624012 fe

Upload: nevdull

Post on 03-Apr-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 624012 Fe

    1/32

    LTC6240/LTC6241/LTC6242

    1

    624012fe

    Single/Dual/Quad 18MHz,Low Noise, Rail-to-Rail Output,

    CMOS Op Amps

    The LTC6240/6241/LTC6242 are single, dual and quadlow noise, low offset, rail-to-rail output, unity gain stableCMOS op amps that feature 1pA of input bias current. Inputbias current is guaranteed to be 1pA max on the singleLTC6240. The 0.1Hz to 10Hz noise of only 550nVP-P, alongwith an offset of just 125V are significant improvementsover traditional CMOS op amps. Additionally, noise isguaranteed to be less than 10nV/Hz at 1kHz. An 18MHzgain bandwidth, and 10V/s slew rate, along with the widesupply range and low input capacitance, make them perfect

    for use as fast signal processing amplifiers.These op amps have an output stage that swings within30mV of either supply rail to maximize the signal dynamicrange in low supply applications. The input common moderange extends to the negative supply. They are fully speci-fied on 3V and 5V, and an HV version guarantees operationon supplies up to 5V.

    The LTC6240 is available in the 8-pin SO and the 5-pin SOT-23 packages. The LTC6241 is available in the 8-pin SO, andfor compact designs it is packaged in a tiny dual fine pitch

    leadless (DFN) package. The LTC6242 is available in the16-pin SSOP as well as the 5mm 3mm DFN package.

    n Photo Diode Amplifiersn Charge Coupled Amplifiersn Low Noise Signal Processingn Medical Instrumentationn High Impedance Transducer Amplifier

    n 0.1Hz to 10Hz Noise: 550nVP-Pn Input Bias Current:

    0.2pA (Typ at 25C)1pA Max (LTC6240)

    n Low Offset Voltage: 125V Maxn Low Offset Drift: 2.5V/C Maxn Gain Bandwidth Product: 18MHzn Output Swings Rail-to-Railn Supply Operation:

    2.8V to 6V LTC6240/LTC6241/LTC6242

    2.8V to 5.5V LTC6240HV/LTC6241HV/LTC6242HVn Low Input Capacitancen H-Grade Temperature Range: 40C to 125Cn Single LTC6240 in 5-Pin Low Profile (1mm)

    ThinSOT Package and 8-Pin SO for PCB Guard Ringn Dual LTC6241 in 8-Pin SO and Tiny DFN Packagesn Quad LTC6242 in 16-Pin SSOP and 5mm 3mm

    DFN Packages

    Low Noise Single-Ended Input to Differential Output Amplifier Noise Voltage vs Frequency

    L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of LinearTechnology Corporation. ThinSOT is a trademark of Linear Technology Corporation.All other trademarks are the property of their respective owners.

    TYPICAL APPLICATION

    DESCRIPTIONFEATURES

    APPLICATIONS

    +

    R2200k

    C110pF

    C210pF

    +2.5V

    2.5V

    6241 TA01a

    R44.99k

    R1200k

    VIN

    VOUT+

    VOUT1/2

    LTC6241

    +

    1/2

    LTC6241

    C310pF

    R34.99k

    C4

    10pF

    FREQUENCY (Hz)

    20

    10

    NOISEVOLTAGE(nV/Hz)

    30

    40

    50

    60

    1 100 1k 100k

    6241 TA01b

    010 10k

    TA = 25CVS = 2.5VVCM = 0V

  • 7/27/2019 624012 Fe

    2/32

    LTC6240/LTC6241/LTC6242

    2

    624012fe

    Total Supply Voltage (V+ to V)LTC6240/LTC6241/LTC6242 ...................................7VLTC6240HV/LTC6241HV/LTC6242HV ....................12V

    Input Voltage .......................... (V+ + 0.3V) to (V 0.3V)Input Current ........................................................ 10mAOutput Short-Circuit Duration (Note 2) ............ IndefiniteOperating Temperature Range

    LTC6240C/LTC6241C/LTC6242C ..........40C to 85CLTC6240I/LTC6241I/LTC6242I .............40C to 85CLTC6240H/LTC6241H/LTC6242H ....... 40C to 125C

    (Note 1)

    Specified Temperature Range (Note 3)LTC6240C/LTC6241C/LTC6242C .............. 0C to 70CLTC6240I/LTC6241I/LTC6242I .............40C to 85C

    LTC6240H/LTC6241H/LTC6242H ....... 40C to 125CJunction Temperature ........................................... 150C

    DHC, DD Package ............................................. 125CStorage Temperature Range ..................65C to 150C

    DHC, DD Package .............................. 65C to 125CLead Temperature (Soldering, 10 sec)...................300C

    ABSOLUTE MAXIMUM RATINGS

    LTC6240 LTC6240

    OUT 1

    V 2

    TOP VIEW

    S5 PACKAGE5-LEAD PLASTIC TSOT-23

    +IN 3

    5 V+

    4 IN+

    TJMAX = 150C, JA = 250C/W

    1

    2

    3

    4

    8

    7

    6

    5

    TOP VIEW

    NC

    V+

    OUT

    NC

    NC

    IN

    +IN

    V

    S8 PACKAGE8-LEAD PLASTIC SO

    +

    TJMAX = 150C, JA = 190C/W

    LTC6241 LTC6241

    TOP VIEW

    DD PACKAGE8-LEAD (3mm s 3mm) PLASTIC DFN

    5

    6

    78

    4

    3

    21OUT A

    IN A

    +IN A

    V

    V+

    OUT B

    IN B

    +IN BB

    A

    TJMAX = 125C, JA = 43C/WUNDERSIDE METAL CONNECTED TO V

    (PCB CONNECTION OPTIONAL)

    1

    2

    3

    4

    8

    7

    6

    5

    TOP VIEW

    V+

    OUT B

    IN B

    +IN B

    OUT A

    IN A

    +IN A

    V

    S8 PACKAGE8-LEAD PLASTIC SO

    B

    A

    TJMAX = 150C, JA = 190C/W

    LTC6242 LTC6242

    16

    15

    14

    13

    12

    11

    10

    9

    17

    1

    2

    3

    4

    5

    6

    7

    8

    OUT D

    IN D

    +IN D

    V

    +IN C

    IN C

    OUT C

    NC

    OUT A

    IN A

    +IN A

    V+

    +IN B

    IN B

    OUT B

    NC

    TOP VIEW

    DHC PACKAGE16-LEAD (5mm s 3mm) PLASTIC DFN

    B

    A

    C

    D

    TJMAX = 125C, JA = 43C/WUNDERSIDE METAL CONNECTED TO V (PCB CONNECTION OPTIONAL)

    GN PACKAGE16-LEAD PLASTIC SSOP

    1

    2

    3

    4

    5

    6

    7

    8

    TOP VIEW

    16

    15

    14

    13

    12

    11

    10

    9

    OUT A

    IN A

    +IN A

    V+

    +IN B

    IN B

    OUT B

    NC

    OUT D

    IN D

    +IN D

    V

    +IN C

    IN C

    OUT C

    NC

    B

    A

    C

    D

    TJMAX = 150C, JA = 135C/W

    PIN CONFIGURATION

  • 7/27/2019 624012 Fe

    3/32

    LTC6240/LTC6241/LTC6242

    3

    624012fe

    LEAD FREE FINISH TAPE AND REEL PART MARKING* PACKAGE DESCRIPTION SPECIFIED TEMPERATURE RANGE

    LTC6240CS5#PBF LTC6240CS5#TRPBF LTCRR 5-Lead Plastic TSOT-23 0C to 70C

    LTC6240HVCS5#PBF LTC6240HVCS5#TRPBF LTCRS 5-Lead Plastic TSOT-23 0C to 70C

    LTC6240IS5#PBF LTC6240IS5#TRPBF LTCRR 5-Lead Plastic TSOT-23 40C to 85C

    LTC6240HVIS5#PBF LTC6240HVIS5 #TRPBF LTCRS 5-Lead Plastic TSOT-23 40C to 85C

    LTC6240HS5#PBF LTC6240HS5#TRPBF LTCRR 5-Lead Plastic TSOT-23 40C to 125C

    LTC6240HVHS5#PBF LTC6240HVHS5#TRPBF LTCRS 5-Lead Plastic TSOT-23 40C to 125C

    LTC6240CS8#PBF LTC6240CS8#TRPBF 6240 8-Lead Plastic SO 0C to 70C

    LTC6240HVCS8#PBF LTC6240HVCS8#TRPBF 6240HV 8-Lead Plastic SO 0C to 70C

    LTC6240IS8#PBF LTC6240IS8#TRPBF 6240I 8-Lead Plastic SO 40C to 85C

    LTC6240HVIS8#PBF LTC6240HVIS8#TRPBF 240HVI 8-Lead Plastic SO 40C to 85C

    LTC6240HS8#PBF LTC6240HS8#TRPBF 6240H 8-Lead Plastic SO 40C to 125C

    LTC6240HVHS8#PBF LTC6240HVHS8#TRPBF 240HVH 8-Lead Plastic SO 40C to 125C

    LTC6241CDD#PBF LTC6241CDD#TRPBF LBPD 8-Lead (3mm 3mm) Plastic DFN 0C to 70C

    LTC6241HVCDD#PBF LTC6241HVCDD#TRPBF LBRR 8-Lead (3mm 3mm) Plastic DFN 0C to 70C

    LTC6241IDD#PBF LTC6241IDD#TRPBF LBPD 8-Lead (3mm 3mm) Plastic DFN 40C to 85C

    LTC6241HVIDD#PBF LTC6241HVIDD#TRPBF LBRR 8-Lead (3mm 3mm) Plastic DFN 40C to 85C

    LTC6241CS8#PBF LTC6241CS8#TRPBF 6241 8-Lead Plastic SO 0C to 70C

    LTC6241HVCS8#PBF LTC6241HVCS8#TRPBF 6241HV 8-Lead Plastic SO 0C to 70C

    LTC6241IS8#PBF LTC6241IS8#TRPBF 6241I 8-Lead Plastic SO 40C to 85C

    LTC6241HVIS8#PBF LTC6241HVIS8#TRPBF 241HVI 8-Lead Plastic SO 40C to 85C

    LTC6241HS8#PBF LTC6241HS8#TRPBF 6241H 8-Lead Plastic SO 40C to 125C

    LTC6241HVHS8#PBF LTC6241HVHS8#TRPBF 241HVH 8-Lead Plastic SO 40C to 125C

    LTC6242CDHC#PBF LTC6242CDHC#TRPBF 6242 16-Lead (5mm 3mm) Plastic DFN 0C to 70C

    LTC6242HVCDHC#PBF LTC6242HVCDHC#TRPBF 6242HV 16-Lead (5mm 3mm) Plastic DFN 0C to 70C

    LTC6242IDHC#PBF LTC6242IDHC#TRPBF 6242 16-Lead (5mm 3mm) Plastic DFN 40C to 85C

    LTC6242HVIDHC#PBF LTC6242HVIDHC#TRPBF 6242HV 16-Lead (5mm 3mm) Plastic DFN 40C to 85C

    LTC6242CGN#PBF LTC6242CGN#TRPBF 6242 16-Lead Plastic SSOP 0C to 70C

    LTC6242HVCGN#PBF LTC6242HVCGN#TRPBF 6242HV 16-Lead Plastic SSOP 0C to 70C

    LTC6242IGN#PBF LTC6242IGN#TRPBF 6242I 16-Lead Plastic SSOP 40C to 85C

    LTC6242HVIGN#PBF LTC6242HVIGN#TRPBF 242HVI 16-Lead Plastic SSOP 40C to 85C

    LTC6242HGN#PBF LTC6242HGN#TRPBF 6242H 16-Lead Plastic SSOP 40C to 125C

    LTC6242HVHGN#PBF LTC6242HVHGN#TRPBF 242HVH 16-Lead Plastic SSOP 40C to 125C

    Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.Consult LTC Marketing for information on non-standard lead based finish parts.

    For more information on lead free part marking, go to:http://www.linear.com/leadfree/For more information on tape and reel specifications, go to:http://www.linear.com/tapeandreel/

    ORDER INFORMATION

  • 7/27/2019 624012 Fe

    4/32

    LTC6240/LTC6241/LTC6242

    4

    624012fe

    AVAILABLE OPTIONS

    PART NUMBER AMPS/PACKAGE SPECIFIED TEMP RANGE SPECIFIED SUPPLY VOLTAGE PACKAGE PART MARKING

    LTC6240CS5 1 0C to 70C 3V, 5V SOT-23 LTCRR

    LTC6240CS8 1 0C to 70C 3V, 5V SO-8 6240

    LTC6240HVCS5 1 0C to 70C 3V, 5V, 5V SOT-23 LTCRS

    LTC6240HVCS8 1 0C to 70C 3V, 5V, 5V SO-8 6240HV

    LTC6240IS5 1 40C to 85C 3V, 5V SOT-23 LTCRR

    LTC6240IS8 1 40C to 85C 3V, 5V SO-8 6240I

    LTC6240HVIS5 1 40C to 85C 3V, 5V, 5V SOT-23 LTCRS

    LTC6240HVIS8 1 40C to 85C 3V, 5V, 5V SO-8 240HVI

    LTC6240HS5 1 40C to 125C 3V, 5V SOT-23 LTCRR

    LTC6240HS8 1 40C to 125C 3V, 5V SO-8 6240H

    LTC6240HVHS5 1 40C to 125C 3V, 5V, 5V SOT-23 LTCRS

    LTC6240HVHS8 1 40C to 125C 3V, 5V, 5V SO-8 240HVH

    LTC6241CS8 2 0C to 70C 3V, 5V SO-8 6241

    LTC6241CDD 2 0C to 70C 3V, 5V DD LBPDLTC6241HVCS8 2 0C to 70C 3V, 5V, 5V SO-8 6241HV

    LTC6241HVCDD 2 0C to 70C 3V, 5V, 5V DD LBRR

    LTC6241IS8 2 40C to 85C 3V, 5V SO-8 6241I

    LTC6241IDD 2 40C to 85C 3V, 5V DD LBPD

    LTC6241HVIS8 2 40C to 85C 3V, 5V, 5V SO-8 241HVI

    LTC6241HVIDD 2 40C to 85C 3V, 5V, 5V DD LBRR

    LTC6241HS8 2 40C to 125C 3V, 5V SO-8 6241H

    LTC6241HVHS8 2 40C to 125C 3V, 5V, 5V SO-8 241HVH

    LTC6242CGN 4 0C to 70C 3V, 5V GN 6242

    LTC6242CDHC 4 0C to 70C 3V, 5V DHC 6242

    LTC6242HVCGN 4 0C to 70C 3V, 5V, 5V GN 6242HVLTC6242HVCDHC 4 0C to 70C 3V, 5V, 5V DHC 6242HV

    LTC6242IGN 4 40C to 85C 3V, 5V GN 6242I

    LTC6242IDHC 4 40C to 85C 3V, 5V DHC 6242

    LTC6242HVIGN 4 40C to 85C 3V, 5V, 5V GN 242HVI

    LTC6242HVIDHC 4 40C to 85C 3V, 5V, 5V DHC 6242HV

    LTC6242HGN 4 40C to 125C 3V, 5V GN 6242H

    LTC6242HVHGN 4 40C to 125C 3V, 5V, 5V GN 242HVH

  • 7/27/2019 624012 Fe

    5/32

    LTC6240/LTC6241/LTC6242

    5

    624012fe

    ELECTRICAL CHARACTERISTICS (LTC6240C/I, LTC6240HVC/I, LTC6241C/I, LTC6241HVC/I, LTC6242C/I,LTC6242HVC/I) The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are atTA = 25C. VS = 5V, 0V, VCM = 2.5V unless otherwise noted.

    SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

    VOS Input Offset Voltage (Note 4) LTC6241 S80C to 70C40C to 85C

    l

    l

    40 125250300

    VVV

    LTC6242 GN0C to 70C40C to 85C

    l

    l

    50 150275300

    VVV

    LTC62400C to 70C40C to 85C

    l

    l

    50 175300350

    VVV

    LTC6241 DD, LTC6242 DHC0C to 70C40C to 85C

    l

    l

    100 550650725

    VVV

    VOS Match Channel-to-Channel (Note 5) LTC6241 S80C to 70C

    40C to 85C

    l

    l

    40 160300

    375

    VV

    VLTC6242 GN0C to 70C40C to 85C

    l

    l

    50 185325400

    VVV

    LTC6241 DD, LTC6242 DHC0C to 70C40C to 85C

    l

    l

    150 650700750

    VVV

    TC VOS Input Offset Voltage Drift (Note 6) l 0.7 2.5 V/C

    IB Input Bias Current (Notes 4, 7) LTC6241, LTC6242l

    0.275

    pApA

    LTC6240l

    0.2 175

    pApA

    IOS Input Offset Current (Notes 4, 7) LTC6241, LTC6242 l 0.2 75 pApA

    LTC6240l

    0.2 175

    pApA

    Input Noise Voltage 0.1Hz to 10Hz 550 nVP-P

    en Input Noise Voltage Density f = 1kHz 7 10 nV/Hz

    in Input Noise Current Density (Note 8) 0.56 fA/Hz

    RIN Input Resistance Common Mode 1012

    CIN Input CapacitanceDifferential ModeCommon Mode

    f = 100kHz3.53

    pFpF

    VCM Input Voltage Range Guaranteed by CMRR l 0 3.5 V

    CMRR Common Mode Rejection 0V VCM 3.5V l 80 105 dBCMRR MatchChannel-to-Channel (Note 5) l 76 95 dB

  • 7/27/2019 624012 Fe

    6/32

    LTC6240/LTC6241/LTC6242

    6

    624012fe

    SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

    AVOL Large Signal Voltage Gain VO = 1V to 4VRL = 10k to VS/20C to 70C40C to 85C

    l

    l

    425300200

    1600 V/mVV/mVV/mV

    VO = 1.5V to 3.5VRL = 1k to VS/20C to 70C40C to 85C

    l

    l

    906050

    215 V/mVV/mVV/mV

    VOL Output Voltage Swing Low (Note 9) No LoadISINK = 1mAISINK = 5mA

    l

    l

    l

    740

    190

    3075325

    mVmVmV

    VOH Output Voltage Swing High (Note 9) No LoadISOURCE = 1mAISOURCE = 5mA

    l

    l

    l

    1145

    190

    3075325

    mVmVmV

    PSRR Power Supply Rejection VS = 2.8V to 6V, VCM = 0.2V l 80 104 dBPSRR MatchChannel-to-Channel (Note 5) l 74 100 dB

    Minimum Supply Voltage (Note 10) l 2.8 V

    ISC Short-Circuit Current l 15 30 mA

    IS Supply Current per Amplifier LTC6241, LTC62420C to 70C40C to 85C

    l

    l

    1.8 2.22.32.4

    mAmAmA

    LTC62400C to 70C40C to 85C

    l

    l

    2 2.42.52.6

    mAmAmA

    GBW Gain Bandwidth Product Frequency = 20kHz, RL = 1k l 13 18 MHz

    SR Slew Rate (Note 11) AV = 2, RL = 1k l 5 10 V/sFPBW Full Power Bandwidth (Note 12) VOUT = 3VP-P, RL = 1k l 0.53 1.06 MHz

    ts Settling Time VSTEP = 2V, AV = 1, RL = 1k, 0.1% 1100 ns

    ELECTRICAL CHARACTERISTICS (LTC6240C/I, LTC6240HVC/I, LTC6241C/I, LTC6241HVC/I, LTC6242C/I,LTC6242HVC/I) The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are atTA = 25C. VS = 5V, 0V, VCM = 2.5V unless otherwise noted.

  • 7/27/2019 624012 Fe

    7/32

    LTC6240/LTC6241/LTC6242

    7

    624012fe

    ELECTRICAL CHARACTERISTICS (LTC6240C/I, LTC6240HVC/I, LTC6241C/I, LTC6241HVC/I, LTC6242C/I,LTC6242HVC/I) The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are atTA = 25C. VS = 3V, 0V, VCM = 1.5V unless otherwise noted.

    SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

    VOS

    Input Offset Voltage (Note 4) LTC6241 S80C to 70C40C to 85C

    l

    l

    40 175275325

    VVV

    LTC6242 GN0C to 70C40C to 85C

    l

    l

    60 200275325

    VVV

    LTC62400C to 70C40C to 85C

    l

    l

    50 200325375

    VVV

    LTC6241 DD, LTC6242 DHC0C to 70C40C to 85C

    l

    l

    100 550650725

    VVV

    VOS Match Channel-to-Channel (Note 5) LTC6241 S80C to 70C40C to 85C

    l

    l

    40 200325400

    VVV

    LTC6242 GN0C to 70C40C to 85C

    l

    l

    60 225325400

    VVV

    LTC6241 DD, LTC6242 DHC0C to 70C40C to 85C

    l

    l

    150 650700750

    VVV

    TC VOS Input Offset Voltage Drift (Note 6) l 0.7 2.5 V/C

    IB Input Bias Current (Notes 4, 7) LTC6241, LTC6242l

    0.275

    pApA

    LTC6240l

    0.2 175

    pApA

    IOS Input Offset Current (Notes 4, 7) LTC6241, LTC6242l

    0.275

    pApA

    LTC6240l

    0.2 175

    pApA

    VCM Input Voltage Range Guaranteed by CMRR l 0 1.5 V

    CMRR Common Mode Rejection 0V VCM 1.5V l 78 100 dB

    CMRR MatchChannel-to-Channel (Note 5) l 76 95 dB

    AVOL Large Signal Voltage Gain VO = 1V to 2VRL = 10k to VS/20C to 70C40C to 85C

    l

    l

    14010075

    600 V/mVV/mVV/mV

    VOL Output Voltage Swing Low (Note 9) No LoadISINK = 1mA

    l

    l

    365

    30110

    mVmV

    VOH

    Output Voltage Swing High (Note 9) No LoadISOURCE = 1mA

    l

    l

    470

    30120

    mVmV

    PSRR Power Supply Rejection VS = 2.8V to 6V, VCM = 0.2V l 80 104 dB

    PSRR MatchChannel-to-Channel (Note 5) l 74 100 dB

    Minimum Supply Voltage (Note 10) l 2.8 V

    ISC Short-Circuit Current l 3 6 mA

  • 7/27/2019 624012 Fe

    8/32

    LTC6240/LTC6241/LTC6242

    8

    624012fe

    SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

    VOS Input Offset Voltage (Note 4) LTC6241 S8

    0C to 70C40C to 85Cl

    l

    50 175

    275325

    V

    VV

    LTC6242 GN0C to 70C40C to 85C

    l

    l

    60 200275325

    VVV

    LTC62400C to 70C40C to 85C

    l

    l

    60 250350400

    VVV

    LTC6241 DD, LTC6242 DHC0C to 70C40C to 85C

    l

    l

    100 550650725

    VVV

    VOS Match Channel-to-Channel (Note 5) LTC6241 S80C to 70C40C to 85C

    l

    l

    50 200325400

    VVV

    LTC6242 GN0C to 70C40C to 85C

    l

    l

    60 225325400

    VVV

    LTC6241 DD, LTC6242 DHC0C to 70C40C to 85C

    l

    l

    150 650700750

    VVV

    TC VOS Input Offset Voltage Drift (Note 6) l 0.7 2.5 V/C

    IB Input Bias Current (Notes 4, 7) LTC6241, LTC6242l

    0.575

    pApA

    LTC6240l

    0.5 175

    pApA

    IOS Input Offset Current (Notes 4, 7) LTC6241, LTC6242l

    0.275

    pApA

    LTC6240l

    0.2 175

    pApA

    Input Noise Voltage 0.1Hz to 10Hz 550 nVP-P

    (LTC6240HVC/I, LTC6241HVC/I, LTC6242HVC/I) The l denotes the specifications which apply over the full operating temperaturerange, otherwise specifications are at TA = 25C. VS = 5V, 0V, VCM = 0V unless otherwise noted.

    ELECTRICAL CHARACTERISTICS (LTC6240C/I, LTC6240HVC/I, LTC6241C/I, LTC6241HVC/I, LTC6242C/I,LTC6242HVC/I) The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are atTA = 25C. VS = 3V, 0V, VCM = 1.5V unless otherwise noted.

    SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

    IS

    Supply Current per Amplifier LTC6241, LTC62420C to 70C40C to 85C

    l

    l

    1.4 1.71.81.9

    mAmAmA

    LTC62400C to 70C40C to 85C

    l

    l

    1.5 1.92

    2.1

    mAmAmA

    GBW Gain Bandwidth Product Frequency = 20kHz, RL = 1k l 12 17 MHz

  • 7/27/2019 624012 Fe

    9/32

    LTC6240/LTC6241/LTC6242

    9

    624012fe

    ELECTRICAL CHARACTERISTICS (LTC6240HVC/I, LTC6241HVC/I, LTC6242HVC/I) The l denotes thespecifications which apply over the full operating temperature range, otherwise specifications are at TA = 25C. VS = 5V, 0V, VCM = 0Vunless otherwise noted.

    SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

    en Input Noise Voltage Density f = 1kHz 7 10 nV/Hz

    in Input Noise Current Density (Note 8) 0.56 fA/Hz

    RIN Input Resistance Common Mode 1012

    CIN Input CapacitanceDifferential ModeCommon Mode

    f = 100kHz3.53

    pFpF

    VCM Input Voltage Range Guaranteed by CMRR l 5 3.5 V

    CMRR Common Mode Rejection 5V VCM 3.5V l 83 105 dB

    CMRR MatchChannel-to-Channel (Note 5) l 76 95 dB

    AVOL Large Signal Voltage Gain VO = 3.5V to 3.5VRL = 10k0C to 70C

    40C to 85C

    l

    l

    775600

    500

    2700 V/mVV/mV

    V/mVRL = 1k0C to 70C40C to 85C

    l

    l

    1509075

    360 V/mVV/mVV/mV

    VOL Output Voltage Swing Low (Note 9) No LoadISINK = 1mAISINK = 10mA

    l

    l

    l

    1545

    360

    3075

    550

    mVmVmV

    VOH Output Voltage Swing High (Note 9) No LoadISOURCE = 1mAISOURCE = 10mA

    l

    l

    l

    1545

    360

    3075

    550

    mVmVmV

    PSRR Power Supply Rejection VS = 2.8V to 11V, VCM = 0.2V l 85 110 dB

    PSRR MatchChannel-to-Channel (Note 5) l 82 106 dB

    Minimum Supply Voltage (Note 10) l 2.8 VISC Short-Circuit Current l 15 35 mA

    IS Supply Current per Amplifier LTC6241, LTC62420C to 70C40C to 85C

    l

    l

    2.5 3.23.33.7

    mAmAmA

    LTC62400C to 70C40C to 85C

    l

    l

    2.7 3.33.43.8

    mAmAmA

    GBW Gain Bandwidth Product Frequency = 20kHz, RL = 1k l 13 18 MHz

    SR Slew Rate (Note 11) AV = 2, RL = 1k l 5.5 10 V/s

    FPBW Full Power Bandwidth (Note 12) VOUT = 3VP-P, RL = 1k l 0.58 1.06 MHz

    ts Settling Time VSTEP = 2V, AV = 1, RL = 1k, 0.1% 900 ns

  • 7/27/2019 624012 Fe

    10/32

    LTC6240/LTC6241/LTC6242

    10

    624012fe

    (LTC6240H/LTC6240HVH, LTC6241H/LTC6241HVH, LTC6242H/LTC6242HVH)The l denotes the specifications which apply from 40C to 125C, otherwise specifications are at TA = 25C. VS = 5V, 0V, VCM = 2.5Vunless otherwise noted.

    ELECTRICAL CHARACTERISTICS

    SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

    VOS

    Input Offset Voltage (Note 4) LTC6241 S8l

    40 125400

    VV

    LTC6242 GNl

    50 150400

    VV

    LTC6240l

    50 175450

    VV

    VOS Match Channel-to-Channel (Note 5) LTC6241 S8l

    40 160400

    VV

    LTC6242 GNl

    50 185400

    VV

    TC VOS Input Offset Voltage Drift (Note 6) l 0.7 2.5 V/C

    IB Input Bias Current (Notes 4, 7) LTC6241, LTC6242l

    0.21.5

    pAnA

    LTC6240l

    0.2 12.5 pAnA

    IOS Input Offset Current (Notes 4, 7) LTC6241, LTC6242l

    0.2150

    pApA

    LTC6240l

    0.2 1750

    pApA

    VCM Input Voltage Range Guaranteed by CMRR l 0 3.5 V

    CMRR Common Mode Rejection 0V VCM 3.5V l 78 dB

    CMRR MatchChannel-to-Channel (Note 5) l 74 dB

    AVOL Large Signal Voltage Gain VO = 1V to 4VRL = 10k to VS/2

    l

    425200

    1600 V/mVV/mV

    VO = 1.5V to 3.5VRL = 1k to VS/2

    l

    9040

    215 V/mVV/mV

    VOL Output Voltage Swing Low (Note 9) No LoadISINK = 1mAISINK = 5mA

    l

    l

    l

    3085325

    mVmVmV

    VOH Output Voltage Swing High (Note 9) No LoadISOURCE = 1mAISOURCE = 5mA

    l

    l

    l

    3085

    325

    mVmVmV

    PSRR Power Supply Rejection VS = 2.8V to 6V, VCM = 0.2V l 78 dB

    PSRR MatchChannel-to-Channel (Note 5) l 74 dB

    Minimum Supply Voltage (Note 10) l 2.8 V

    ISC Short-Circuit Current l 15 mA

    IS Supply Current per Amplifier LTC6241, LTC6242l

    1.8 2.22.4

    mAmA

    LTC6240l

    2 2.42.8

    mAmA

    GBW Gain Bandwidth Product Frequency = 20kHz, RL = 1k l 12 MHz

    SR Slew Rate (Note 11) AV = 2, RL = 1k l 4.5 V/s

    FPBW Full Power Bandwidth (Note 12) VOUT = 3VP-P, RL = 1k l 0.48 MHz

  • 7/27/2019 624012 Fe

    11/32

    LTC6240/LTC6241/LTC6242

    11

    624012fe

    ELECTRICAL CHARACTERISTICS (LTC6240H/LTC6240HVH, LTC6241H/LTC6241HVH, LTC6242H/LTC6242HVH)The l denotes the specifications which apply from 40C to 125C, otherwise specifications are at TA = 25C. VS = 3V, 0V, VCM = 1.5Vunless otherwise noted.

    SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

    VOS Input Offset Voltage (Note 4) LTC6241 S8 l 40 175400 VV

    LTC6242 GNl

    60 200400

    VV

    LTC6240l

    50 200450

    VV

    VOS Match Channel-to-Channel (Note 5) LTC6241 S8l

    40 200400

    VV

    LTC6242 GNl

    60 225400

    VV

    TC VOS Input Offset Voltage Drift (Note 6) l 0.7 2.5 V/C

    IB Input Bias Current (Notes 4, 7) LTC6241, LTC6242l

    0.21.5

    pAnA

    LTC6240l

    0.2 12.5

    pAnA

    IOS Input Offset Current (Notes 4, 7) LTC6241, LTC6242l

    0.2150

    pApA

    LTC6240l

    0.2 1750

    pApA

    VCM Input Voltage Range Guaranteed by CMRR l 0 1.5 V

    CMRR Common Mode Rejection 0V VCM 1.5V l 75 dB

    CMRR MatchChannel-to-Channel (Note 5) l 74 dB

    AVOL Large Signal Voltage Gain VO = 1V to 2VRL = 10k to VS/2

    l

    140

    65

    600 V/mV

    V/mVVOL Output Voltage Swing Low (Note 9) No Load

    ISINK = 1mAl

    l

    30130

    mVmV

    VOH Output Voltage Swing High (Note 9) No LoadISOURCE = 1mA

    l

    l

    30130

    mVmV

    PSRR Power Supply Rejection VS = 2.8V to 6V, VCM = 0.2V l 78 dB

    PSRR Match Channel-to-Channel(Note 5) l 74 dB

    Minimum Supply Voltage (Note 10) l 2.8 V

    ISC Short-Circuit Current l 2.5 mA

    IS Supply Current per Amplifier LTC6241, LTC6242l

    1.4 1.71.9

    mAmA

    LTC6240l

    1.5 1.92.1

    mAmA

    GBW Gain Bandwidth Product Frequency = 20kHz, RL = 1k l 10 MHz

  • 7/27/2019 624012 Fe

    12/32

    LTC6240/LTC6241/LTC6242

    12

    624012fe

    (LTC6240HVH/LTC6241HVH/LTC6242HVH) The l denotes the specificationswhich apply from 40C to 125C, otherwise specifications are at TA = 25C. VS = 5V, VCM = 0V unless otherwise noted.ELECTRICAL CHARACTERISTICS

    SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS

    VOS Input Offset Voltage (Note 4) LTC6241 S8l

    50 175

    400

    V

    VLTC6242 GNl

    60 200400

    VV

    LTC6240l

    60 250450

    VV

    VOS Match Channel-to-Channel (Note 5) LTC6241 S8l

    50 200400

    VV

    LTC6242 GNl

    60 225400

    VV

    TC VOS Input Offset Voltage Drift (Note 6) l 0.7 2.5 V/C

    IB Input Bias Current (Notes 4, 7) LTC6241, LTC6242l

    0.51.5

    pAnA

    LTC6240l

    0.5 12.5

    pAnA

    IOS Input Offset Current (Notes 4, 7) LTC6241, LTC6242l

    0.2150

    pApA

    LTC6240l

    0.2 1750

    pApA

    VCM Input Voltage Range Guaranteed by CMRR l 5 3.5 V

    CMRR Common Mode Rejection 5V VCM 3.5V l 80 dB

    CMRR MatchChannel-to-Channel (Note 5) l 76 dB

    AVOL Large Signal Voltage Gain VO = 3.5V to 3.5VRL = 10k

    l

    775350

    2700 V/mVV/mV

    RL = 1kl

    15060

    360 V/mVV/mV

    VOL Output Voltage Swing Low (Note 9) No LoadISINK = 1mAISINK = 10mA

    l

    l

    l

    3085600

    mVmVmV

    VOH Output Voltage Swing High (Note 9) No LoadISOURCE = 1mAISOURCE = 10mA

    l

    l

    l

    3085600

    mVmVmV

    PSRR Power Supply Rejection VS = 2.8V to 11V, VCM = 0.2V l 83 dB

    PSRR MatchChannel-to-Channel (Note 5) l 82 dB

    Minimum Supply Voltage (Note 10) l 2.8 V

    ISC Short-Circuit Current l 15 mAIS Supply Current per Amplifier LTC6241, LTC6242

    l

    2.5 3.23.7

    mAmA

    LTC6240l

    2.7 3.33.8

    mAmA

    GBW Gain Bandwidth Product Frequency = 20kHz, RL = 1k l 12 MHz

    SR Slew Rate (Note 11) AV = 2, RL = 1k l 5 V/s

    FPBW Full Power Bandwidth (Note 12) VOUT = 3VP-P, RL = 1k l 0.53 MHz

  • 7/27/2019 624012 Fe

    13/32

    LTC6240/LTC6241/LTC6242

    13

    624012fe

    Note 1: Stresses beyond those listed under Absolute Maximum Ratingsmay cause permanent damage to the device. Exposure to any AbsoluteMaximum Rating condition for extended periods may affect devicereliability and lifetime.

    Note 2: A heat sink may be required to keep the junction temperaturebelow the absolute maximum rating when the output is shortedindefinitely.

    Note 3: The LTC6240C/LTC6240HVC/LTC6241C/LTC6241HVC, LTC6242C/LTC6242HVC are guaranteed to meet specified performance from 0C to70C. They are designed, characterized and expected to meet specifiedperformance from 40C to 85C, but are not tested or QA sampled atthese temperatures. The LTC6240I/LTC6240HVI, LTC6241I/LTC6241HVI,LTC6242I/LTC6242HVI are guaranteed to meet specified performancefrom 40C to 85C. All versions of the LTC6240H/LTC6241H/LTC6242Hare guaranteed to meet specified performance from 40C to 125C.

    Note 4: ESD (Electrostatic Discharge) sensitive device. ESD protectiondevices are used extensively internal to the LTC6240/LTC6241/LTC6242;

    however, high electrostatic discharge can damage or degrade the device.Use proper ESD handling precautions.

    Note 5: Matching parameters are the difference between the two amplifiersA and D and between B and C of the LTC6242; between the two amplifiersof the LTC6241. CMRR and PSRR match are defined as follows: CMRRand PSRR are measured in V/V on the matched amplifiers. The differenceis calculated between the matching sides in V/V. The result is convertedto dB.

    Note 6: This parameter is not 100% tested.

    Note 7: Bias current at TA = 25C is 100% tested and guaranteed for theLTC6240 in the S8 package. The LTC6240S5, LTC6241 and LTC6242 are

    expected to achieve the same performance as the LTC6240S8. All parts areguaranteed to meet specifications over temperature.

    Note 8: Current noise is calculated from the formula: in = (2qIB)1/2 whereq = 1.6 1019 coulomb. The noise of source resistors up to 50Gdominates the contribution of current noise. See also Typical PerformanceCharacteristics curve Noise Current vs Frequency.

    Note 9: Output voltage swings are measured between the output andpower supply rails.

    Note 10: Minimum supply voltage is guaranteed by the power supplyrejection ratio test.

    Note 11: Slew rate is measured in a gain of 2 with RF = 1k and RG =500. On the LTC6240/LTC6241/LTC6242, VS = 2.5V, VIN is 1V andVOUT slew rate is measured between 1V and +1V. On the LTC6240HV/LTC6241HV/LTC6242HV, VIN is 2V and VOUT slew rate is measuredbetween 2V and +2V.Note 12: Full-power bandwidth is calculated from the slew rate:

    FPBW = SR/VP-P.

    ELECTRICAL CHARACTERISTICS

  • 7/27/2019 624012 Fe

    14/32

    LTC6240/LTC6241/LTC6242

    14

    624012fe

    Input Bias Currentvs Common Mode Voltage

    VOS Distribution LTC6241 VOS Distribution LTC6241VOS Temperature CoefficientDistribution LTC6241

    Supply Current vs Supply Voltage

    Offset Voltagevs Input Common Mode Voltage

    Input Bias Currentvs Common Mode Voltage

    VOS Temperature CoefficientDistribution LTC6240VOS Distribution LTC6240

    TYPICAL PERFORMANCE CHARACTERISTICS

    INPUT OFFSET VOLTAGE (V)

    0

    NUMBEROFUNITS

    10

    30

    40

    50

    90

    6241 G01

    20

    60

    70

    80

    70 50 30 10 7030 5010

    VS = 2.5VSO-8 PACKAGE

    INPUT OFFSET VOLTAGE (V)

    0

    NUMBEROFUNITS

    40

    120

    6241 G02

    20

    60

    100

    80

    350 250 150 50 350150 25050

    VS = 2.5VDD PACKAGE

    DISTRIBUTION (V/C)

    0

    NUMBEROFUNITS

    4

    16

    14

    12

    6241 G03

    2

    6

    10

    8

    1.0 0.6 0.2 0.2 1.81.0 1.40.6

    VS = 2.5V2 LOTS55C TO 125C

    INPUT OFFSET VOLTAGE (V)

    0

    PERCENTOFUNITS

    5

    10

    15

    35

    6241 G04

    20

    25

    30

    7090110 50 30 10 7030 5010

    VS = 2.5V

    DISTRIBUTION (V/C)

    0

    NUMBEROFUNITS

    2

    6

    8

    10

    18

    6241 G05

    4

    12

    14

    16

    0.6 0.2 1.81.41.00.60.2

    VS = 5V, 0VCM = 2.5V2 LOTS40C TO 125CSO-8 AND SOT23PACKAGES

    TOTAL SUPPLY VOLTAGE (V)

    0

    2.0

    2.5

    3.0

    6 10

    6241 G06

    1.5

    1.0

    2 4 8 12

    0.5

    0

    SUP

    PLYCURRENTPERAMP(mA)

    3.5

    TA = 55C

    TA = 125C

    TA = 25C

    INPUT COMMON MODE VOLTAGE (V)

    0.5

    OFFSETVOLTAG

    E(V)

    300

    200

    250

    150

    100

    050

    50

    100

    150

    200

    250

    3003.0

    6241 G07

    0 0.5 1.5 2.5 3.51.0 2.0 4.54.0

    VS = 5V, 0V

    TA = 55C

    TA = 125C

    TA = 25C

    COMMON MODE VOLTAGE (V)0 1.0 2.0 3.0 4.00.5 1.5 2.5 3.5 4.5 5.0

    INPUTBIASCURR

    ENT(pA)

    1000

    100

    10

    0.1

    1

    6241 G08

    VS = 5V, 0V

    TA = 85C

    TA = 125C

    TA = 25C

    COMMON MODE VOLTAGE (V)0.8 0.6 0.2 0.2 0.60.4 0 0.4 0.8 1.0

    INPUTBIASCURR

    ENT(pA)

    700

    100

    200

    300

    400

    500

    600

    400

    300

    200

    100

    0

    6241 G09

    VS = 5V, 0V

    TA = 85C

    TA = 125CTA = 25C

  • 7/27/2019 624012 Fe

    15/32

    LTC6240/LTC6241/LTC6242

    15

    624012fe

    Output Saturation Voltagevs Load Current (Output High)

    Gain Bandwidth and PhaseMargin vs Temperature Open Loop Gain vs Frequency

    Input Bias Current vs TemperatureOutput Saturation Voltagevs Load Current (Output Low)

    Gain Bandwidth and PhaseMargin vs Supply Voltage

    Slew Rate vs TemperatureCommon Mode Rejection Ratiovs FrequencyOutput Impedance vs Frequency

    TYPICAL PERFORMANCE CHARACTERISTICS

    TEMPERATURE (C)25 45 65 85 10535 55 75 95 115 125

    INPUTBIASCURRENT(pA)

    6241 G10

    VCM = VS/2

    VS = 5V

    VS = 10V

    1000

    100

    10

    0.1

    1

    LOAD CURRENT (mA)

    0.01

    OUTPUTLOWS

    ATURATIONVOLTAGE(V)

    0.1

    0.1 10 100

    6241 G11

    0.0011

    10

    1

    VS = 5V, 0V

    TA = 125C

    TA = 55C

    TA = 25C

    LOAD CURRENT (mA)

    OUTPUTHIGHSATURATIONVOLTAGE(V)

    0.1

    0.1 10 100

    6241 G12

    0.011

    10

    1

    VS = 5V, 0V

    TA = 125C

    TA = 55C

    TA = 25C

    TEMPERATURE (C)55 35 5 45 8515 25 65 105 125

    GAINBANDWIDTH(MHz) P

    HASEMARGIN(DEG)

    70

    30

    40

    50

    60

    0

    10

    20

    30

    40

    6241 G13

    CL = 5pFRL = 1k

    PHASE MARGIN

    GAIN BANDWIDTH

    VS= 1.5V

    VS = 5V

    VS = 1.5V

    VS= 5V

    FREQUENCY (Hz)10k 100k 10M1M 100M

    GAIN(dB)

    PHASE(DEG)

    20

    010

    10

    20

    30

    40

    50

    60

    70

    80

    80

    4060

    20

    0

    20

    40

    60

    80

    100

    120

    6241 G14

    CL = 5pFRL = 1kVCM = VS/2

    PHASE

    GAINVS = 1.5V

    VS = 5V

    VS = 1.5V

    VS= 5V

    TOTAL SUPPLY VOLTAGE (V)0 4 82 6 10 12

    GAINBANDWIDTH(MHz) P

    HASEMARGIN(DEG)

    70

    60

    40

    50

    0

    10

    20

    30

    6241 G15

    TA = 25CCL = 5pFRL = 1k

    PHASE MARGIN

    GAIN BANDWIDTH

    TEMPERATURE (C)55 35 5 45 8515 25 65 105 125

    SLEWR

    ATE(V

    /s)

    4

    6

    8

    10

    12

    14

    16

    18

    20

    6241 G16

    AV = 2RF = 1k, RG = 500CONDITIONS: SEE NOTE 12

    VS = 5V RISING

    VS

    = 5V FALLING

    VS = 2.5V FALLING

    VS = 2.5V RISING

    FREQUENCY (Hz)

    OUTPUTIMPEDAN

    CE()

    10k 1M 10M

    6241 G17

    100k

    TA = 25CVS = 2.5V

    AV = 10

    AV = 1

    0.01

    10

    10k

    1

    0.10

    100

    1k

    AV = 2

    FREQUENCY (Hz)10k 100k 10M1M 100M

    COMMONMODEREJE

    CTION(dB)

    10

    0

    10

    20

    30

    40

    50

    60

    70

    100

    90

    80

    6241 G18

    TA = 25C

    VS = 2.5V

  • 7/27/2019 624012 Fe

    16/32

    LTC6240/LTC6241/LTC6242

    16

    624012fe

    Input Capacitance vs Frequency

    Minimum Supply VoltageOutput Short-Circuit Currentvs Power Supply Voltage Open Loop Gain

    Open Loop Gain Open Loop Gain

    Channel Separation vs FrequencyPower Supply Rejection Ratiovs Frequency

    Offset Voltage vs Output Current

    TYPICAL PERFORMANCE CHARACTERISTICS

    POWERSUPPLYREJECTIONRATIO(dB)

    90

    80

    70

    60

    50

    40

    30

    20

    10

    01k 100k 1M 100M10k 10M

    FREQUENCY (Hz)

    6241 G20

    TA = 25CVS = 2.5V

    POSITIVE SUPPLY

    NEGATIVE SUPPLY

    FREQUENCY (Hz)10k 100k 10M1M 100M

    VOLTAGEGAIN(dB)

    120

    0

    10

    20

    30

    40

    50

    60

    70

    110

    100

    90

    80

    6241 G19

    TA = 25CVS= 2.5V

    AV = 1

    INPUTCAPACITANCE(pF)

    16

    14

    12

    10

    8

    6

    4

    2

    01k 100k 1M 100M10k 10M

    FREQUENCY (Hz)

    6241 G21

    VS = 1.5V

    CCM

    TOTAL SUPPLY VOLTAGE (V)0 2 61 4 83 75 9 10

    CHA

    NGEINOFFSETVOLTAGE(V)

    100

    20

    40

    60

    80

    100

    80

    40

    60

    20

    0

    6241 G22

    VCM = VS/2

    TA = 125C

    TA = 55C

    TA = 25C

    POWER SUPPLY VOLTAGE (V)1.5 2.5 4.52.0 3.53.0 4.0 5.0

    OUTPUTSHORT-CIRCUITCURRENT(mA)

    50

    10

    20

    30

    40

    50

    40

    20

    30

    10

    0

    6241 G23

    SOURCING

    SINKINGTA = 125C

    TA = 125C

    TA = 55C

    TA = 55C

    TA = 25C

    OUTPUT VOLTAGE (V)0 0.5 2.51.51.0 2.0 3.0

    INPUTVOLTAGE(V)

    120

    100

    20

    40

    60

    80

    0

    6241 G24

    TA = 25CVS = 3V, 0V

    RL = 100k

    RL = 10k

    OUTPUT VOLTAGE (V)0 1 2 53 4

    INPUTVOLTAGE(V)

    120

    100

    20

    40

    60

    80

    20

    0

    6241 G25

    TA = 25CVS = 5V, 0V

    RL = 1k

    RL = 10k

    OUTPUT VOLTAGE (V)5 4 023 1 51 2 3 4

    INPUTVOLTAGE(V)

    100

    20

    40

    60

    80

    60

    40

    20

    0

    6241 G26

    TA = 25CVS = 5V

    RL = 1k

    RL = 10k

    OUTPUT CURRENT (mA)50 40 30 20 10 10 30200 40 50

    OFFSETVOLTAG

    E(V)

    500

    400

    100

    200

    300

    500

    400

    300

    100

    200

    0

    6241 G27

    TA = 125C

    TA = 55C

    TA = 25C

    VS = 5V

  • 7/27/2019 624012 Fe

    17/32

    LTC6240/LTC6241/LTC6242

    17

    624012fe

    Warm-Up Drift vs Time Noise Voltage vs Frequency

    Series Output Resistance andOvershoot vs Capacitive Load

    Series Output Resistance andOvershoot vs Capacitive Load

    0.1Hz to 10Hz Voltage Noise

    Noise Current vs FrequencyMinimum Output SeriesResistance vs Capacitive Load

    Settling Time vs Output Step(Inverting)

    Settling Time vs Output Step(Non-Inverting)

    TYPICAL PERFORMANCE CHARACTERISTICS

    TIME AFTER POWER UP (s)0 10 30205 40 605015 3525 45 55

    CHANGEINOFFSETVOLTAGE(V)

    25

    15

    20

    5

    0

    10

    5

    6241 G28

    TA = 25C

    VS = 1.5V

    VS = 2.5V

    VS = 5V

    FREQUENCY (Hz)

    20

    10NOISEVOLTAGE(nV/Hz)

    30

    40

    50

    60

    1 100 1k 100k

    6241 G29

    010 10k

    TA = 25CVS = 2.5VVCM = 0V

    TIME (1s/DIV)

    VOLTAGENOISE(200nV/DIV)

    6241 G30

    VS = 5V, 0V

    FREQUENCY (Hz)

    1NOISECURRENT(fA/Hz)

    10

    100 10k 100k

    6241 G31

    0.11k

    1000

    100

    TA = 25C

    VS = 2.5V

    VCM = 0V

    CAPACITIVE LOAD (pF)10

    OVERSHOOT(%)

    60

    50

    40

    30

    20

    10

    0100 1000

    6241 G32

    RS = 50

    RS = 10

    VS = 2.5VAV = 1

    RS1k 1k

    CL

    75pF

    +

    0.01F 1F0.1F1000pF100pF

    CAPACITIVE LOAD

    1

    OUT

    PUTSERIESRESISTANCE()

    10

    10pF 10F

    6241 G33

    0.1

    1000

    100

    VS= 2.5V

  • 7/27/2019 624012 Fe

    18/32

    LTC6240/LTC6241/LTC6242

    18

    624012fe

    Distortion vs Frequency Distortion vs FrequencyMaximum Undistorted OutputSignal vs Frequency

    Distortion vs Frequency

    Large Signal Response Large Signal Response Output Overdrive Recovery

    Small Signal ResponseDistortion vs Frequency

    TYPICAL PERFORMANCE CHARACTERISTICS

    FREQUENCY (Hz)10k 100k 1M 10M

    OUTPUTVOLTAGESWINGING(VP-P

    )

    10

    7

    4

    1

    8

    5

    2

    9

    6

    3

    6241 G37

    TA = 25CVS = 5VHD2, HD3 < 40dBc

    AV = +2

    AV = 1

    FREQUENCY (Hz)10k 100k 1M 10M

    DISTORTION(dBc)

    30

    60

    90

    100

    50

    80

    40

    70

    6241 G38

    VS = 2.5VAV = 1VOUT = 2VP-P

    RL = 1k, 2ND

    RL = 1k, 3RD

    FREQUENCY (Hz)10k 100k 1M 10M

    DISTORTION(dBc)

    30

    60

    90

    100

    50

    80

    40

    70

    6241 G39

    VS = 5VAV = 1VOUT = 2VP-P

    RL = 1k, 2ND

    RL = 1k, 3RD

    FREQUENCY (Hz)10k 100k 1M 10M

    DISTORTION(dBc)

    30

    60

    90

    100

    50

    80

    40

    70

    6241 G40

    VS = 2.5VAV = 2VOUT = 2VP-P

    RL = 1k, 2ND

    RL = 1k, 3RD

    FREQUENCY (Hz)10k 100k 1M 10M

    DISTORTION(dBc)

    30

    60

    90

    100

    50

    80

    40

    70

    6241 G41

    VS = 5VAV = 2VOUT = 2VP-P

    RL = 1k, 2ND

    RL = 1k, 3RD

    VS = 2.5VAV = 1RL =

    6241 G42

    0V

    VS = 5VAV = 1RL =

    6241 G43

    0V

    VS = 2.5VAV = 1RL = 1k

    6241 G44

    0V

    VS = 2.5VAV = 3RL =

    500ns/DIV 6241 G45

    0V

    0V

    VIN(1V/DIV)

    VOUT(2V/DIV)

  • 7/27/2019 624012 Fe

    19/32

    LTC6240/LTC6241/LTC6242

    19

    624012fe

    Amplifier Characteristics

    Figure 1 is a simplified schematic of the amplifier, which

    has a pair of low noise input transistors M1 and M2. Asimple folded cascode Q1, Q2 and R1, R2 allow the inputstage to swing to the negative rail, while performing levelshift to the differential drive generator. Low offset voltageis accomplished by laser trimming the input stage.

    Capacitor C1 reduces the unity cross frequency and im-proves the frequency stability without degrading the gainbandwidth of the amplifier. Capacitor CM sets the overallamplifier gain bandwidth. The differential drive generatorsupplies signals to transistors M3 and M4 that swing theoutput from rail-to-rail.

    The photo of Figure 2 shows the output response to aninput overdrive with the amplifier connected as a voltagefollower. If the negative going input signal is less thana diode drop below V, no phase inversion occurs. Forinput signals greater than a diode drop below V, limit thecurrent to 3mA with a series resistor RS to avoid phaseinversion.

    ESD

    The LTC6240/LTC6241/LTC6242 have reverse-biased ESD

    protection diodes on all input and outputs as shown inFigure 1. If these pins are forced beyond either supply,unlimited current will flow through these diodes. If thecurrent is transient and limited to one hundred milliampsor less, no damage to the device will occur.

    The amplifier input bias current is the leakage current ofthese ESD diodes. This leakage is a function of the tempera-ture and common mode voltage of the amplifier, as shown

    in the Typical Performance Characteristics curves.

    Noise

    The LTC6240/LTC6241/LTC6242 exhibit exceptionallylow 1/f noise in the 0.1Hz to 10Hz region. This 550nVP-Pnoise allows these op amps to be used in a wide varietyof high impedance low frequency applications, wherezero-drift amplifiers might be inappropriate due to theircharge injection.

    In the frequency region above 1kHz the LTC6240/LTC6241/

    LTC6242 also show good noise voltage performance. Inthis frequency region, noise can easily be dominated bythe total source resistance of the particular application.Specifically, these amplifiers exhibit the noise of a 3.1kresistor, meaning it is desirable to keep the source andfeedback resistance at or below this value, i.e. RS + RG||RFB 3.1k. Above this total source impedance, the noisevoltage is not dominated by the amplifier.

    Noise current can be estimated from the expression in =2qIB, where q = 1.6 1019 coulombs. Equating 4kTRf

    and R2qI

    Bf

    shows that for source resistors below 50Gthe amplifier noise is dominated by the source resistance.See the Typical Performance Characteristics curve NoiseCurrent vs Frequency.

    Figure 1. Simplified Schematic Figure 2. Unity Gain Follower Test Circuit

    APPLICATIONS INFORMATION

    R2

    Q2

    6241 F01

    VIN+

    ITAIL

    VIN

    VO

    V+

    V+

    VV

    V

    CM

    DESD5

    DIFFERENTIALDRIVE

    GENERATOR

    BIAS

    DESD6

    V+

    DESD2

    V+

    DESD4

    V

    DESD1

    V

    DESD3

    R1

    Q1

    M2M1

    M3

    M4

    C1CLAMP

    +2.5V

    2.5V

    6241 F02

    +

    LTC6240

    RS

    VIN VOUT

    VOUT AND VIN OF FOLLOWER WITH LARGE INPUT OVERDRIVE

    VDD =+2.5V

    VSS =2.5V

  • 7/27/2019 624012 Fe

    20/32

    LTC6240/LTC6241/LTC6242

    20

    624012fe

    Proprietary design techniques are used to obtain simulta-neous low 1/f noise and low input capacitance. Low inputcapacitance is important when the amplifier is used with

    high value source and feedback resistors. High frequencynoise from the amplifier tail current source, ITAIL in Fig-ure 1, couples through the input capacitance and appearsacross these large source and feedback resistors. As anexample, the photodiode amplifier of Figure 15 on the lastpage of this data sheet shows the noise results from theLTC6241 and the results of a competitive CMOS amplifier.The LTC6241 output is the ideal noise of a 1M resistorat room temperature, 130nVHz.

    Half the Noise

    The circuit shown in Figure 3 can be used to achieve even

    lower noise voltage. By paralleling 4 amplifiers the noisevoltage can be lowered by 4, or half as much noise. The comes about from an RMS summing of uncorrelatednoise sources. This circuit maintains extremely high inputresistance, and has a 250 output resistance. For loweroutput resistance, a buffer amplifier can be added withoutinfluencing the noise.

    Stability

    The good noise performance of these op amps can be at-tributed to large input devices in the differential pair. Above

    several hundred kilohertz, the input capacitance rises andcan cause amplifier stability problems if left unchecked.When the feedback around the op amp is resistive (RF), apole will be created with RF, the source resistance, sourcecapacitance (RS, CS), and the amplifier input capacitance.In low gain configurations and with RF and RS in eventhe kilohm range (Figure 4), this pole can create excessphase shift and possibly oscillation. A small capacitor CFin parallel with RF eliminates this problem.

    Low Noise Single-Ended Input to Differential Output

    AmplifierThe circuit on the first page of the data sheet is a low noisesingle-ended input to differential output amplifier, with a200k input impedance. The very low input bias currentof the LTC6241 allows for these large input and feedbackresistors. The 200k resistors, R1 and R2, along with C1 andC2 set the 3dB bandwidth to 80kHz. Capacitor C3 is usedto cancel effects of input capacitance, while C4 adds phaselead to compensate the phase lag of the second amplifier.

    Figure 3. Parallel Amplifier Lowers Noise by 2x Figure 4. Compensating Input Capacitance

    APPLICATIONS INFORMATION

    10

    6241 F03

    +1/4

    LTC6242

    1k

    1k

    10

    +1/4

    LTC6242

    1k

    1k

    10

    +1/4

    LTC6242

    1k

    1k

    10

    + 1/4LTC6242

    1k

    1k

    +2.5

    2.5

    VIN VO

    +

    CINCS

    6241 F04

    RF

    RSOUTPUT

    CF

  • 7/27/2019 624012 Fe

    21/32

    LTC6240/LTC6241/LTC6242

    21

    624012fe

    The op amps good input offset voltage match and lowinput bias current means that the typical differential outputoffset voltage is less than 40V. A noise spectrum plot of

    the differential output is shown in Figure 5.

    The guard ring should extend as far as necessary to shieldthe high impedance signal from any and all leakage paths.Figure 6 shows the use of a guard ring on the LTC6241 in

    a unity gain configuration. In this case the guard ring isconnected to the output and is shielding the high impedancenoninverting input from V. Figure 7 shows the invertinggain configuration.

    A Digitally Programmable AC Difference Amplifier

    The LTC6241 configured as a difference amplifier, can becombined with a programmable gain amplifier (PGA) toobtain a low noise high speed programmable differenceamplifier. Figure 8 shows the LTC6241 based as a single-

    supply AC amplifier. One LTC6241 op amp is used at thecircuits input as a standard four resistor difference amplifier.

    Figure 5. Differential Output Noise

    Achieving Low Input Bias Current

    The DD package is leadless and makes contact to the PCBbeneath the package. Solder flux used during the attach-ment of the part to the PCB can create leakage current

    paths and can degrade the input bias current performanceof the part. All inputs are susceptible because the backsidepaddle is connected to V internally. As the input voltagechanges or if V changes, a leakage path can be formedand alter the observed input bias current. For lowest biascurrent, use the LTC6240/LTC6241 in the SO-8 and providea guard ring around the inputs that are tied to a potentialnear the input voltage.

    Layout Considerations and a PCB Guard Ring

    In high source impedance applications such as pH probes,

    photodiodes, strain gauges, et cetera, the low input biascurrent of these parts requires a clean board layout tominimize additional leakage current into a high impedancesignal node. A mere 100G of PC board resistancebetween a 5V supply trace and an input trace adds 50pAof leakage current, far greater then the input bias currentof the operational amplifier. A guard ring around the highimpedance input traces driven by a low impedance sourceequal to the input voltage prevents such leakage problems.

    Figure 6. Sample Layout. Unity Gain Configuration, Using GuardRing to Shield High Impedance Input from Board Leakage

    Figure 7. Sample Layout. Inverting Gain Configuration, UsingGuard Ring to Shield High Impedance Input from Board Leakage

    APPLICATIONS INFORMATION

    FREQUENCY (kHz)0 20 6010 40 8030 7050 90 100D

    IFFERENTIALOUTPUTVOLTAGEDENSITY(nV/Hz)

    140

    60

    80

    100

    120

    0

    20

    40

    6241 F05

    VS = 2.5VTA = 25C3dB BW = 80kHz

    LTC6241 S8

    R

    OUT+

    IN

    IN+

    V

    LEAKAGECURRENT

    NO LEAKAGECURRENT

    GUARD

    RING

    NO SOLDER MASKOVER THE GUARD RING

    LTC6241 F06

    LTC6241 S8

    LTC6241 F07

    R

    R

    OUT+

    IN

    IN+

    V

    VIN

    GND

  • 7/27/2019 624012 Fe

    22/32

    LTC6240/LTC6241/LTC6242

    22

    624012fe

    Figure 8. Wideband Difference Amplifier with HighInput Impedance and Digitally Programmable Gain

    The low bias current and current noise of the LTC6241allow the use of high valued input resistors, 100k orgreater. Resistors R1, R2, R3 and R4 are equal and thegain of the difference amplifier is one. An LTC6910-2 PGAamplifies the difference amplifier output with invertinggains of 1, 2, 4, 8, 16, 32 and 64. The second

    LTC6241 op amp is used as an integrator to set the DCoutput voltage equal to the LT6650 reference voltage VREF.The integrator drives the PGA analog ground to providea feedback loop, in addition to blocking any DC voltagethrough the PGA. The reference voltage of the LT6650can be set to a voltage from 400mV to V+ 350mV withresistors R5 and R6. If R6 is 20k or less, the error dueto the LT6650 op amp bias current is negligible. The lowvoltage offset and drift of the LTC6241 integrator will not

    contribute any significant error to the LT6650 referencevoltage. The LT6650 VREF voltage has a maximum errorof 2% with 1% resistors. The upper 3dB frequency of

    the amplifier is set by resistor R3 and capacitor C1 andis limited by the bandwidth of the PGA when operated ata gain of 64. Capacitor C2 is equal to C1 and is added tomaintain good common mode rejection at high frequency.The lower 3dB frequency is set by the integrator resistorR7, capacitor C3, and the gain setting of the LTC6910-2PGA. This lower 3dB zero frequency is multiplied by thePGA gain. The rail-to-rail output of the LTC6910-2 PGAallows for a maximum output peak-to-peak voltage equalto twice the VREF voltage. At the maximum gain setting of64, the maximum peak-to-peak difference between inputsV1 and V2 is equal to twice VREF divided by 64.

    Example Design: Design a programmable gain AC differ-ence amplifier, with a bandwidth of at least 10Hz to 100kHz,an input impedance equal to or greater than 100k, andan output DC reference equal to 1V.

    a. Select input resistors R1, R2, R3 and R4 equal to100k.

    b. If the upper 3dB frequency is 100kHz then C1 = 1/(2 R2 f3dB) = 1/(6.28 100k 100kHz) = 15pF (to

    the nearest 5% value) and C2 = C1 = 15pF.c. Select R7 equal to one 1M and set the lower 3dB

    frequency to 10Hz at the highest PGA gain of 64, thenC3 = Gain/(2 R7 f3dB) = 64/(6.28 100k 10Hz)= 1F. Lower gains settings will give a lower f3dB.

    d. Calculate the value of R5 to set the LT6650 referenceequal to 1V;

    VREF = 0.4(R5/R6 + 1), so R5 = R6(2.5VREF 1). ForR6 = 20k, R5 = 30k

    With VREF

    = 1V the maximum input difference voltageis equal to 2V/64 = 31.2mV.

    40nVpp Noise, 0.05V/C Drift, Chopped FETAmplifier

    Figure 9s circuit combines the 5V rail-to-rail performanceof the LTC6241HV with a pair of extremely low noise JFETsconfigured in a chopper based carrier modulation scheme

    APPLICATIONS INFORMATION

    6241 F08

    R4

    R3

    R2

    +1/2

    LTC6241

    C1

    C2

    1F

    0.1F8 7 6 5

    G2 G1 G0

    1

    12

    2 3 4

    AGNDOUT IN V

    V+

    0.1F

    V+

    V+

    R1

    R1 = R2 = R3 = R4

    V2

    V1

    R5

    1k

    1000pF

    3 4

    5

    R620k

    LTC6910-2

    LT6650

    VOUT

    VREF

    +

    1/2LTC6241

    C3 R7100

    1F

    DIGITAL INPUTS

    G1G2 GO

    GAIN

    0011001

    1

    0000111

    1

    0101010

    1

    01248

    1632

    64

    VOUT = (V1 V2) GAIN + VREF

    VR

    R

    R k V

    REF

    REF

    = +

    = =

    0 45

    61

    5 10 5 2 R6 20

    .

    k

    d BANDWIDTH f f

    fR C

    HIGH LOW

    HIGH

    3

    1

    2 3

    =

    =P 1 2 7 3

    fGAIN

    R CLOW=

    P

  • 7/27/2019 624012 Fe

    23/32

    LTC6240/LTC6241/LTC6242

    23

    624012fe

    Figure 9. Ultralow Noise Chopper Amplifier

    to achieve an extraordinarily low noise and low DC drift.The performance of this circuit is suited for the demand-ing transducer signal conditioning situations such as high

    resolution scales and magnetic search coils.The LTC1799s output is divided down to form a 2-phase925Hz square wave clock. This frequency, harmonicallyunrelated to 60Hz, provides excellent immunity to harmonicbeating or mixing effects which could cause instabilities.S1 and S2 receive complementary drive, causing A1 tosee a chopped version of the input voltage. A1s squarewave output is synchronously demodulated by S3 andS4. Because these switches are synchronously driven

    with the input chopper, proper amplitude and polarityinformation is presented to A2, the DC output amplifier.This stage integrates the square wave into a DC voltage,

    providing the output. The output is divided down (R2 andR1) and fed back to the input chopper where it serves asa zero signal reference. Gain, in this case 1000, is set bythe R1-R2 ratio. Because A1 is AC coupled, its DC offsetand drift do not affect the overall circuit offset, resultingin the extremely low offset and drift noted. The JFETshave an input RC damper that minimizes offset voltagecontribution due to parasitic switch behavior, resulting inthe 1V offset specification.

    APPLICATIONS INFORMATION

    +

    +

    BIAS

    10M

    1F

    141516

    32

    1

    S4

    S3 240k

    1F

    OUTPUTA2

    LTC6241HV

    A1LTC6241HV

    1F

    INPUT

    10k

    8

    7

    11

    S1S2

    9

    6

    10

    R210k

    R110

    NOISEOFFSET

    DRIFT

    OPEN-LOOP GAINI

    = 40nVP-P 0.1Hz TO 10Hz= 1V= 0.05V/C

    R210

    = 10= 500pA

    +1GAIN =

    9

    0.01F

    1

    1

    2

    2

    6241 F09

    = 0.1% METAL FILM RESISTOR= 1% METAL FILM RESISTOR

    ***

    = LTC201 QUAD

    = LSK389= LINEAR INTEGRATED SYSTEMS

    FREMONT, CA

    1F

    DIVRSET

    LTC1799

    V+

    74C90 10

    18.5kHz

    OUT 74C74 2

    TO1

    POINTS

    TO2

    POINTS

    Q Q

    54.2k*

    TO LTC201 V+ PIN

    5V

    5V 5V

    5V 5V

    925Hz

    TO LTC201 V PIN

    1F

    898**

    5V

    5V

    898**

    LSK389

    30.1

    499**

    ++

  • 7/27/2019 624012 Fe

    24/32

    LTC6240/LTC6241/LTC6242

    24

    624012fe

    by the sensor is forced across the feedback capacitorby the op amp action. Because the feedback capacitoris 100 times smaller than the sensor, it will be forced to

    100 times what would have been the sensors open circuitvoltage. So the circuit gain is 100. The benefit of this ap-proach is that the signal gain of the circuit is independentof any cable capacitance introduced between the sensorand the amplifier. Hence this circuit is favored for remoteaccelerometers where the cable length may vary. Difficultieswith the circuit are inaccuracy of the gain setting with thesmall capacitor, and low frequency cutoff due to the biasresistor working into the small feedback capacitor.

    Figure 12 shows a noninverting amplifier approach. This

    approach has many advantages. First of all, the gain is setaccurately with resistors rather than with a small capaci-tor. Second, the low frequency cutoff is dictated by thebias resistor working into the large 770pF sensor, ratherthan into a small feedback capacitor, for lower frequencyresponse. Third, the noninverting topology can be paral-leled and summed (as shown) for scalable reductions involtage noise. The only drawback to this circuit is that theparasitic capacitance at the input reduces the gain slightly.This circuit is favored in cases where parasitic inputcapacitances such as traces and cables will be relatively

    small and invariant.

    The noise measured over a 50 second interval, in Figure 10,is 40nV in a 0.1Hz to 10Hz bandwidth.This low noise is at-tributed to the input JFETs die size and current density.

    Figure 11. Classical Inverting Charge Amplifier Figure 12. Low Noise Noninverting Shock Sensor Amplifier

    Figure 10. Noise in a 0.1Hz to 10Hz Bandwidth

    Low Noise Shock Sensor Amplifiers

    Figures 11 and 12 show the amplifiers realizing two dif-ferent approaches to amplifying signals from a capacitivesensor. The sensor in both cases is a 770pF piezoelectricshock sensor accelerometer, which generates charge underphysical acceleration.

    Figure 11 shows the classical charge amplifier approach.The LTC6240 is in the inverting configuration so the sensor

    looks into a virtual ground. All of the charge generated

    APPLICATIONS INFORMATION

    5s/DIV6241 F10

    20nV/DIV

    BIAS RESISTORVISHAY-TECHNO

    CRHV2512AF1007G(OR EQUIVALENT)

    MAINGAIN-SETTINGELEMENT IS ACAPACITOR

    SHOCK SENSORMURATA-ERIEPKGS-00LD

    770pF

    CABLE HAS

    UNKNOWN C

    Rf1G

    6241 F11

    VOUT = 110mV/g

    +LTC6240

    Cf7.7pF

    BIAS RESISTORVISHAY-TECHNO

    CRHV2512AF1007G

    (OR EQUIVALENT)

    1G

    VS+

    6241 F12

    10k

    1k

    1k

    100

    VOUT

    = 110mV/gVS = 1.4V to 5.5VBW = 0.2Hz to 10kHz

    VOUT

    +1/2

    LTC6241HV

    VS

    10k100

    +1/2

    LTC6241HV

    SHOCK SENSORMURATA-ERIEPKGS-00LD

    770pF

  • 7/27/2019 624012 Fe

    25/32

    LTC6240/LTC6241/LTC6242

    25

    624012fe

    1M Transimpedance Amplifier with 43nV/HzOutput Noise

    In a normal 1M transimpedance amplifier, like that shownon the back page of this data sheet, the output noise densitymust be at least 130nV/Hz at room temperature. This istrue even should the op amp be perfectly noiseless, becausethe 1M resistor provides 130nV/Hz of voltage noise atroom temperature independently of the op amp.

    The circuit of Figure 13 provides an overall transimpedancegain of 1M, but it has an output noise density of only43nV/Hz, about 1/3 of the normal transimpedance ampli-fier. It does this by taking a higher initial transimpedancegain of 10M and then attenuating by a factor of 10. The

    transistor section provides voltage gain and works on a54V supply voltage to guarantee adequate output swing.

    By achieving an output swing of 50V before attenuation,the circuit provides an output swing to 5V after attenu-ation. The 10M resistor sets the gain of the TIA stage

    and has a noise density of 400nV/Hz. After attenuation,the effective TIA gain drops to 1M while the noise floordrops to 40nV/Hz, which clearly dominates the observed43nV/Hz. Note the additional benefit that the offset voltageof the op amp is divided by 10. Worst-case output offsetfor this circuit is 150V over temperature.

    Reference Buffer

    Figure 14 shows the LTC6240 being utilized as a bufferin conjunction with the LT1019 reference. The passive

    R-C filter attenuates the reference noise and the LTC6240provides a low noise buffer, resulting in an output noiseof 8nV/Hz.

    Figure 13. 1M Transimpedance Amplifier with 43nV/Hz Output Noise

    Figure 14. Low Noise Reference Buffer

    APPLICATIONS INFORMATION

    5V

    54V

    5V

    1.5V

    3pF

    PHOTODIODE

    6241 F135V

    10k

    +LTC6240HV

    100pF

    10M1%

    0.3pF

    1k

    10k 2.4k

    33k

    MPSA06

    43k

    9.09k1%1/4W

    1k1%

    VOUT1M GAIN(1V/A)

    10M GAIN(10V/A)

    MPSA06

    5V

    5V6241 F14

    0.2

    +

    LTC6240HV

    1M

    10FCERAMICOR FILM

    8nV/Hz VOUT1F

    LT1019-2.5180nV/Hz

  • 7/27/2019 624012 Fe

    26/32

    LTC6240/LTC6241/LTC6242

    26

    624012fe

    DD Package8-Lead Plastic DFN (3mm 3mm)

    (Reference LTC DWG # 05-08-1698)

    PACKAGE DESCRIPTION

    3.00 p0.10(4 SIDES)

    NOTE:1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)2. DRAWING NOT TO SCALE3. ALL DIMENSIONS ARE IN MILLIMETERS4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

    MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE5. EXPOSED PAD SHALL BE SOLDER PLATED6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION

    ON TOP AND BOTTOM OF PACKAGE

    0.40 p 0.10

    BOTTOM VIEWEXPOSED PAD

    1.65 p 0.10(2 SIDES)

    0.75 p0.05

    R = 0.125TYP

    2.38 p0.10

    14

    85

    PIN 1TOP MARK

    (NOTE 6)

    0.200 REF

    0.00 0.05

    (DD8) DFN 0509 REV C

    0.25 p 0.05

    2.38 p0.05

    RECOMMENDED SOLDER PAD PITCH AND DIMENSIONSAPPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

    1.65 p0.05(2 SIDES)2.10 p0.05

    0.50BSC

    0.70 p0.05

    3.5 p0.05

    PACKAGEOUTLINE

    0.25 p 0.050.50 BSC

  • 7/27/2019 624012 Fe

    27/32

    LTC6240/LTC6241/LTC6242

    27

    624012fe

    DHC Package16-Lead Plastic DFN (5mm 3mm)

    (Reference LTC DWG # 05-08-1706)

    PACKAGE DESCRIPTION

    3.00 0.10(2 SIDES)

    5.00 0.10(2 SIDES)

    NOTE:1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WJED-1) IN JEDEC

    PACKAGE OUTLINE MO-2292. DRAWING NOT TO SCALE3. ALL DIMENSIONS ARE IN MILLIMETERS4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE

    MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE5. EXPOSED PAD SHALL BE SOLDER PLATED6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE

    TOP AND BOTTOM OF PACKAGE

    0.40 0.10

    BOTTOM VIEWEXPOSED PAD

    1.65 0.10(2 SIDES)

    0.75 0.05

    R = 0.115TYP

    R = 0.20TYP

    4.40 0.10(2 SIDES)

    18

    169

    PIN 1TOP MARK

    (SEE NOTE 6)

    0.200 REF

    0.00 0.05

    (DHC16) DFN 1103

    0.25 0.05

    PIN 1NOTCH

    0.50 BSC

    4.40 0.05(2 SIDES)

    RECOMMENDEDSOLDER PAD PITCH AND DIMENSIONS

    1.65 0.05(2 SIDES)2.20 0.05

    0.50 BSC

    0.65 0.05

    3.50 0.05

    PACKAGEOUTLINE

    0.25 0.05

  • 7/27/2019 624012 Fe

    28/32

    LTC6240/LTC6241/LTC6242

    28

    624012fe

    PACKAGE DESCRIPTION

    GN Package16-Lead Plastic SSOP (Narrow .150 Inch)

    (Reference LTC DWG # 05-08-1641)

    GN16 (SSOP) 0204

    1 2 3 4 5 6 7 8

    .229 .244

    (5.817 6.198)

    .150 .157**

    (3.810 3.988)

    16 15 14 13

    .189 .196*

    (4.801 4.978)

    12 11 10 9

    .016 .050

    (0.406 1.270)

    .015 .004

    (0.38 0.10) 45

    0 8 TYP.007 .0098

    (0.178 0.249)

    .0532 .0688

    (1.35 1.75)

    .008 .012

    (0.203 0.305)TYP

    .004 .0098

    (0.102 0.249)

    .0250

    (0.635)BSC

    .009

    (0.229)REF

    .254 MIN

    RECOMMENDED SOLDER PAD LAYOUT

    .150 .165

    .0250 BSC.0165 .0015

    .045 .005

    *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASHSHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

    **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD

    FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

    INCHES(MILLIMETERS)

    NOTE:1. CONTROLLING DIMENSION: INCHES

    2. DIMENSIONS ARE IN

    3. DRAWING NOT TO SCALE

  • 7/27/2019 624012 Fe

    29/32

    LTC6240/LTC6241/LTC6242

    29

    624012fe

    S5 Package5-Lead Plastic TSOT-23

    (Reference LTC DWG # 05-08-1635 Rev B)

    1.50 1.75(NOTE 4)

    2.80 BSC

    0.30 0.45 TYP5 PLCS (NOTE 3)

    DATUM A

    0.09 0.20(NOTE 3) S5 TSOT-23 0302 REV B

    PIN ONE

    2.90 BSC(NOTE 4)

    0.95 BSC

    1.90 BSC

    0.80 0.90

    1.00 MAX0.01 0.10

    0.20 BSC

    0.30 0.50 REF

    NOTE:1. DIMENSIONS ARE IN MILLIMETERS2. DRAWING NOT TO SCALE3. DIMENSIONS ARE INCLUSIVE OF PLATING4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR5. MOLD FLASH SHALL NOT EXCEED 0.254mm6. JEDEC PACKAGE REFERENCE IS MO-193

    3.85 MAX

    0.62MAX

    0.95REF

    RECOMMENDED SOLDER PAD LAYOUTPER IPC CALCULATOR

    1.4 MIN2.62 REF

    1.22 REF

    PACKAGE DESCRIPTION

  • 7/27/2019 624012 Fe

    30/32

    LTC6240/LTC6241/LTC6242

    30

    624012fe

    S8 Package8-Lead Plastic Small Outline (Narrow .150 Inch)

    (Reference LTC DWG # 05-08-1610)

    PACKAGE DESCRIPTION

    .016 .050

    (0.406 1.270)

    .010 .020

    (0.254 0.508) 45

    0 8 TYP.008 .010

    (0.203 0.254)

    SO8 0303

    .053 .069

    (1.346 1.752)

    .014 .019

    (0.355 0.483)TYP

    .004 .010

    (0.101 0.254)

    .050

    (1.270)BSC

    1 2 3 4

    .150 .157

    (3.810 3.988)

    NOTE 3

    8 7 6 5

    .189 .197

    (4.801 5.004)NOTE 3

    .228 .244

    (5.791 6.197)

    .245MIN .160 .005

    RECOMMENDED SOLDER PAD LAYOUT

    .045 .005.050 BSC

    .030 .005TYP

    INCHES

    (MILLIMETERS)

    NOTE:1. DIMENSIONS IN

    2. DRAWING NOT TO SCALE3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

    MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

  • 7/27/2019 624012 Fe

    31/32

    LTC6240/LTC6241/LTC6242

    31

    624012fe

    Information furnished by Linear Technology Corporation is believed to be accurate and reliable.

    However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

    REVISION HISTORY

    REV DATE DESCRIPTION PAGE NUMBER

    E 07/10 Update to Simplified Schematic (Figure 1) 19

    (Revision history begins at Rev E)

  • 7/27/2019 624012 Fe

    32/32

    LTC6240/LTC6241/LTC6242

    PART NUMBER DESCRIPTION COMMENTS

    LTC1151 15V Zero-Drift Op Amp Dual High Voltage Operation 18V

    LT1792 Low Noise Precision JFET Op Amp 6nV/Hz Noise, 15V Operation

    LTC2050 Zero-Drift Op Amp 2.7 Volt Operation, SOT-23

    LTC2051/LTC2052 Dual/Quad Zero-Drift Op Amp Dual/Quad Version of LTC2050 in MS8/GN16 PackagesLTC2054/LTC2055 Single/Dual Zero-Drift Op Amp Micropower Version of the LTC2050/LTC2051 in SOT-23 and DD Packages

    LTC6244 Dual 50MHz Rail-to-Rail Op Amp 100V VOS(MAX), 1pA IBIAS, 40V/V, Slew Rate

    Figure 15. Ultralow Noise 1M 150kHz Photodiode Amplifier

    LTC6241 Output Noise Spectrum. 1M Resistor Noise

    Dominates; Ideal Performance

    Competition Output Noise Spectrum. Op Amp Noise Dominates;

    Performance Compromised

    RELATED PARTS

    TYPICAL APPLICATION

    R2

    1.69k

    C3180pF

    C11500pF

    +1.5V

    1.5V

    1.5V

    SFH213FAOR EQUIVALENT

    (4pF) 6241 TA02a

    RF1M

    R1

    866

    +1/2LTC6241

    +1/2

    LTC6241

    C2

    1500pF

    CF1pF

    1M TIA 150kHz 3RD ORDER BUTTERWORTH FILTER

    R3

    2k

    1kHz 101kHz10kHz/DIV

    6241 TA02b

    0V

    30nV/HzPERDIV

    1kHz 101kHz

    6241 TA02c

    10kHz/DIV

    0V

    30nV/HzPERDIV