69647_op amp basics

Upload: phild2na2

Post on 04-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 69647_op Amp Basics

    1/46

    OP-AMPS in SIGNAL PROCESSING

    APPLICATIONS

    Filters, Integrators, Differentiators,

    and Instrumentation Amplifier

  • 7/29/2019 69647_op Amp Basics

    2/46

    Sensors :

    definition and principles

  • 7/29/2019 69647_op Amp Basics

    3/46

    Sensors : taxonomies

    Measurand physical sensor chemical sensor biological sensor(cf: biosensor)

    Invasiveness invasive(contact) sensor noninvasive(noncontact) sensor

    Usage type multiple-use(continuous monitoring) sensor disposable sensor

    Power requirement passive sensor active sensor

  • 7/29/2019 69647_op Amp Basics

    4/46

    What is electronics engineering all

    about?

    Process

    Sensors/ transducers

    Filters

    Amplifiers Feedback

    Actuators/transducers

    New process

    A/D converters Computers

    D/A converters

    Physicalvariables

    ElectricalvariablesV, I, t, f

    Physicalvariables

    F, P, d, v, t, f

  • 7/29/2019 69647_op Amp Basics

    5/46

    What is a Signal Processor?

    It selects useful partsof a signal

    It cleans signal fromimpurities

    It compares signals

    It converts signals into

    forms that can be

    easily recognized

    The ECG wave in its raw form

  • 7/29/2019 69647_op Amp Basics

    6/46

    Examples of

    biomedical

    signals

  • 7/29/2019 69647_op Amp Basics

    7/46

    Examples of Signal Processors

    Basic amplifiers already discussed

    Instrumentation amplifier an improveddifferential amplifier

    Active filters

    Integrators and differentiators

    Extra Reading:

    Precision rectifiers

    Logarithmic amplifiers

    Negative capacitance amplifiers

  • 7/29/2019 69647_op Amp Basics

    8/46

    Signal Conditioning

    Ideal operational amplifier

    Inverting, non-inverting and instrumentamplifier

    Integrator, differentiator

    Filters

    Examples of signal conditioning module

  • 7/29/2019 69647_op Amp Basics

    9/46

    Ideal Operational Amplifier

    Operational (OP) amplifier is a high-gain dc differentialamplifier. It is made of an integrated circuit chip. It has twoinputs, negative terminal v1 and positive terminal v2 and oneoutput v0. The effective input to the amplifier is the voltagedifference of the two inputs v1-v2.

  • 7/29/2019 69647_op Amp Basics

    10/46

    Properties of Ideal OP Amplifier

    Gain if infinity (A=).

    V0 = 0, when v1 = v2

    Input impedance is infinity. Output impedance is zero.

    Bandwidth is infinitely wide and has no phase

    shift.

  • 7/29/2019 69647_op Amp Basics

    11/46

    Basic Rules for Ideal OP Amplifier

    When the OP amplifier output is in its linearrange, the two input terminals are at the same

    voltage.

    No current flows into either input terminal ofthe OP amp.

  • 7/29/2019 69647_op Amp Basics

    12/46

    Inverting Amplifier

  • 7/29/2019 69647_op Amp Basics

    13/46

    Non-inverting Amplifier

  • 7/29/2019 69647_op Amp Basics

    14/46

    Instrument Amplifier

  • 7/29/2019 69647_op Amp Basics

    15/46

    Active Filters

    Low-pass

    High-pass

    Band-pass Band-stop (notch)

    All-pass (phase-shift)

  • 7/29/2019 69647_op Amp Basics

    16/46

    Low-pass filter: circuit

    i

    f

    Z

    ZG =

    V0ViA

    -Ri Rf

    Cf

    GL = Rf/Ri ; f= RfCf; fc = 1/2f

    Derive the equation for gain G

    What are the important parameters?

    )(

    )(0

    jV

    jVG

    i

    =

    i

    ff

    f

    f

    R

    RCj

    CjR

    +

    =

    1

    ( ) fL

    fi

    f

    iff

    f

    j

    G

    jR

    R

    RCRj

    R

    +=

    +=

    +=

    11

    1

    1

  • 7/29/2019 69647_op Amp Basics

    17/46

    Low-pass filter: characteristics

    Gain/GL

    f/fc

    0.1 1 10 100

    0.1

    0.01 Slope = -1

    1

    -3/2

    Phase f/fc

    -5/4

    -

    GL = Rf/Ri ;

    f= RfCf; fc = 1/2

    f

  • 7/29/2019 69647_op Amp Basics

    18/46

    V0Vi A

    -Ri Cf

    Integrator ideal: circuit

    i

    f

    i

    f

    i RCj

    ZZ

    jVjVG

    1

    )()(0 ===

    Virtual

    Ground

    i

    i

    +=

    t

    iCifi

    VdtVCR

    V00

    1

    dt

    dVC

    R

    Vi f

    i

    i 0==

    Express V0 in terms of Vi Write expression for gain G

    ffi jCRj 11 ==

    Where = RiCf

  • 7/29/2019 69647_op Amp Basics

    19/46

    Integrator ideal:

    characteristics

    G/GL

    f/fc

    0.1 1 10 100

    0.1

    0.01

    0

    10

    100

    Slope = -1

    1

    -3/2

    Phase f/fc

    -5/4

    -

    Draw G/GL versus f/fc

    Draw phase versus f/fc

    f

    fG cc ====

    1

    == 2702/3

  • 7/29/2019 69647_op Amp Basics

    20/46

    The integrator with bias currents

    Through which component the bias current flows?

  • 7/29/2019 69647_op Amp Basics

    21/46

    Gain/GL

    f/fc

    0.1 1 10 100

    0.1

    0.01 Slope = -1

    Integrator - practical

    V0Vi A

    -Ri

    Rf

    Cf

    f

    L

    fi

    f

    i j

    G

    jR

    R

    jV

    jVG

    +=

    +==

    11

    1

    )(

    )(0

    Without Rf

    With Rf

    Rfprovides route for DC bias currents

    1Phase f/fc

    -3/2

    -5/4

    -

    Without Rf

    Low-pass filter Integ.

    fcfff fCR 2

    1

    ; ==

  • 7/29/2019 69647_op Amp Basics

    22/46

    Charge amplifier

    vo

    Electrode

    The piezoelectric sensor generates charge, which is transferred tothe capacitor,C, by the charge amplifier. Feedback resistorR

    causes the capacitor voltage to decay to zero

  • 7/29/2019 69647_op Amp Basics

    23/46

    Charge amplifier: circuit

    V0IsC

    FET

    -

    Rf

    Cf

    IsRdtKdxidtdq ss // ==

    Piezoelectricsensor

    Is

    VirtualGround

    IsC = IsR = 0 ===t

    ff C

    KXdt

    dt

    Kdx

    CVV

    00

    1

  • 7/29/2019 69647_op Amp Basics

    24/46

    Step response of a charge amplifierxi

    Deflection

    vo

    vo max

    vo max /e

    Time

    Time

    The charge amplifierresponds to a step inputwith an output thatdecays to zero with atime constant=RfCf

  • 7/29/2019 69647_op Amp Basics

    25/46

    High-pass filter: circuit

    V0ViA

    -Ri RfCi

    i

    f

    i Z

    Z

    jV

    jVG ==

    )(

    )(0

    GH = -Rf/Ri ; i = RiCi ; fc = 1/2i

    Derive the equation for gain G

    What are the important parameters?

    i

    Hi

    i

    i

    i

    f

    j

    Gj

    j

    j

    R

    R

    +=

    +=

    11ii

    if

    ii

    f

    CRj

    CRj

    CjR

    RG

    +

    =+

    =11

  • 7/29/2019 69647_op Amp Basics

    26/46

    High-pass filter: characteristics

    Gain/GH

    f/fc

    0.1 1 10 100

    0.1

    0.01Slope = +1

    1

    -

    Phase f/fc

    -3/4

    -/2

    Draw G/GH

    versus f/fc

    Draw phase versus f/fc

  • 7/29/2019 69647_op Amp Basics

    27/46

    Differentiator - ideal

    V0ViA

    -RfCi

    II

    dt

    dVCRV

    dt

    dVCi

    iif

    ii

    =

    =

    0

    jCRjG

    Cj

    R

    Z

    Z

    jV

    jVG

    if

    i

    f

    i

    f

    i

    ==

    ===1)(

    )(0

    Slope = +1

    fc = 1/2

    Phase shift = - 90o

    Gain

    f/fc

    0.1 1 10 100

    0.1

    0.01

    1

    10

    100

    Express V0 in terms of Vi

    Write expression for gain G

  • 7/29/2019 69647_op Amp Basics

    28/46

    Differentiator - practical

    V0ViA

    -RfCi

    Cf

    f

    f

    f

    i

    ff

    if

    i

    ff

    ff

    i

    f

    i j

    j

    C

    C

    CRj

    CRj

    Cj

    CjR

    CjR

    Z

    Z

    jV

    jVG

    +

    =

    +

    =

    +

    ===

    111

    1

    1

    )(

    )(0

    In an ideal differentiator, the high

    frequency response is limited by theopen-loop gain of the op-amp yieldinga very noisy output voltage.

    f= RfCf; fc = 1/2f

    Cfis used to limit the hf gain,

    hence the hf noise.

    The gain at hf: GH = - Ci/Cf

    ff

  • 7/29/2019 69647_op Amp Basics

    29/46

    Differentiator characteristics

    Slope = +1

    1

    -

    Phase f/fc

    -3/4

    -/2

    Gain/GH

    f/fc

    0.1 1 10 100

    0.1

    0.01

    10 Without Cf

    With Cf

    With Cf

    DifferentiatorHigh-pass filter

  • 7/29/2019 69647_op Amp Basics

    30/46

    Measurement of integrator and

    differentiator characteristics

    V0V i A-

    1k5

    15 k

    10 nF

    Integrator

    Form your lab team and assignduties.

    Go to the lab bench.

    Built the circuit given:

    integrator for team 1 anddifferentiator for team 2

    Connect the power supply.

    Connect the CRO

    Do the experiment according tothe procedures in the sheet - 6.

    Switch off the PS and signalgenerator

    Return your seat

    V0ViA

    -15 k0.1F

    10 nFDifferentiator

  • 7/29/2019 69647_op Amp Basics

    31/46

    Band-pass filter: circuit

    V0ViA-

    Ri Rf

    Cf

    Ci

    ( )( )

    )1)(1()1)(1(

    111

    1

    )(

    )(0

    fi

    iMB

    fi

    i

    i

    f

    iiff

    fi

    ii

    ff

    f

    f

    i

    f

    i

    jj

    jG

    jj

    j

    R

    R

    G

    CRjCRj

    RCj

    CjR

    RCj

    CjR

    Z

    Z

    jV

    jVG

    ++=++=

    ++=

    +

    +

    ===

    Mid-band gain =GMB = - Rf/Ri

    Time-constants: I= RiCi ; f= RfCf

    Critical frequencies: fL = 1/2I ; fH = 1/2f

  • 7/29/2019 69647_op Amp Basics

    32/46

    Band-pass filter: characteristics

    Gain/GH

    f/fc

    0.1 1 10 100

    0.1

    0.01

    Slope = -1Slope = +1

  • 7/29/2019 69647_op Amp Basics

    33/46

    Band-pass filter (non-inverting)

  • 7/29/2019 69647_op Amp Basics

    34/46

    Frequency response of bpf

  • 7/29/2019 69647_op Amp Basics

    35/46

    BPF with bias compensation

  • 7/29/2019 69647_op Amp Basics

    36/46

    Comparators: Basic Rules

    V0=A(V2-V1)

    V0 = 0 if V1 = V2 V0 = +VSAT if V1 < V2 V0 = -VSAT if V1 > V2 No current flows into either

    input terminals of the op-amp.

    V0

    V1

    V2A

    +

    -

  • 7/29/2019 69647_op Amp Basics

    37/46

    Simple comparator (inverting)

    V0Vref A

    +

    -

    R1

    R2

    Vi

    V-

    Output stays at +VSAT if V-0

    +10V

    -10V

    V0

    Time

    -Vref*R1/(R1+R2)

    Vi*R2/(R1+R2)

    V0

    Vi

    10V

    10V-10V

    -10V-Vref*R1/R2

    -

    VSAT

    VSAT

  • 7/29/2019 69647_op Amp Basics

    38/46

    Comparator with hysteresis

    V0Vref A

    +

    -

    R1

    R2

    Vi

    V-

    R3R4

    V

    V- = (Vi*R2+Vref*R1)/(R1+R2)

    V+= V0*R3 /(R3+R4)

    Output stays at +VSAT if V-V+

    V

  • 7/29/2019 69647_op Amp Basics

    39/46

    CharacteristicsV0

    Vref A

    +

    -

    R1

    R2

    Vi

    V-

    R3R4

    V+

    V0

    Vi

    10V

    10V-10V

    -10VVL

    +VSAT

    -VSAT

    VH

    Vhys

    VH = -Vref*R1/R2 VSAT*R3/(R3+R4)

    VL = -Vref*R1/R2 + VSAT*R3/(R3+R4)

    +10V

    -10V

    V0

    Time

    -Vref*R1/(R1+R2)

    Vi*R2/(R1+R2)

    VH

    VLVhys

  • 7/29/2019 69647_op Amp Basics

    40/46

    Op-Amps in Reality

    Fabricated using integrated-circuit technologies

    Inside an op-amp:

    1) Transistors

    2) Parasitic capacitors

    3) Internal resistors

    Op-amp chip configuration that we will use:Quad-channel (i.e. 4-in-1)

    14 pins in the op-amp chip

  • 7/29/2019 69647_op Amp Basics

    41/46

    Instrumentation Amplifier

  • 7/29/2019 69647_op Amp Basics

    42/46

    Overall Circuit Structure

    Overall differential gain is given by:

    R4

    R3

    vo

    R3

    R4

    R2

    va

    R2

    R1

    vb

    VS+

    VS+

    VS+

    1

    221R

    RG +=

    3

    4

    R

    RG =

    +==

    3

    4

    1

    221R

    R

    R

    RGGGD

    DifferenceAmplifier

    InputConditioner

    VS

    VS

    VS

  • 7/29/2019 69647_op Amp Basics

    43/46

    In-Amp: Input Conditioner

    Note that iR1 = iR2a = iR2b. Then the diff. outputvoltage is given by:

    The diff. input voltage is equal to:

    The differential gain is thus equal to:

    R2

    va

    R2

    R1

    vb

    VS+

    VS+

    va'

    vb'

    iR1

    iR2a( )211 2'' RRivv Rab +=

    iR2b

    1

    221''

    R

    R

    vv

    vvG

    ab

    abD +=

    =

    11Rivv Rab =VS

    VS

  • 7/29/2019 69647_op Amp Basics

    44/46

    In-Amp: Input Conditioner

    This input conditioner does not amplifycommon-mode signals!

    Brief proof of principle:

    Since vb v

    a= iR1R1:

    The output voltages are thusequal to:

    01 === Rcmba ivvv

    cmba vvv == ''

    R2

    va

    R2

    R1

    vb

    VS+

    VS+

    va'

    vb'

    iR1

    iR2a

    iR2b

    VS

    VS

  • 7/29/2019 69647_op Amp Basics

    45/46

    In-Amp: Difference Amplifier

    1) From voltage divider principles:

    2) Note that iR1a = iR2a. Thus:

    R2

    R1

    vbvo

    va

    R1

    R2

    VS+

    +=+

    21

    2

    RR

    Rvv b iR1a

    iR2a

    12 R

    vv

    R

    vv ao =

    1122

    11

    R

    vv

    RRR

    v ao

    +=

    VS

  • 7/29/2019 69647_op Amp Basics

    46/46

    In-Amp: Difference Amplifier

    3) Note that v

    = v+. So from the voltage divider

    expression:

    4) Substituting the above into the

    output voltage expression, we get:

    R2

    R1

    vbvo

    va

    R1

    R2

    VS+iR1a

    iR2a

    22 )(Rv

    GvvR

    v o ===

    += 212

    RR

    R

    vv b

    112

    2

    12

    12

    2 R

    vvRR

    R

    RR

    RR

    R

    v ab

    o

    +

    +=

    VS