy (≈ 15 eV), many Si lattice atoms are displaced from lattice positions by incoming ions.

• This damage accumulates with implanted dose and can completely amorphize the substrate at high doses.

• The open structure of the silicon lattice leads to ion channeling and complex as-implanted profiles.

Page 17: 8.2. microtech.ion implant.3

Summary of Key Ideas

• TED is the biggest single problem with ion implantation because it leads to huge enhancements in dopant diffusivity.

• Understanding of TED has led to methods to control it (RTA annealing).

• Nevertheless, achieving the shallow junctions required by the NTRS will be a challenge in the future since ion implantation appears to be the technology choice.

Page 18: 8.2. microtech.ion implant.3