8 ¶ v ½ - jsmta

33
ւ༸ਓ

Upload: others

Post on 27-Apr-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 8 ¶ v ½ - JSMTA

� ������ ����� � � � � � � � � � � � � � � ������ � � � � ��� � ��� � � � � � � � � � � � � � � � � � �

������� ����� ����������������

��������

� ��������� ����� ����������������

�������������

ւ༸ਓࢽ�

Page 2: 8 ¶ v ½ - JSMTA

� �

4 ,

5 4 7. 4 -

6 5 4

, 5

4 , . /3 84

3 4 ,

Page 3: 8 ¶ v ½ - JSMTA

0 3 3

53

, ( )

2 1 9

55

2018477 5

5

5

5

.

× Δ

5

× 5 ×

Δ

1)5

5

5

2018 ISA

42 197 45,000

5

5 201780 33,000

5

2,3)5Oliver4)

5 J 5)

6) 7)

5

5

905-8585 1220-1 e-mail : [email protected]

Page 4: 8 ¶ v ½ - JSMTA

0 3 3

54

β5

5

68)5 Δ

5

Destination imageCity image Place attachment

9-11)5 An 12)

5

5

5

. 1 .

13)5

5

57) 14)

6)

515)

×

5 8) 2017

5

5 9)

5

5

5

5Lacey and Close16)

Koo 17)

5

5

5

15

25

2 .

18)

χ 5

χ 19,20)5

χ21)

5

5 Xing and Chalip22) ×

5

5Hallmann and Breuer23)

Page 5: 8 ¶ v ½ - JSMTA

0 3 3

55

5

5

5 9)

5

5

5

β5

5

35

3

Gwinner 21) χ

5

16,24)

525)

5 9)

5 An 12)

5

5

65

β5

5 5

14 12 5

4

5

5

5

6

5

7

5

8

5

9

5 10

5

11

A 3

Page 6: 8 ¶ v ½ - JSMTA

0 3 3

56

5

12

5

.

5

5

1

FLY!ANA2018 5

10PWA Professional Windsurfers Association

1 PWA

51984 1994

5 2017 242 5

NPO

5

26)5

5 2

FLY!ANA2018 6

2018 5 10 125

4

5560 47789.8 5 6

49,000 3 38,0005

3

5

5 20174 12

27)5

Speed and Thompson19) 9)

4 516) 5 7

6 5 4

5

(Construct Reliability: CR)(Average

Variance Extracted: AVE5

CFI(Comparative Fit Index) GFI goodness of fit indexAGFI adjusted goodness of fit index 0.9RMSEA(Root Mean Square Error of Approximation0.08

28,29)5

5

5

AIC (Akaike's Information Criterion

AIC

5Evanschitzky and Wunderlich30)

E

(� &+ o

9( OPV RMLN

�( OPU QVLV

OV4� QR VLQ

PM� RQ NNLP

QM� NOU OSLU

RM� NSN PPLU

SM�� UV NULT

=0

:� OOR QTLO

�0�� TM NQLT

��8 RU NOLO

�J/8 QN ULR

�� PM SLP

>�0 PM SLP

wzsvmtxwyuv OP QLU

1GA"� ONT QRLR

1GA"� OSM RQLR

�D*5 &+ o

FB OPO QULS

'3 NMS OOLO

>�BpECq SM NOLS

>�Bp��q PU ULM

>CBhac OV SLN

he NM OLN

H?2 O MLQ

��<+

M� NPQ OULN

N� VO NVLP

O� NQR PMLQ

P� SN NOLU

Q�� QR VLQ

�6].7

-#_ QQN VOLQR

�6Y_ PS TLRR

;I\Z OTO RTLM

;IY_ OMR QPLM

�^[ NTQ PSLR

kinfn PMP SPLR

balgdnj`l]�,;I

@)];I

%K

$�rQULUQpXWrNPLSUq

!��

Page 7: 8 ¶ v ½ - JSMTA

0 3 3

57

5 IBM SPSS Statistics 26.0 AMOS 26.0 5

1 1 550.1%

48.84 SD =13.68 547.2%

48.6 545.5

54.5 5

57.0 43.0 5

36.5% 1 63.5% 5

2 2

CR AVE .5 CFI

.975 3.90 GFI .959 3.90 AGFI

.934 3.90 RMSER .056 2.085

CR .78-.86 AVE .56-.68CR .60 31�

AVE .50 32�

5

5 2

6 14 A

.324 0 ae 1 5E M

CS 798 6 98

E M

S A E M R n

V S E M

D ,.4 3 ,. ,. 0 0

213 . 0 4R aV

E SR a a A 6SR a a E n C 7 6SR a a E R aV D8 6

ESR a a D8 6e7 5 R 8E 8 A7 5 R 9 M A

3654 3654 9A3654 7 3654 E 8

3654

3654

9A3654 .

7 3654

E 0

8 1

36542 36542 .9A36542 7 36542 0 E 2 1 8 2

Page 8: 8 ¶ v ½ - JSMTA

0 3 3

58

Cronbach α 5. .82 .73.7028)

4.96 4.905

3 CR AVE

α 5CR .81-.92 AVE .68-.75α .82-.92 5

5.304.96

5 4

AVE

32)5

5 3

2 5 CFI=.958 GFI .965 AGFI .908 RMSEA=.087 CFI GFI AGFI

5RMSEA2.08 Browne and Cudeck33)

.08 .10 5

β=.47 p <.001 β=.25p <.001 1

5β=.28 p <.001

3 5 R�

R� .22 R� .2122%

21 5.25

.47,.28 .13 .38 5

5 5

5=.34 p

<.001 β=.15 p <.01

β=26 p <.0015

4

4-126 5

4 5=0.41 p <.001

=0.12 n.s.-0� 5.67 p <.05 5

=0.19 p <.001 =0.10 p <.01-0�

3.96 p <.05 5 56 5

7-9 5

10 5

=0.49 p <.001 =0.03 n.s.

-0� 11.87 p <.0015

=0.27 p <.001=0.07 p <.05

-0� 14.44 p <.001 5 11

12 5

A 3 V

5 2

� ���� � ����

����� � � � �

����� ��� ��� ��� ���

������ ��� �� � �

����� � � � �

�� ��� ���

�� �� ���� �� �

���������� ���

Page 9: 8 ¶ v ½ - JSMTA

0 3 3

59

5 1 2

5

Yoshida and James6) Tsuji .7)

27) 5 3

5 Hallmann and Breuer23) 9) 1 3

5 1 2

5

.476

5

4 7 10 5

����D?H ����DC@ :<*

[T]D<* [T]D<*

��D�#

N^WPML\SJ �#CA )'(0 &&& .1'-- .1'-- ('((

=KZ^OYJRU �#?G )'(1 &&& _)/` _).`

N^WPML\SJ �#CA (')* /-'*+ .1'-- -'./ &

=��� �#?G (',) &&& _)/` _).`

KZ^OYJRU �#CA (')1 &&& /+'-* .1'-- +'1. &

=��� �#?G (')( && _)/` _).`

&db'(-$$$&&db'()$$&&&db'(()>346c'1,.>546c'1-+>2546c'0/.>82792c'(/.>

�D�#

N^WPML\SJ �FB )'(( &&& /*'// /*'-. ('*(

=KZ^OYJRU \X^Q^ )')) &&& _)/` _).`

N^WPML\SJ �FB ('). /-'0/ /*'-. +'+)

=��� \X^Q^ ('+1 &&& _)/` _).`

KZ^OYJRU �FB (')* && /*'0( /*'-. ('*,

=��� \X^Q^ (')- &&& _)/` _).`

&db'(-$$$&&db'()$$&&&db'(()>346c'1,.>546c'1-)>2546c'0/0>82792c'(/1

���

N^WPML\SJ �� )')* &&& /0'(+ /0'() ('(*

=KZ^OYJRU �� )'(1 &&& _)/` _).`

N^WPML\SJ �� ('(+ 01'00 /0'() ))'0/ &&&

=��� �� (',1 &&& _)/` _).`

KZ^OYJRU �� ('*/ &&& 1*',- /0'() ),',, &&&

=��� �� ('(/ & _)/` _).`

&db'(-$$$&&db'()$$&&&db'(()>346c'1,)>546c'1,.>2546c'1,.>82792c'(0/

��aVP��E"����I��

����DC@

[T]DVP%;`!���

Page 10: 8 ¶ v ½ - JSMTA

0 3 3

60

5

.34 β .265

5

.15

5

5

5

5 3

5

5

5

5

5

α5

5 11

5

r .44r .22 r .07

5

5

5 6 12

5

5

5

5 25)

9)

5

5

5

2 5

β5

5

5

5

5

5

Page 11: 8 ¶ v ½ - JSMTA

0 3 3

61

5

5

5

5

5

5

5

5

5

5

5 5

1

5 25)

5

5

5

5

5

1) . : Δ :

. , , pp52-56, 2002. 2) . :

. , , pp60-68, 2000. 3) . : × .

, 57(1):39-43, 2007. 4) Oliver RL. : Satisfaction: A behavioral perspective on the consumer. McGrawHill, New York, 1997. 5) Matsuoka H, Chelladurai P, Harada H. : Direct and interaction effects of team identification and satisfaction on intention to attend games. Sport Mark Q, 12:244-253, 2003. 6) Yoshida M and James JD. : Customer satisfaction with game and service experiences: Antecedents and consequences. J Sport Manage, 24(3):338-361, 2010. 7) Tsuji Y, Bennett G, Zhang J. : Consumer Satisfaction with an Action Sports Event. Sport Mark Q, 16(4):199-208, 2007. 8) . :

1×. , (1):11-18, 2020.

, . : :

., 9(2):3-18, 2017

10 , , .

×, 8(1):107-113, 2014.

11) , .

. , 27(1):101-113, 2015. 12) An B, Harada M, Sato S. Service quality, satisfaction, and behavioral intention in a triathlon event: the different experiences between local and non-local participants. J Sport Tour, 24(2):127-142, 2020. 13) . :

3(1):5-21, 2011

Page 12: 8 ¶ v ½ - JSMTA

0 3 3

62

14) , , . :08

. , 3(1):47-53, 2009. 15) , , . :

. , 3(1):77-93, 2011.

16) Lacey R and Close AG. : How fit connects service brand sponsors with consumersʼ passions for sponsored events. Int J Sports Mark Spons, 14(3):212-228,2013. 17) Koo SK, Byon K, Baker TA. : Integrating event image, satisfaction and behavioral intention : small-scale marathon event. Sport Mark Q, 23:127-137, 2014. 18) Keller K. : Conceptualizing, measuring, and managing customer-based brand equity. J Mark, 57(1):1-22, 1993. 19) Speed R and Thompson P. : Determinants of sports sponsorship response. J Acad Mark Sci, 28:226-238, 2000. 20) Koo G, Quarterman J, Flynn L. : Effect of perceived sport event and sponsor image fit on consumersʼ cognition, affect, and behavioral intentions. Sport Mark Q, 15:80-90, 2006. 21) Gwinner KP, Larson BV, Swanson SR. : Image transfer in corporate event sponsorship: Assessing the impact of team identification and event-sponsor fit. Int J Manage Mark Res, 2:1-15, 2009. 22) Xing X and Chalip L. : Effects of hosting a sport event on destination brand: A test of cobranding and match-up models. Sport Manage Rev, 9(1):49-78, 2006. 23) Hallmann K and Breuer C. : Image fit between sport events and their hosting destinations from an active sport tourist perspective and its impact on future behavior. J Sport Tour, 15:215-237, 2010. 24) Roy DP and Cornwell TB. : The effects of consumer knowledge on responses to event sponsorships. Psychol Mark, 21(3):185-207, 2004. 25) . :

. , 7(1):3-22, 2015. 26) . : ,

, NO.808(4), 2017. 27) , , , . :

―. , 14(2):100, 2017.

28) : SPSS Amos ×. , , pp180-183, 2008.

29) , . : Amos― . ,

, pp196-197, 2009. 30 Evanschitzky H and Wunderlich M. : An examination of moderator effects in the four-stage loyalty model. J Serv Res, 8:330-345, 2006. 31 Bagozzi RP and Yi Y. : On the evaluation of structural equation models. J Acad Mark Sci, 16(1):4-94, 1988. 32 Fornell C and Larcker DF. : Evaluating structural models with unobservable variables and measurement error. J Mark Res, 18:39-50, 1981. 33 Browne MW and Cudeck R. : Alternative ways of

assessing model fit. In: Bollen KA and Long JS. (Eds.), Testing structural equation models. Sage : Newbury Park, CA, USA, pp136-162, 1993.

Page 13: 8 ¶ v ½ - JSMTA

0 3 3

63

ORIGINAL INVESTIGATIONThe effects of service quality and image fit on behavioral intentions of spectators in the outdoor sports event The case of Windsurfing World Cup spectators.

HIRANO Takaya1. 1Meio University.

Jpn. J. Marit. Activity, 9(3):53-63, 2021

Submitted: 3 September, 2020; accepted in final form: 11 December, 20209

9Abstract: This study reveals the effects of service quality of an outdoor spectator sports event on the image fit between an event and its host destination, and the behavioral intentions of spectators. It also explores the effects of spectators’ previous experience as a spectator or player of the sport and their region of residence on the impact of service quality. A survey was conducted at Windsurf World Cup 2018 held in Yokosuka City, Kanagawa, and data were collected from 477 spectators. This study verifies the reliability and validity of the service quality scale, and the service quality of an outdoor sports event, especially of operation services, is found to positively affect spectators’ image fit and behavioral intentions. While the survey demonstrated that spectators’ previous experience as a player and region of residence affected the impact of service quality and image fit on their behavioral intentions, it did not reveal any impact as a spectator of the sport. This study suggests that creating a good match between an event and its host destination is effective to make it a

regular event. It also suggests that an event organizer needs to take spectator attributes into consideration according to the purpose of the event, to provide operation services. Key Words Outdoor Sports Event, Service quality, Image fit, Behavioral intention, City branding.

Corresponding author: HIRANO Takaya, e-mail : [email protected]

Page 14: 8 ¶ v ½ - JSMTA

10 4 4 2

64

� � � � � � �

� - � - � - �

- � - � - �

, ,)(

9 3 2

1 2

1 E SE1; 2 12E 10 SE 8 1 100%1 1 ; 2E

SE 1 7 20 52% 1E SE1 7 1 256 100%

1E SE 17 1 2 7 : 2

C D EC

1 ;9 1-32 ± 1

11 1

7 22 ;1

2, 32 17 1

321

1 1

2, 32 1 ±50 m

4-616, 72

1 1 ;1 1

2 1; 1

7 20 9 1882

1 1 ; ;

7 2 1

12 7

2, 3, 92 ± 1±

10, 1125m ; Board Velocity3BV4 101

77 2 1 1

±7 1 7 3212 9 1

±: 2

;1 2

Gulbin 12 1 90 m ;

1;

1 ± 122.7%; 20.4% � 12 1

283-8555 1 e-mail : [email protected]

Page 15: 8 ¶ v ½ - JSMTA

10 4 4 2

65

Miyama 11 1BV 1 ±

40 m BV;2 1

5m BV 118.7% 15m

BV 7 21BV

1120m � 2 ; BV

7 : 2 11

;113, 142

; 17 1

21Surf Life Saving Australia 3SLSA4

9 12 1

Draper and Sayers15

; 1 1 1;1

; 7 2 1

11

92 19

: 2 : 1 ;1 9

9 1 9 9 11

7 12 1 ;

72 7 13 9

2 1 BV1

;7 2 1 1

BV1; 21BV

2

1

± 18± 7 1

21

7 Elite 3E410 5

1± Sub-Elite 3SE48 4 2E

13 2 1

1 1 1; . 1E 24.9 . 3.4 1166.4 . 6.8 cm161.8 . 5.6 kg115.0 . 4.8%1; 172.2 . 6.5 cm1SE 20.6 . 1.9 1164.8 . 9.3 cm159.6 . 5.7 kg115.7 . 6.0%1; 165.3 . 7.0 cm 7 2 1

11-192 1 17

; 12

V1BV

1 ±9 1 1; 1

Dolphin 317 cm1 45 cm1 7.9 kg 21 50m ; 15

2 140 m; 2 15 40

m ;2 1

12

3 2 3 A

1 ;40ⅿ ; 15m BV

125 30 m 710, 112 1 BV; 1

25 30 mHandycam HDR-XR350V1Sony 1 30

21 20m

1 2m 21 2

1m2 1 4

22 1X1Y Figure 1 2

1 ; 7: 1 PC 1

Frame-Dias01DKH6 1 1 11 1 2

Figure 1 2;1 1 1

1

Page 16: 8 ¶ v ½ - JSMTA

10 4 4 2

66

12 1

71

12 1 1

15 1 1

;2 2 4

1Yu 16

4 8Hz 14Butterworth low-pass digital filter 2

1 1Draper and Sayers 15 Figure 2 ; 3

2 & 1

2 1

2 1 ± 12 1

1 18Table 1

3 10%1 100% 26 1

4% 2

1 ;; 1

2 1

3B M 2 B B B A <: <A : = M M A : = < A: B D :== B

: 6 D BF : = =M : B M : = : B =M : B BF A<: <A : = M M A : = < A: B D :== B A : M : =: F : S : =: = = B: B

3B M 2 B B B A P : = :PB : = =B B B =B A B BP B A B AB= A = : F: M: =B B B = BD :== B - A :< FB : B< : <A: < DB < = : D B < : =

A: = B <

Page 17: 8 ¶ v ½ - JSMTA

10 4 4 2

67

1 ; 4% BV1BVBV BV 1; 1

; BV BV 2 B 3

1Figure 21

2 11

2 3

XY 1 19 ;

Figure 3 2 1X

9 21

X 92 1

2 1

2 1

2 11 ;

2 10 52%& 56 100% ±

; 1

2

1 . 21 ; 4%

2 Shapiro-Wilk 1Levene 1

t 19 Welch 11 Mann-Whitney U

2 1SPSS version. 24 IBM1 ; 5%

2 ;11 BV

22 1

1 21 BV 7 1

; : 21 1

2

51 1;

1E SE E 24.9 . 3.4 SE 20.6 . 1.9 E 172.2 . 6.5cm SE 165.3 . 7.0 cm P < 0.05

7 2 5

E BV 2.58 . 0.24 m/s 1SE 2.29 . 0.18 m/s 12.7% 1 P < 0.05

3B M ( 2 B B B A M D : = AB A F AB D : =A M = B : B D :== B

Page 18: 8 ¶ v ½ - JSMTA

10 4 4 2

68

2 1 BV E 36% 1SE 32%

Figure 4 1E BV 3.35 . 0.41 m/sSE 2.78 . 0.32 m/s P < 0.05

2 1 BV 76%± 1E BV 1.88 .

0.25 m/s SE 1.87 . 0.26 m/s 7Figure 4 2E BV SE 10112

48% 1; 100% ; P < 0.05Figure 4 2

B 35

1 ;3 4 Table

1 ; 1 ;2

3 5B

10% E 0.2 . 6.21SE 1.6 . 5.5 7 1E 32% 1

SE 28%E 19.2 . 6.6 SE 16.9 . 6.8 1

1 84% ±E −3.8 . 8.1 SE −3.2 . 6.69 Figure 5 2 1

; 1 ;Figure 516 2

B1 0%

E 67.7 . 8.6 SE 58.3 . 8.2 7 11 52%

E 43.9 . 5.4 SE 46.5 . 3.6Figure 5 2E

SE 10% ; 88100% P < 0.05 Figure 5 2

0 52% ; 1

1E 23.8 . 6.4SE 11.8 . 7.6 P < 0.01

2 156 100% ; 1

1E 22.6 . 6.4 SE 11.1 . 7.3P < 0.01 21E SE 18 20% ;

40% P < 0.05 1168 88% P < 0.05

Figure 6 2

10% E67.4 . 9.5 SE 56.7 . 5.6 7 11E 44% 1SE 36%

E 30.0 . 3.5 SE33.1 . 7.6 9

Figure 5 2E SE 108% 88 100% P < 0.05

Figure 5 20 52% ; 11E 37.5 .

6.8 SE 23.6 . 8.3 P < 0.012 156 100% ; 1

1E 31.8 . 6.3 SE 18.3 . 6.3

P < 0.01 2 1E SE 18 20%

P < 0.05 164 80%P < 0.05 Figure 6 2

10% E 69.2 . 11.6 SE 62.3 . 9.6 7 1 1

52% E46.5 . 8.6 SE 51.7 . 6.9

9 Figure 5 2 1

3B M ) 1 : = <B B =M B A D < < D :== B A B B= B : = M B = =B M A F : S : =: = = B: B : M A B % : = M B M ,: A 0 :B = 4: AB 8 : : B B<: B F: B : F =: ) A F: B = BF T 6B B B<: 5 . % % =B < A M

Page 19: 8 ¶ v ½ - JSMTA

10 4 4 2

69

Figure 5 20 52% ; 1

1E 22.7 . 8.3 SE 10.6 . 9.1 P < 0.05 2 156 100% ; 1

1E 21.7 . 7.5SE 10.5 . 8.6 P < 0.052 1E SE 12836% P < 0.05 18488% P < 0.05Figure 6 2

10% E137.5 . 8.2 1SE 137.6 . 22.0 7 1

1E 68% ± 1SE64% ± E 13.1 . 9.8

SE 24.8 . 15.7 9Figure 5 2 1

; Figure 5 2

; 10 52% ;E 100.0 . 11.3 SE 101.7 . 7.0

1P = 0.73 56 100% ; E124.4 . 11.3 SE 112.7 . 15.8 1P = 0.10

21E SE 160%

P < 0.05 184% P < 0.05 Figure 6 2 .

12 ; 1BV1;

1BV2 1

E BV SE 1E BVSE 1

2 1 7

3B M 6 F : = B : =M B A D< < D :== B A B B=B : = M B = = B M AF : S : =: = = B: B : M AB % : = M B M ,

: A 0 :B = 4:AB 8 : : B B<: BF: B : F = : ) AF: B = BF T 6B B B<: 5 . % %

=B < A M

3B M 6 F : = B : M : <B B =M BA D < < D :== B A B B= B : = M B = = B

M A F : S : =: = = B: B : MA B % : = M B ,M : A 0 :B = 4:

AB 8 : : B B<: BF: B : F = : ) AF: B = BF T 6B B B<: 5 . % %

=B < A M

Page 20: 8 ¶ v ½ - JSMTA

10 4 4 2

70

1 2 5

E BV 1SE 12.7%Figure 4 2 1E SE

E 172.2 . 6.5cm SE 165.3 . 7.0 cm1P < 0.05 1 ;

1 & 1 1; ±; 1

Table 1 2Miyama 11 140 m ;

BV 1; 5m BV

18.7% 1&

±2 1 E

SE BV 13

2 1Miyama11 140m ;

5m ;BV

1: 2 1

; 1 ;� 3 1

: 102 1; 1E SE

1: 1

E SE 4.2% BVE SE 12.7%2

11 1

171

18 2 11

1921 ;

;25% : 21 ; 25%

7 1;

BV BV7 2 ; 1

25% 1E BV SE12 48% &

1Figure 4 2 1 ;& ;

1EBV 36% SE 32%

4% 2 1E SE; 1E SE

1E 25%; SE

1 : 2; 1 1

11 7 181

1: 192 1

;1 ;

1 1 17 : 2

3 5SLSA 9 1

10% ;

1 45cm

2 ; 10% ;1 E 0.2 .

6.2 SE 1.6 . 5.5 7 2 10%; E 67.7 . 8.6

SE 58.3 . 8.2 71

: 2 10% ;1 E

137.5 . 8.2 SE 137.6 . 22.07 1 E 67.7

. 8.6 SE 58.3 . 8.2 E67.4 . 9.5 SE 56.7 . 5.6 E SE

2 9

; 1 14 5cm

: 10%; E 1 1

: 2 9 1 11

2; 1 : 1

1 0% 11

Figure 5 2 1 10 52% & 1E ; 8 20%140% 1 8 20% 28 36%

SE 1Figure 6 2 : 11 1

1

92 11 9 E

SE1 :

2 1E SE

; &

Page 21: 8 ¶ v ½ - JSMTA

10 4 4 2

71

: 12

1 11; 1

0 52% ; 1 1;E 100.0 . 11.3 SE 101.7

. 7.0 1P = 0.73 7 1

: 2 10 52% ; 1

1 E 23.8 . 6.4 SE11.8 . 7.6 1 E 37.5 .

6.8 SE 23.6 . 8.3 E 22.7 . 8.3 SE 10.6 . 9.1E SE 2

10 52% &; 1E SE 1

: 2 9 1 ± 1

&

2 ; 1 11; 1

1 1 ±0%

Figure 5 2 156 100% ± ; 1E; 68 88% 1

64 80% 84 88%1; 84% SE1 Figure 6 2 1

56 100% ; 1 ;E 124.4 . 11.3 SE 112.7

. 15.8 1P = 0.10 7 2 156 100% ; 1E SE

1 1;1

7 2156 100% ;

: 2156 100% ; 1

1E 22.6 . 6.4 SE 11.1 .

7.3 1 E 31.8 . 6.3 SE18.3 . 6.3 E 21.7 . 7.5

SE 10.5 . 8.6 ESE 2156 100% ± ; 1E

SE 19 SE

: 2 5 4 5

1 9 :2 1 40ⅿ 9 ;

1

97 1

7 : 2 1600m 9 ;

7 2 12

7 2 : 11

3 2 1

Figure 3 1 & ;1 17

: 21 1 ;

3 7 2

41E SE 1

; 1 BV1;2 1BV

1 92

1 E BV 1SE 12.7% 21

25% 1E BV SE12 48% &

2 2 0% ; E E

67.7 SE 58.3 E 67.4SE 56.7 SE 1

20% E 11

: 2 3 0 52% &

; 1 71E ;

8 20%140% 1 8 20%28 36% SE

12 1E SE

11

: 2 4 56 100% ± ; 1

7 1E; 68 88% 1

64 80% 84 88%SE 1

21E SE

SE

: 2

; 1

Page 22: 8 ¶ v ½ - JSMTA

10 4 4 2

72

2 11 C1

24500752 22

1 21) Gulbin 12 ;

11

1 19

7 2 1

1 1±

7 2

7 17 2

2) 7

9 1120ⅿ

2 1; 1

2 3) 1

12 1

; ;2

1) , , . : . , , 2002.

2) . : JRC 2015 .

, , 2018. 3) Surf Life Saving Australia. : Public safety and aquatic rescue (34th ed.). Elsevier, NSW, 2016. 4) , , , . :

; . , 16(8) : 879-885, 1999.

5) . : . 2011. 6) . :

. 2011. 7) Surf Life Saving Australia. : Annual report 2018-19. 8) The International Life Saving Federation. : Competition rule book (2019 ed.). Leuven, 2019. 9) Surf Life Saving Australia. : Surf Life Saving Australia coaching manual (5th ed.). NSW, 2011. 10) , , , ,

, . : ; 11; :

; . , 2(1) : 1-8, 2013. 11) Miyama M, Uematsu A, Urata T, Endo H, Arai H,

Nakatsuka K, Araki M. : Stroke characteristics of lifesaving maximal board paddling : A comparison of Japanese elite and sub-elite paddlers. Int J Sport Health Sci, 16 : 211-219, 2018. 12) Gulbin JP, Fell JW, Gaffney PT. : A physiological profile of elite surf ironmen, full time lifeguards & patrolling surf life savers. Aust J Sci Med Sport, 28(3): 86-90, 1996. 13) Limonta E, Squadrone R, Rodano R, Marzegan A, Veicsteinas A, Merati G, Sacchi M. : Tridimensional kinematic analysis on a kayaking simulator : key factors to successful performance. Sport Sci Health, 6(1):27-34, 2010. 14) Ho SR, Smith R, O'Meara D. : Biomechanical analysis of dragon boat paddling : A comparison of elite and sub-elite paddlers. J Sports Sci, 27(1) : 37-47, 2009. 15) Draper JA and Sayers MGL. : Biomechanical analysis of surf board paddling. Australian Sports Commission. National Sports Research Centre, 1986. 16) Yu B, Gabriel D, Noble L, An K-N. : Estimate of the optimum cutoff frequency for the butterworth low-pass digital filter, J Appl Biomech, 15(3):318-329, 1999. 17) Aitken DA and Neal RJ. : An on-water analysis system for quantifying stroke force characteristics during kayak events. J Appl Biomech, 8(2):165-173, 1992. 18) Michael JS, Smith R, Rooney KB. : Determinants of kayak paddling performance. Sports Biomech, 8(2):167-179, 2009. 19) Sanders RH and Kendal SJ. : A description of Olympic flatwater kayak stroke technique. Aust J Sci Med Sport. 24:25-30, 1992.

Page 23: 8 ¶ v ½ - JSMTA

10 4 4

73

ORIGINAL INVESTIGATIONKinematic comparison of trunk and lower limb motions during lifesaving maximal knee paddling in elite and sub-elite board paddlers.

MIYAMA Motoyoshi1, UEMATSU Azusa2, URATA Tatsuya3, ENDO Hiroya4, ARAI Hirokazu5, NAKATSUKA Kentaro6 , ARAKI Masanobu7. 1 Faculty of Management and Information Sciences, Josai International University; 2 Department of Health and Sport Sciences, Premedical Sciences, Dokkyo Medical University; 3 Faculty of Human Sociology, Kobe University of Welfare; 4 Department of Liberal Arts, Tokyo University of Technology; 5 Faculty of Health & Sport Sciences, Ryutsu Keizai University; 6 Graduate School of Technology, Industrial and Social Sciences, Tokushima University; 7 Graduate School of Sport Sciences, Nihon Fukushi University.

Jpn. J. Marit. Activity, 9(3):64-73, 2021

9Submitted: 3 April, 2020; accepted in final form: 13 March, 2021

Abstract6 In this study, the technical factors that increase board velocity were clarified by comparing the differences in the kinematic characteristics of board velocity and trunk and lower limb motions during maximal knee paddling in a two-dimensional analysis of elite (E) and sub-elite (SE) board paddlers. Ten E (E group) and eight SE (SE group) board paddlers performed maximal knee paddling in an indoor pool. The board velocities, joint angles, and angular velocities in the trunk and lower limb segments and joints were compared during one stroke cycle, which was normalized to 100%. The E group showed significantly higher board velocities than those in the SE group at the time points during the stroke cycle. Between 0% and 52%, the E group showed significantly greater angular velocities of backward leaning of the thigh segment and flexion of the hip and knee joints at several time points and a greater range of lower limb motion than those in the SE group. Moreover, between 56% and 100%, the E group showed significantly greater angular velocities of forward leaning of the thigh segment and extension of the hip and knee joints at several time points and a greater range of lower limb motion than those in the SE group. These differences may be technical factors that increase board velocity. Key Words lifesaving, knee paddling, two-dimensional motion analysis, trunk and lower limbs, performance level.

Corresponding author: MIYAMA Motoyoshi, e-mail : [email protected]

Page 24: 8 ¶ v ½ - JSMTA

21 9 5 5

74

- -

� �

, )( ))

0 4 3 0

. 2- -

-- 9 :

. -7 - 0 1

-7 : -

.: 9

: 9 -.

-9 -

. 7 -9 0 1

. -

-

. -- :

.

- -

: . -

: -

. -9 -

: 0 1 0 1

4 .

2-0 1

: .- :-

: 4 -: .

-9 :-

4 1�. - -

7. :- :

-- -

:: .

-7 : 9

- :: 9

: 4 .: -: 4 .

0 1� 1 9-

: 7 - 9 :.

7 - -02 3 -2 3

- 9 -

- : -

4 1 . -0 - 7-

9 4 .4 12� .

- 9- . -

-0 1: 4 9

9 4 . : - -4 9 -

9 4 . 269-1292 4-1-1

e-mail : [email protected]

Page 25: 8 ¶ v ½ - JSMTA

21 9 5 5

75

, 9 0 0,

9 , 9,

0 9-

09 3 ,,-

C 2

2018 1 3 7 ,9

- , 9

- C

.3 - ,

, , ,, ,

- 2012 6 ,

UNESCO 360 , 9,- , 3

0 1 93�- , 488

: 4�

, 28-

3 3 ,3 -

9 ,

3 ,- ,

9 9 -3 � 2 4

, 9 39 - , 10

,20159 168,770 ,

9 85%-

9 ,

9 - ,3

: ,2019

9 - , 230

-

, 201238,428 . 3 ,201725,829 3 -

2018 , 29 ,

2019 219,637 , 5�- C 2

,,

,-

9, - ,

, ,-

-

,

0 - ,0 0- 2009 11

9 ,0 9 -

, 15 US 3 9,2012 10 1 9 ,30

: - ,3 1

:, 20 30 50-

, 9 ,9,

9 -, 39,

, 9 ,9 9

- ,2

, 9, 9

9 : - B C

0 0 509,2018 1 1

: - 9

PPEF 0 1 :,100 9 -

9- , ,

9 3 -, PPEF

Page 26: 8 ¶ v ½ - JSMTA

21 9 5 5

76

1 - PPEF ,10,12.75 70% ,

30% - ,259 ,

,- 30 9, 22.50 9

6�- B DB 2

,,

9 - 93 , ,

3,10

0 91 -

,,

93 ,, 9 ,

-,

,0 9 -

,-

2 -

,2012 6 19

- 0 253 9 50 9 ,

0 35 100 -, 20

09 - ,―

, ― 09 ,10 ,2 25 3 9,

1 ,30 2 -

, 250 9-

, , , ,- 9

, 9 3 9,: -

,,-

C A2017 12 70 , 3

,,3 7�- ,

09 ,

9 9 ,9

- , ,9 ,

3 - 9

, 93, 9 3

- , ,0 ,, -

.1 .

$ . .32 5

)

U.S

$ $ (

7 0.

1

3

1 1

1 / 7/ 2 S

50 /1 S

2 S

3

)($

)($ $

7/ 2 S /

7/ 2 S $U /

$

$ $

$

Page 27: 8 ¶ v ½ - JSMTA

21 9 5 5

77

,0 9

2020 2 1 , 268,030 -

,9 ,

99

- , 9 ,

,, .

9 -

, -

1,, , 9

- 9 ,

3 ,: -

,9, 0

,: -, . :- , ,3

. 9 3 - ,

9 3 -9 3 9, :

9 ,9 - ,

9,-

9 , 9 3,

.9- ,

,

, 30

9,-

1) , ,

, 0, 03 ,1960

- 2) 2018 5 9

9, 3 -, ,

,9 9,- 3 9,

9 30 ,7 30 -

1) , , . : -

. pp78-79, 2011. 2) , , . : -

, , . p35, 2007.

3) UNITED NATIONS EDUCATIONAL, SCIEN TIFIC AND CULTURAL ORGANIZATION : Decisions report – 36th session of the World Heritage Committee (Saint-Petersburg, 2012) - Rock Islands Southern Lagoon (Palau), WORLD HERITAGE COMMITTEE, 2012. 4) : , https://www.mofa.go.jp/mofaj/area/palau/data.html

2020 1 28 5) Republic of Palau National Government: Visitor arrivals by Country Group, FY2008 to FY2017, Bureau of Immigration, MOJ, Palau Visitors Authority, and Bureau of Budget and Planning, MOF, 2019. 6) Republic of Palau National Government: Regulations Implementing the Pristine Paradise Environmental Fee, Bureau of Customs & Border Protection MINISTRY OF FINANCE, 2017. 7) Republic of Palau Office of the President: Presidential Directive No.17-29 Directing Immigration Officials to Utilize Palau Pledge Entry Visa Stamp, 2017. 8) , Palau Pledge, https://palaupledge.com/# 2020 2 1

. 2

Page 28: 8 ¶ v ½ - JSMTA

1

9 3 2 1

10

9 3

2021 3 108-8477 4-5-7 00150-6-429943 TEL/FAX 03-5463-0638 URL https://www.jsmta.jp/ E-mail [email protected]

.

Page 29: 8 ¶ v ½ - JSMTA

2020-2021 5

9

9

Page 30: 8 ¶ v ½ - JSMTA
Page 31: 8 ¶ v ½ - JSMTA
Page 32: 8 ¶ v ½ - JSMTA
Page 33: 8 ¶ v ½ - JSMTA

����� �