6.the theory of simple gases

28
6. The Theory of Simple Gases 1. An Ideal Gas in a Quantum Mechanical Microcanonical Ensemble 2. An Ideal Gas in Other Quantum Mechanical Ensembles 3. Statistics of the Occupation Numbers 4. Kinetic Considerations 5. Gaseous Systems Composed of Molecules with Internal Motion 6. Chemical Equilibrium

Upload: melyssa-patterson

Post on 14-Mar-2016

76 views

Category:

Documents


1 download

DESCRIPTION

6.The Theory of Simple Gases. An Ideal Gas in a Quantum Mechanical Microcanonical Ensemble An Ideal Gas in Other Quantum Mechanical Ensembles Statistics of the Occupation Numbers Kinetic Considerations Gaseous Systems Composed of Molecules with Internal Motion Chemical Equilibrium. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 6.The Theory of Simple Gases

6. The Theory of Simple Gases

1. An Ideal Gas in a Quantum Mechanical Microcanonical Ensemble

2. An Ideal Gas in Other Quantum Mechanical Ensembles

3. Statistics of the Occupation Numbers

4. Kinetic Considerations

5. Gaseous Systems Composed of Molecules with Internal Motion

6. Chemical Equilibrium

Page 2: 6.The Theory of Simple Gases

6.1. An Ideal Gas in a Quantum Mechanical Microcanonical Ensemble

n N

N non-interacting, indistinguishable particles in V with E.

( N, V, E ) = # of distinct microstates

Let be the average energy of a group of g >> 1 unresolved levels.

Let n be the # of particles in level .

n E

,, , N E

n

N V E W n

Let W { n } = # of distinct microstates associated with a given set of { n }.

Let w(n ) = # of distinct microstates associated with level when it contains n particles.

W n w n

Page 3: 6.The Theory of Simple Gases

Bosons ( Bose-Einstein statistics) : W n w n

1 !! 1 !BE

n gw n

n g

See § 3.8

1 !! 1 !BE

n gW n

n g

Fermions ( Fermi-Dirac statistics ) :

n g w(n ) = distinct ways to divide g levels into 2 groups;

n of them with 1 particle, and g n with none.

!

! !FDgw n

n g n

!

! !FDgW n

n g n

Page 4: 6.The Theory of Simple Gases

Classical particles ( Maxwell-Boltzmann statistics ) :

!!

nMB

NW n gn

w(n ) = distinct ways to put n distinguishable particles into g levels.

nMBw n g

1!

ngn

Gibbs corrected

!

ngn

Page 5: 6.The Theory of Simple Gases

, , ln , ,S N V E k N V E

,ln N E

n

k W n

n N

n E

*lnk W n

Method of most probable value( also see Prob 3.4 )

n* extremize lnL W n n N n E

1 !! 1 !BE

n gW n

n g

ln ln ln lnBEW n n g n g n n g g

ln 1 ln 1g nn gn g

Lagrange multipliers

Page 6: 6.The Theory of Simple Gases

!

! !FDgW n

n g n

!

n

MBgW nn

ln ln 1 ln 1BEg nW n n gn g

ln ln ln lnFDW n g g n n g n g n

ln 1 ln 1g nn gn g

ln ln lnMBW n n g n n n

ln ln 1 ln 1g nW n n gn g

BE

FD

ln ln MBn gW n W n

Page 7: 6.The Theory of Simple Gases

ln ln 1 ln 1g nW n n gn g

lnL W n n N n E

ln 1 ln 1g nL n g n n N En g

1 1ln 1 0

1 1

g gg nn nn g

ln 1 0gn

1g en

* 11

ng e

BEFD Most probable occupation per level

e MB 1e

Page 8: 6.The Theory of Simple Gases

ln ln 1 ln 1g nW n n gn g

* 11

ng e

*

* **ln ln 1 ln 1S g nW n n g

k n g

BE

FD

* 1ln 1 1 ln 11

n e ge

* ln1

en ge

* ln 1n g e

ln 1N E g e

N E PVST T T

kT 1

kT ln 1PV kT g e

PV kT g e

MB: N kT*kT n

1e

Page 9: 6.The Theory of Simple Gases

6.2. An Ideal Gas in Other Quantum Mechanical Ensembles

Canonical ensemble : , , ,EN

E

Z N T V e Q T V

n N

n E

Ideal gas, = 1-p’cle energy :

, , expN

n

Z N T V g n n

= statistical weight factor for { n }.

1BEg n 1 0, 10FD

all n org n

otherwise

1!MBg n

n

Actual g absorbed in ( here is treated as non-degenerate: g = 1).

g n

Page 10: 6.The Theory of Simple Gases

, , expN

n

Z N T V g n n

1!MBg n

n

n E

n N

1, ,!

N n

n

Z N T V en

1 !! !

nN

n

N eN n

1!

N

eN

1 1, ,!

NZ T VN

Maxwell-Boltzmann :

11 ,

!NQ T V

N

,NQ T V

multinomial theorem

Page 11: 6.The Theory of Simple Gases

2 21

2 23

0

42

kmV dk k e

3/2

2 2

1 3 22 2 2V m

3/2

22mV

3

V

1/222mkT

2 2 20

22V m m d e

3/23/2

2 2

322 2V m

11, , ,Z T V Q T V e

2 21

2k

me

k

11, , ,

!NZ N T V Q T V

N

3

1!

NVN

partition function (MB)

0

, , , ,N

N

T V e Z N T V

Z 0

, ,N

N

z Z N T V

, ,z T VZ , ,z T VQ

30

1!

N

N

z VN

3exp z V

grand partition function (MB)

Page 12: 6.The Theory of Simple Gases

, , expN

n

Z N T V g n n

n E

n N

, , N n

n

Z N T V g n e

Bose-Einstein / Fermi-Dirac : 1BEg n

Difficult to evaluate (constraint on N )

0

, , , ,N

N

T V e Z N T V

Z

0

expN N

nN

e g n n

expn

g n n

0

expN

nN

g n n

n

n

g n e

nn

g n e

; ,

z ; , n

n

g n e

z

1 0, 10FD

all n org n

otherwise

Page 13: 6.The Theory of Simple Gases

1BEg n 1 0, 10FD

n org n

otherwise

, , ; ,T V

Z z

B.E.

0

; , n

n

e

z 1

1 e

0 1e Z 0 0 0

F.D.

1

0

; ,n

n

e

z 1 e

11 ze

1 ze

Grand potential : , , ln , ,F T V kT T V Z ln 1kT e

BEFD

q potential : , , ln , ,q z T V z T V Z ln 1 ze

; , n

n

g n e

z

1

1 e

Z

1 e

Z

1!MBg n

n

Page 14: 6.The Theory of Simple Gases

, , ln 1F T V kT e

, , ln 1q z T V ze

BEFD

1e e MB : MBF kT e

MBq z e

1, ,kT e Z T V

1, ,z Z T V 1 ,z Q T Vc.f. §4.4

1TV

F eN kTe

11e

, ,

E NN N E

N N E N E

z Z N z e e Z

,

1 E N

N E

N N e Zln

T

kT

Z

Alternatively

,

1 N E

N E

E E z e Zln

z

Z1

z eze

z

q

1 1z e

1

11z e

TV

F

Page 15: 6.The Theory of Simple Gases

Mean Occupation Number

For free particles :

1 n

n

n n g n e

zZ

, ,

lnkT

Z

lnq Z

, ,

1 q

1

z ekTze

1

11

nz e

1

1e

BEFD

*ng

see §6.1

, ,

kT

ZZ

1 n

n

n g n e

z ,

kT

zz

, , ; ,T V

Z z 1; , 1n

n

g n e ze

z

Page 16: 6.The Theory of Simple Gases

6.3. Statistics of the Occupation Numbers

1

1n

e

BEFD

Mean occupation number :

n e

MB :

FD : 1n 1 1n forkT

BE : ~n B.E. condensation

1e

1

Classical : high T

must be negative & large3z nFrom §4.4 :

3 1NV same as §5.5

Page 17: 6.The Theory of Simple Gases

Statistical Fluctuations of n

1

1e

2 21 n

n

n n g n e

z

BEFD

2 2

2, ,

kT

ZZ

2 22n n n 22

22

,

1 1kT

z zz z

22

2,

lnkT

z

, ,

nkT

21

e

e

2e n

2 22

2

n nnn n

e

1 ez

1 n

n

n n g n e

z 1; , 1 ze

z

2 2

2,

kT

zz

Page 18: 6.The Theory of Simple Gases

2 22

2

n nn en n

1

1n

e

BEFD

1 1n

above normalbelow normal

Einstein on black-body radiation :

+1 ~ wave character

n 1 ~ particle character

see Kittel, “Thermal Phys.”

Statistical correlations in photon beams : see refs on pp.151-2

Page 19: 6.The Theory of Simple Gases

Probability Distributions of n

Let p (n) = probability of having n particles in a state of energy .

np n C e

BEFD

11

ne

1 1en

1n

en

111

en

n

n

g n e

z

Page 20: 6.The Theory of Simple Gases

BE :

np n C e

0

111n

p n Ce

1 np n e e

1

1 1

nn

n n

BEFD

1

1n

e

1 1en

1n

en

111

en

11

n

n

n

n

FD : 1

0

1 1n

p n C e

1

1np n e

e

11

nn

nn

1 01

n nn n

1; , 1 ze

z

11C e z

1 1

1C

e z

Page 21: 6.The Theory of Simple Gases

MB :

0

1 expn

p n C e

!nCp n e

n

Gibbs’ correction

1

! expnp n e

n e

0n

n n p n

1

11 !

n

n

C en

0

1!

n

n

C e en

e

1!

n

np n nn e

!

nnn

en

Poisson distribution

0

1 exp!

n

n

e en

1n

e Alternatively

22

2 2

1n

2e e 2n n 2n n

11

p nn

p n n

“normal” behavior of un-correlated events

prob of occupying state

Page 22: 6.The Theory of Simple Gases

1 11

p nn

p n n n

“normal” behavior of un-correlated events

11

n

n

np n

n

BE :

FD : 1 0

1n n

p nn n

1 1

np np n n

Geometric ( indep of n )> MB for large n :Positive correlation

11

10 1

nnp n

np n

n

< MB for large n :Negative correlation

Page 23: 6.The Theory of Simple Gases

n - Representation

Let n = number of particles in 1-particle state .

0, 1, 2,0,1

bosonsn

fermions

H N

n

n e n

Z

Non-interacting particles :

0 1 2, , ,n n n n State of system in the n- representation :

n

n

n e n

Z

n

n

e

Z

11

1

bosonse

e fermions

n

n

e

Page 24: 6.The Theory of Simple Gases

Mean Occupation Number

Let F be an operator of the form e.g., F f n

H n

F Tr F

1 H

n

n e F n

Z

n

nn

n

e n f

e

a n

n

e

Z

n f

a

a

n

nn

n

e nn

e

Page 25: 6.The Theory of Simple Gases

6.4. Kinetic Considerations

ln 1kTP g zeV

From § 6.1BEFD

ln 1kTP g zeV

kk

k

22 3

0

ln 12

pkT d p p ze

2

30

4 ln 12

kkT VP dk k zeV

Free particles :p k

3 3

2 30 0

1 1ln 12 3 3 1

pp

p

kT z e dp ze d p pdpze

k k

3

2 30

16 1

p

p

ze dd p pdpze

2

2 3 10

1 16 1p

dd p p pdpz e

Page 26: 6.The Theory of Simple Gases

2

2 30

1 16 1p

dP d p p pd pe

BEFD

3 2

3 2 30

= =22

V Vd p d p p

p

Let p( ) be the probability of a particle in state . Then

221

2 2m

m

p u

13

N dP pV d p

np

n

f p f

=nN

1

1n

e

22 3

0

16 p

dP d p p n pd p

1 n fN

=

13

n pu NnV

sp dp sd p

13

P ns 13

EnsN

13

EsV

s = 1 : phononss = 2 : free p’cles

All statistics

Page 27: 6.The Theory of Simple Gases

13

P n pu pressure is due to particle motion (kinetics)

Let n f(u) d3u = density of particles with velocity between u & u+du.

3d u n f n u 3 1d u f u

# of particles to strike wall area dA in time dt

= # of particles with u dA >0 within volume udA

dt

3

0dd u n f d d t

u A

u u A

Total impulse imparted on dA =

Each particle imparts on dA a normal impluse = ˆ2 p n ˆd dAA n

3

ˆ 0ˆ ˆ2I n d u f dA d t

u n u p n u n

3 ˆ ˆn d u f u p n u nIP

dA dt ˆ ˆn p n u n 2cosn pu

13

P n pu

Page 28: 6.The Theory of Simple Gases

Rate of Effusion

3

ˆ 0ˆn d u f dA d t

u n u u n

Rate of gas effusion per unit area through a hole in the wall is

3

ˆ 0ˆR n d u f

u n u u n

# of particles to strike wall area dA in time dt

f f uu

1

2

0 0

2 cos cosR n du u d f u u

ˆ ˆn z 3

0

n du u f u

3 1d u f u 2

0

4 du u f u

14

R n u All statistics

R u Effused particles more energetic.

u > 0 Effused particles carry net momentum (vessel recoils)

Prob.6.14