61rl97 - strongly buoyant plume similarity and 'small fire' ventilation

Upload: anonymous-ngxdt2bx

Post on 01-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    1/24

    E L S E V I E R

    ire Safe~ Journal

    29 (1997) 235 258

    ~C: 1998 E lsevie r Sc ience Ltd . A l l r ights rese rved

    P r i n t e d i n N o r t h e r n I r e l a n d

    0379 7112/97/ 17.00

    P I I S 0 3 7 9 - 7 1 1 2 ( 9 7 ) 0 0 0 6 3 - 5

    S t ron g ly Bu oyan t P lu me S imi lar i t y an d

    Smal l - f ire Vent i la t ion

    G . G . R o o n e y * P . F .

    Linden

    Department of Applied Mathematics and Theoretical Physics, Silver Street,

    Cambridge CB3 9EW, UK

    Received 8 August 1996; revised version received 11 August 1997; accepted 10 September 1997)

    A B S T R A C T

    We re-exa mine the problem of natural venti la tion o f a room containing af i re

    in the l ight o f recent resul t s obtained by R oon ey and Linde n

    1996)

    concern-

    in9 the s imi lari ty so lu t ion for non-Boussinesq plumes. W e consider the case o f

    a s te ad yf i r e in a com partm ent wi th openings a t f l oo r an d ceil ing levels and

    obtain exp ressions for the depth and de nsi ty o f the hom ogeneous cei ling layer

    maintained by the f i re p lume. Taking the l imi t o f a large lower opening area

    we compare our resu l ts w i th exper imen t s per formed by Tho ma s

    et al. 1963).

    W e also perform a sa mp le calculation to est ima te the size o f the di fference

    between the we akly and s t rongly buoyant cases. ©

    1998

    Elsevier Science Ltd.

    NOT TION

    A 'Ef f ec t iv e a r ea ' in Bo u ss in e s q v e n t i l a t io n m o d e l , s e e e q n ( 2 4)

    ,4 'Ef fe c t iv e a r ea ' in n o n - Bo u ss in e sq v e n t i la t io n m o d e l , s e e e q n (2 8)

    A I A r e a o f f l o o r c o v e r e d b y b a se o f fir e

    a A r e a o f v e n t

    B P l u m e b u o y a n c y f lu x

    b P l u m e r a d iu s

    c r S p e c i f ic h e a t c a p a c i t y a t c o n s t a n t p r e s su r e

    D D ia m e t e r o f fir e so u r c e

    d U p p e r - l a y e r d e p t h

    F S c a le d d e n s i t y d e f ic i t, a c o n se r v e d q u a n t i t y w i t h u n i t s o f b u o y a n c y f lu x ,

    see eqn (15)

    9 G r a v i t a t io n a l a c c e l e ra t i o n

    9 ' R e d u c e d g r a v i ty

    * Author to whom correspondence should be addressed.

    235

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    2/24

      36 G . G . R oo ne v P . F . L in de n

    H H e i g h t o f c o m p a r t m e n t c e il in g

    h H e i g h t o f t w o - l a y e r i n te r f a c e

    K U p p e r - v e n t d i s c h a r g e c o e f fi c ie n t le ss t h a n u n i ty )

    k L o w e r - v e n t p r e s s u r e - l o s s c o e f f ic i e n t l es s t h a n u n i t y )

    L D i m e n s i o n l e s s c o n s t a n t i n s i m i l a r it y s o l u t i o n , e q n 8 )

    l F l a m e l e n g th

    M D i m e n s i o n l e s s c o n s t a n t i n s i m i l a ri t y s o l u t i o n , e q n 9 )

    N D i m e n s i o n l e s s c o n s t a n t i n s i m i l a r it y s o l u t i o n , e q n 1 0)

    p L e n g t h o f p e r i m e t e r o f f ir e b a s e

    ) C o n v e c t i v e p o w e r o f f ir e

    0 , T o t a l c o n v e c t i v e a n d r a d i a ti v e ) p o w e r o f f ir e

    r R a d i a l d i s t a n c e f r o m p l u m e a x is

    T o A m b i e n t t e m p e r a t u r e

    V P l u m e v o l u m e f lu x

    W P l u m e m a s s f lu x

    w V e r t i c a l v e l o c i t y

    z V e r t i c a l d i s t a n c e a b o v e f l o o r l ev e l

    zv V i r t u a l - o r i g i n d e p t h

    G r e e k

    d p

    0

    P

    1 1

    Po

    l 1

    l e t t e r s

    P l u m e e n t r a i n m e n t c o n s t a n t

    P l u m e / a m b i e n t d e n s i ty d i f fe r en c e

    R a t i o o f u p p e r - t o - l o w e r fl u id d e n s i t ie s , s e e e q n 2 6)

    F r a c t i o n a l i n t e r f a c e h e i g h t , s e e e q n 2 3)

    D e n s i ty o f p l u m e

    D e n s i t y o f la r g e -f ir e p l u m e

    D e n s i t y o f a m b i e n t l o w e r -l a ye r ) f lu i d

    D e n s i t y o f u p p e r - l a y e r f l ui d

    S u b s c r i p t s

    A L o w e r v e n t

    B I n t e r f a c e

    C U p p e r v e n t

    1 I N T R O D U C T I O N

    T h e t o x ic c o m b u s t i o n p r o d u c t s f r o m a c c i d e n ta l f ir es in m o d e r n b u i l d in g s a re

    a m a j o r h a z a r d , a n d e ff ic ie n t r e m o v a l o f s m o k e f r o m p o p u l a t e d s e c ti o n s o f

    a b u i l d i n g is e s s e n t i a l f o r s af e e v a c u a t i o n i n t h e e v e n t o f s u c h a fir e. O n e m e a n s

    o f s m o k e r e m o v a l e m p l o y e d is n a t u r a l p a ss iv e ) v e n t il a ti o n , w h e r e i n s m o k e

    a n d f u m e s a r e v e n t e d t o t h e a t m o s p h e r e u s i n g t h e d r i v in g f or c e o f t h e ir o w n

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    3/24

      trongly buoya nt plum e similarity 37

    b u o y a n c y . F o r t h e v e n t i n g o f s m o k e f r o m a b u i ld i n g , d i s p l a c e m e n t v e n ti la -

    t i o n i s d e s i r ed .

    T h e e s s e n t ia l p o i n t a b o u t d i s p l a c e m e n t v e n t i l a t i o n is t h a t l it tl e o r n o m i x i n g

    t a k e s p l a c e b e t w e e n t h e c o n t a m i n a t e d a i r b e i n g r e m o v e d a n d t h e f r e s h a i r

    w h i c h d i s p la c e s it, a n d t h is i s a c h i e v e d t h r o u g h t h e t h e r m a l b u o y a n c y o f t h e

    c o n t a m i n a t e d a i r . T h i s b u o y a n c y , f i r s t l y , c a u s e s t h e c o n t a m i n a t e d a i r t o

    c o l le c t i n a l a y e r i n t h e u p p e r p a r t o f a c o m p a r t m e n t ( w i th f re s h ai r b e l o w i t

    f o r m i n g a s e c o n d l a y e r ) a n d , s e c o n d l y , i n h i b i t s m i x i n g b y s t a b i l i z i n g t h e

    i n t e r f a c e b e t w e e n t h e l a y e r s . D i s p l a c e m e n t v e n t i l a t i o n t h e r e f o r e o p e r a t e s i n

    a t w o - l a y e r s y s t e m , w i t h f re s h a i r e n t e r i n g t h r o u g h v e n t s l o w e r t h a n t h e

    i n te r fa c e , a n d c o n t a m i n a t e d a i r l e a v i n g f r o m v e n t s h i g h e r t h a n t h e i n te r fa c e . I t

    is cl e a r th a t , i n t h e a b s e n c e o f a n y o t h e r m e c h a n i s m , t h e i n t e r fa c e w i ll m o v e

    u p w a r d a s t h e u p p e r l a y e r d r a i n s . ( T h e v e n t s s h o u l d t h e r e f o r e b e l o c a t e d a s

    n e a r t o t h e f l o o r a n d c e il in g o f t h e c o m p a r t m e n t as p o s s ib l e , s o t h a t d i s p la c e -

    m e n t m a y o c c u r f o r a r a n g e o f i n t e rf a c e h e ig h t s. ) I f a f ir e c o n t i n u e s t o b u r n i n

    t h e c o m p a r t m e n t , h o w e v e r , t h e n t h e b u o y a n t p l u m e f r o m t h e f ire w ill p a s s

    t h r o u g h t h e i nt e rf a c e a n d c o n t i n u a l l y r e p l e n is h t h e u p p e r l a y er w i t h c o m b u s -

    t i o n p r o d u c t s . T h e e n t r a i n m e n t o f fr e sh a ir b y t h e p l u m e i n t h e l o w e r la y e r

    t h u s p r o v i d e s a m e a n s o f m a s s t r a n s f e r a c r o s s t h e i n te r f a c e a n d , a s e n t r a i n -

    m e n t c a u s e s t h e p l u m e m a s s f lu x to i n c r e a s e w i t h h e i g h t , t h e h e i g h t o f t h e

    i n te r f a c e w i ll d e t e r m i n e t h e m a s s f l u x t o t h e u p p e r l a y e r.

    T h e a b s e n c e o f t o x ic f u m e s a n d b l i n d in g s m o k e f r o m t h e l o w e r l a y e r m a k e s

    it a u s e f u l c l e a r p a s s a g e f o r t h e e v a c u a t i o n o f p e r s o n n e l , a n d f a c il it a te s t h e

    m o v e m e n t o f f ir e fi g h te r s. T h e s t a b le i n t e r f a c e b e t w e e n t h e l a y e rs , w h i c h

    i n h ib i ts m i x i n g b e t w e e n t h e m , m a y b e d i s r u p t e d b y f l u id m o t i o n s o f s uf fi ci en t

    k i n e t i c e n e r g y t o o v e r c o m e t h e s t a b il i zi n g i n f lu e n c e o f t h e b u o y a n c y f or ce . I n

    t h is r e g a r d , i t h a s b e e n s u g g e s t e d 1 t h a t n a t u r a l v e n t i l a t i o n m a y b e b e t t e r t h a n

    f o r c e d v e n t i l a t i o n , i n w h i c h t h e r e i s a d a n g e r t h a t t h e d i s p l a c i n g a ir m a y b e

    p u m p e d i n a t t o o g r e a t a r a te , t h u s l o w e r i n g t h e s t a b i li ty o f t h e i n te r fa c e . I f

    n a t u r a l d i s p l a c e m e n t v e n t i l a t i o n is t o b e s e r i o u sl y c o n s i d e r e d a s a n o p t i o n i n

    b u i l d i n g d e s i g n f o r f i r e - s a f e t y , i t i s i m p o r t a n t t o h a v e a g o o d q u a n t i t a t i v e

    u n d e r s t a n d i n g o f it s e ff ic ie n cy o f o p e r a t io n . T o c o n t r i b u t e t o t h i s u n d e r s t a n d -

    in g , w e h e r e c o n s i d e r t h e a p p l i c a t i o n o f a n o n - B o u s s i n e s q p l u m e m o d e l t o

    d i s p l a c e m e n t n a t u r a l v e n t i l a t i o n , a s a m o d e l o f th e v e n t i la t i o n b e h a v i o u r o f

    f i r e s i n b u i l d i n g s .

    2 S M A L L F IR E S A S S T R O N G L Y B U O Y A N T P L U M E S

    2 1 La rge and sma l l fires

    W e b e g i n b y b r i e f l y l o o k i n g a t t h e d i s t i n c t i o n b e t w e e n l a r g e a n d s m a l l f i r e s .

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    4/24

      38 G. G. Rooney P. F. Linden

    I n th e w o r k b y T h o m a s e t a l . , z h e r e a f t e r re f e r r e d to a s P a p e r I , a d i s t i n c t i o n

    is m a d e b e t w e e n ' s m a l l f ir e s' a n d ' la r g e f ir e s', d e p e n d i n g s o l e l y u p o n t h e a s p e c t

    r a t i o o f t h e f i re p l u m e i n t h e l o w e r l a y e r . M o r e s p e c if ic a l ly , i f t h e f i r e c o v e r s a n

    a r e a A f o f t h e f l oo r , a n d t h e f re e p l u m e e x t e n d s t o a h e i g h t h a b o v e t h e f l o o r

    b e f o r e p l u n g i n g t h r o u g h t h e i n te r f ac e , t h e n P a p e r I st a te s t h a t s m a l l- f ir e

    t h e o r y a p p l ie s f o r

    A 1 / Z / h

    < 0 '5 , a n d l a r g e - f ir e t h e o r y a p p l ie s f o r A ~ Z h 0"5.

    2 .1 .1 L a r g e f i r e s

    F o r l a r g e f ir e s, P a p e r g i ve s t h e t o t a l m a s s f lo w W o f e n t r a i n e d a i r i n t o a f ir e

    o f s o u r c e p e r i m e t e r p a n d d e n s i t y p t, b e t w e e n t h e l ev e l o f t h e s o u r c e a n d h e i g h t

    z as

    w = o . 0 9 6 p p o ( g P 2 z 3 ' 2 1 1 t

    \ P 0 /

    b a s e d o n a s s u m p t i o n s a b o u t t h e m e a n v e rt ic a l v e lo c it y a n d e n t r a i n m e n t

    b e h a v i o u r o f l a r g e f ir es .

    F o l l o w i n g P a p e r I , t h e m a s s f lu x W i n k g s - ' f r o m a (l a rg e ) f ir e is w i d e l y

    t a k e n t o d e p e n d o n t h e s o u r c e p e r i m e t e r l e n g t h p a n d t h e h e i g h t a b o v e t h e

    s o u r c e z , b o t h i n m , a s

    W = 0" 18 8p z s /2 (2)

    o b t a i n e d f r o m e q n ( 1) b y s u b s t i t u t i n g v a l u e s f o r t h e fi re a n d a m b i e n t d e n s i t ie s ,

    a n d f o r t h e g r a v i t a t i o n a l a c c e l e r a t i o n g . 3

    H i n k l e y a p r e s e n t s c o m p a r i s o n o f th e l a r g e - f i r e e q u a t i o n , e q n (2), w i t h f iv e

    s e ts o f e x p e r i m e n t a l r e s u lt s f r o m f o u r d i f f e r e n t e x p e r i m e n t s , w i t h e x c e l l e n t

    a g r e e m e n t . I n d e e d , h e r e p o r t s t h e b e s t li n e f it t h r o u g h t h e d a t a c o n s i d e r e d a s

    h a v i n g t h e e q u a t i o n

    W = 0 " 1 8 9 p z l s (3 )

    t h e d a t a t a k e n f r o m f ir es h a v i n g c o n v e c t i v e h e a t o u t p u t s p e r u n i t a r e a i n th e

    r a n g e 3 4 1 80 0 k W m 2, a n d p e r i m e t e r s in th e r a n g e 0- 7 -1 6 - 2 m . T h i s p a p e r

    r e m a r k s u p o n t h e e a s e o f a p p l i c a t i o n o f t h e l a rg e - fi r e e q u a t i o n d u e t o i ts

    i n d e p e n d e n c e o f t h e s t r e n g t h o f t h e f ir e a n d s u g g es t s t h a t t h e l i m it o f a p p li c a -

    t i o n o f t h e l a r g e - f ir e e q u a t i o n b e e x t e n d e d t o c o v e r fi re s i n t h e r a n g e

    A l / 2 / h > 0-1.

    T h o m a s s c o m m e n t s u p o n u s e o f t h e l a rg e - fi re e q u a t i o n t h a t 'a t h e o r e t i c a l

    j u s t i f i c a t i o n i s s ti ll a w a i t e d f o r t h is w i d e l y e x p l o i t e d e x t e n s i o n o f a s i m p l e

    f l a m e c o r r e l a t i o n ' .

    I n c o n t r a s t t o H i n k l e y ' s 4 e x c e l le n t a g r e e m e n t , D e m b s e y e t

    a l. ~'

    c o m p a r e

    d a t a f r o m e x p e r i m e n t s b y n i n e d i f f er e n t e x p e r i m e n t e r s w i t h a l a r g e -f ir e e q u a -

    t i o n , o b t a i n e d f r o m t h e m a s s f l u x e x p r e s s i o n , e q n ( 1 ) , b y a s s u m i n g v a l u e s

    o f t h e p l u m e a n d a m b i e n t d e n s it ie s s i m i l a r t o t h o s e g i v en b y D r y s d a l e . 3

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    5/24

      trongly buoyant plum e similarity 39

    T h e y f i n d p o o r a g r e e m e n t b e t w e e n t h i s m o d e l a n d t h e e x p e r i m e n t s c o n -

    s i d e re d , a n d s u g g e s t i n c l u d i n g a s u i t a b l e v i r tu a l o r i g i n in t h e m o d e l a s a m e a n s

    o f c o r r e c t i o n . T h e s u g g e s t e d e x p r e s s i o n f o r t h e o f fs e t o f th e v i r t u a l o r i g i n

    d e p e n d s o n b o t h t h e p o w e r o f t h e fir e a n d t h e s o u r c e d ia m e t e r , h o w e v e r .

    2 .1 .2 Smal l f r e s

    F o r s m a l l fire s, P a p e r I q u o t e s t h e p l u m e v o l u m e f lu x f r o m t h e p l u m e

    s i m i l a r it y s o l u t i o n b y Y i h , v w h o g i ve s t h e v o l u m e f l ux f o r t h e B o u s s i n e s q

    c a s e a s

    v = 0 . 1 5 3 4 )

    w h e r e

    5 )

    is t h e ( n o n -s p e c if ic ) b u o y a n c y f lu x . I n P a p e r I , t h e b u o y a n c y f l ux in t h e

    B o u s s i n e s q c a s e is r e l a te d t o t h e t o t a l ( c o n v e c t iv e

    and

    r a d i a t i v e ) p o w e r 0 t o f

    t h e f i r e b y

    B _ Q t g (6)

    p p o c p T o

    w h e r e t h e s u b s c r i p t 0 d e n o t e s a m b i e n t v a l u e s , a s s u m e d c o n s t a n t . I t i s t h e n

    c o n j e c t u r e d t h a t t h e n o n - B o u s s i n e s q v o l u m e f lu x m a y b e o b t a i n e d f r o m

    t h e r e l a t i o n s h i p g i v e n b y Y i h 7 b y r e p l a c i n g t h e a m b i e n t d e n s i t y in e q n (6 ) b y

    t h e p l u m e d e n si ty , a l th o u g h i t is a c k n o w l e d g e d t h a t t h e r e is s o m e u n c e r t a i n t y

    a b o u t t h e e ff ec t o f s ig n if ic a n t d e p a r t u r e s f r o m t h e B o u s s i n e s q a p p r o x i m a t i o n .

    T h i s r e p l a c e m e n t l e a d s t o a n e x p r e s s i o n f o r t h e m a s s f l u x ,

    W = O 1 5 3 p (

    JQ ~ t ~1/3 z5/3 7)

    \ c p p T o J

    w h e r e t h e h e i g h t z in c l u d e s t h e d e p t h o f t h e v i r t u a l o r i g in . T h i s m a s s f l ux

    h a s t h e s a m e d e p e n d e n c e s o n h e i g h t a n d b u o y a n c y f lu x a s a c o n v e n t i o n a l

    B o u s s i n e s q p l u m e m o d e l . 8

    2.1.3

    Near and far f i e ld

    M o r e r e c e n tl y t h a n P a p e r I, th e d a t a p r e s e n t e d b y M c C a f f r e y 9 o r D e l ic h a t -

    s i o s lo s u g g e s t t h a t a f i re b e g i n s t o s h o w p l u m e - l i k e ( sm a l l fi re ) b e h a v i o u r a t

    t h e t o p o f t h e f l a m i n g r e g i o n , r a t h e r t h a n a t a f i x ed m u l t i p l e o f t h e b a s e

    d i a m e t e r . T h e f l a m i n g r e g io n is c o m m o n l y t e r m e d t h e n e a r f ie ld , a n d t h e

    r e g i o n a b o v e t h i s, t h e f a r f ie ld . T h e f l a m e l e n g t h in b u o y a n c y - d o m i n a t e d fir es

    is a f u n c t i o n o f b o t h t h e s o u r c e d i a m e t e r a n d t h e p o w e r o u t p u t ( se e e q n ( 18 )),

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    6/24

    240

    G . G . Roo ne y P . F . L in de n

    a n d s o th e h e i g h t a b o v e w h i c h a fi r e m a y b e d e e m e d s m a ll w o u l d t h e n d e p e n d

    o n t h e b u r n i n g r a t e a n d m a t e r i a l a s w e l l a s th e g e o m e t r y . T h i s f l a m i n g

    r e g io n i n b u o y a n c y - d o m i n a t e d f ir es n o r m a l l y e x t e n d s a f e w so u r c e d i a m e t e r s

    v e r t i c a l l y .

    I n t h e n e a r f ie ld , t h e f ir e m a y d e p a r t f r o m t h e s i m i l a ri t y b e h a v i o u r p r e d i c t e d

    b y t h e p l u m e m o d e l f o r se v e r al r e a s o n s . F o r e x a m p l e , t h e d i a m e t e r o f th e f ir e is

    n o n - n e g l i g i b le c o m p a r e d w i t h t h e h e i g h t o f t h e n e a r f i el d a n d s o i n t r o d u c e s

    a n e w l e n g t h s c al e i n t o t h e p r o b l e m , a n d in t h e c o m b u s t i n g r e g i o n t h e

    b u o y a n c y f lu x is n o t a c o n s e r v e d q u a n t i t y b u t i n c r e a s e s w i t h h e i g h t. A t t e m p t s

    t o m o d e l t h e f l o w a b o v e n o n - p o i n t s o u r c e s in t h e n e a r f ie ld u s i n g p l u m e

    c o n s e r v a t i o n e q u a t i o n s 11 a r e u n r e l i a b l e b e c a u s e o f u n c e r t a i n t y a s t o p r o fi le

    s h a p e a n d e n t r a i n m e n t b e h a v i o u r i n t h i s r e g i o n . M o r e s i m p l y , t h e p l u m e -

    s i m i l a r i t y m o d e l is o f t e n a p p l i e d c l o s e t o t h e s o u r c e u s i n g a v i r t u a l - o r i g i n

    h e i g h t c o r r e c t i o n , o f t h e o r d e r o f t h e s o u r c e l e n g t h s c al e, t o c o m p e n s a t e f o r

    d i s p a r i t ie s f r o m t h e s i m i l a r i t y f o r m . T h e p o s i t i o n o f t h e v i r t u a l o r i g i n o f a f ir e

    p l u m e h a s b e e n t h e s u b j e c t o f s e v e r a l p r e v i o u s s t u d i e s (s ee , e .g . t h e s u m m a r i e s

    o f G u p t a 12 a n d C o x a n d C h i t t y 13). T h e v a r i e t y o f c o r r e l a t i o n s l e a d s G u p t a 12

    t o s u g g e s t t h a t t h e r e i s n o s i n g l e c o r r e l a t i o n w h i c h i s a p p l i c a b l e t o a l l

    s i tu a t i o n s, a n d t h a t t h e c o r r e l a t i o n s a v a i l a b le c a n n o t b e g e n e ra l iz e d . T h e s e

    o b s e r v a t i o n s t o g e t h e r i n d ic a t e th a t m o r e w o r k n e e d s to b e d o n e t o a d e q u a t e l y

    u n d e r s t a n d t h e b e h a v i o u r o f f ir es in t h e n e a r f ie ld .

    2 2 P r e s e n t m o d e l

    I t is s h o w n b y R o o n e y a n d L i n d e n ~4 t h a t t h e s i m i l a ri t y s o lu t i o n s f o r th e m e a n

    v e r ti c a l v e l o c it y w , r a d i u s b a n d r e d u c e d g r a v i t y y o f a n o n - B o u s s i n e s q p l u m e

    a r e g i v e n b y

    w = L F l B z 1:3 (8)

    b M z ( ~ ) 1/2

    = 9 )

    \ P o

    ~t = N F 2 / 3 z

    5 , 3 ( 1 0 )

    w h e r e z is t h e h e i g h t a b o v e t h e ( v i rt u a l) o r ig i n . F is a c o n s e r v e d q u a n t i t y w i t h

    t h e u n i ts o f b u o y a n c y f lu x ( th e d i m e n s i o n s o f F a r e I F ] =

    L 4 T

    3) , and L, M

    a n d N a r e c o n s t a n ts r e l a te d t o e ac h o t h e r a n d t o th e e n t r a i n m e n t c o n s t a n t

    b y

    N I L 2 4

    - -3 (11)

    L M 2 N = l,/Tr (12 )

    M = 6~/5 (13)

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    7/24

    Strongly buo yant plum e similari~ 241

    s o t h a t

    N 1 = rc2/3 6~ (9 ~) 1 /3 (14)

    T h i s s o l u t i o n m a y b e r e l a t e d t o t h e f a r- fi e ld p l u m e f r o m a f i re u s in g t h e p l u m e

    e q u a t i o n s a4 t o g i v e

    V - 9Q (15)

    2 c p p o T o

    w h e r e Q i s t h e c o n v e c t i v e p o w e r o f t h e f ir e.

    T h e s i m i l a r i t y s o l u t i o n , e q n s ( 8 ) - ( 1 0 ) , t e n d s t o t h e B o u s s i n e s q s o l u t i o n a s

    P / P o - - * 1, a n d f r o m t h e e x p r e s s i o n o f e q n (1 0) f or t h e r e d u c e d g r a v i t y

    9 = 9 A p / p i t i s e a s i l y s e e n t h a t t h i s w i l l o c c u r w h e n

    Z5/3 >~ N F 2/3 (16)

    g

    o r , f r o m eq n s (1 4 ) an d (1 5 ) ,

    0 ~ -~ 1 /5 0 2 /5

    z >> 0.0 03 = 0-01 (17)

    f o r h e i g h t in m a n d 0 i n W , a n d t a k i n g t y p i c a l v a l u e s o f t h e o t h e r p a r a m e t e r s .

    G i v e n t h a t t h e f la m e l e n g t h I i n m h a s b e e n c o r r e l a t e d w i th t h e p o w e r o u t p u t

    i n W a n d t h e s o u r c e d i a m e t e r D i n m b y 3

    1 ~ 0 01507/5 - - l ' 02 D (18)

    w e s ee t h a t t h e f ir e p l u m e m a y n o t b e B o u s s i n e s q u n t i l a h e i g h t o f s e v e ra l

    f l a m e l e n g t h s a b o v e t h e s o u r c e .

    T h e s i m i l a r i t y s o l u t i o n s f o r r e d u c e d g r a v i t y a n d p l u m e v e l o c i t y i n t h e

    s t r o n g l y b u o y a n t ( n o n - B o u s s i n e s q ) c a se a r e c o n s i s te n t w i t h e x p e r i m e n t a l

    o b s e r v a t i o n s f or t h e c e n t r e l in e m e a n t e m p e r a t u r e s a n d v e lo c it ie s i n s t ro n g l y

    b u o y a n t p l u m e s o u t s id e t h e b u r n i n g r e g i o n , s u m m a r i z e d b y D e l i c h a t s io s . l° I t

    i s a l s o i n t e r e s t i n g t o n o t e t h a t t h e s o l u t i o n f o r t h e s t r o n g l y b u o y a n t p l u m e

    r a d i u s a g r e e s w i t h H e s k e s t a d ' s 15 i n t e r p r e t a t i o n o f M o r t o n ' s 16 r a d i a l t r a n s -

    f o r m a t i o n .

    T h e m a s s f l u x i n t h e p l u m e i s t h e n g i v e n b y

    z 5/3 (19)

    W = r t p b Z w = N l p o 2 c ~ o T o

    N o t e t h a t t h is e x p r e s s i o n i s d i ff e r en t in d e n s i t y d e p e n d e n c e f r o m t h e m a s s f lu x

    o f e q n (7 ) c o n j e c t u r e d i n P a p e r I , b u t d o e s , h o w e v e r , a g r e e w i t h t h e e x p r e s s i o n

    f o r t h e m a s s f l u x i n C e t e g e n et al . , 17

    W 0 -2 1p o ( g o t ) 1 / 3

    --- 7-5/3

    (20)

    \ ppo To

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    8/24

      4

    2 3 E n t r a i n m e n t

    G. G. Roon e y P . F . L i nde n

    C o m p a r i n g t h e c o e f f i c ie n t s i n e q n s (7 ) a n d ( 20 ) w i t h e q n (19 ), w e f i n d u s i n g

    e q n ( 14 ) t h a t t h e n u m e r i c a l c o n s t a n t i n e q n (7) c o r r e s p o n d s t o a v a l u e o f t h e

    e n t r a i n m e n t c o n s t a n t i n th e p r e s e n t m o d e l o f ~ = 0 .1 24 , a n d t h e c o n s t a n t i n

    e q n (2 0) ( i n c o r p o r a t i n g t h e e s t i m a t e d 2 5 - 3 0 % d i f fe r e n c e b e t w e e n t o t a l a n d

    c o n v e c t iv e h e a t o u t p u t ) c o r r e s p o n d s t o a v a lu e o f t h e e n t r a i n m e n t c o n s t a n t o f

    = 0 .2 0. D a t a f o r t h e B o u s s i n e s q c as e , a s s u m m a r i z e d b y T u r n e r ,

    T

    s u g g e s t

    a v a l u e f o r t h e e n t r a i n m e n t c o n s t a n t o f ~ = 0 08 3. T h u s , w h i l e t h e v a r i o u s

    v a l u e s o f ~ a r e a ll o f t h e s a m e o r d e r o f m a g n i t u d e , t h e n o n - B o u s s i n e s q / f ir e -

    p l u m e e n t r a i n m e n t c o n s t a n t is o b s e r v e d to b e l a r g e r b y a f a c to r o f a p p r o x i m -

    a t e l y 2 .

    T h i s d i sc r e p a n c y m a y b e d u e t o t h e e x p e r im e n t a l m e t h o d o f C e t e g e n

    e t a l 1 7

    T h e y r e p o r t , f ir s tl y , t h a t f i r e - p l u m e e n t r a i n m e n t is s u b j e c t t o i n c r e a s e b y

    a m b i e n t d i s t u r b a n c e s a n d , s e c o n d ly , t h a t t h e i r m e t h o d o f m e a s u r i n g p l u m e

    m a s s f lu x is l ik e l y t o o v e r e s t i m a t e b e c a u s e o f t h e a d d i t i o n a l a i r e n t r a i n e d i n to

    t h e u p p e r l a y e r i n t h e h o o d b y d i s t u r b a n c e s a t t h e i n t er f a ce , a s t h e f ir e p l u m e

    p l u n g e s t h r o u g h t h e i n te r f a c e i n t o t h e u p p e r l a y e r. I t is w o r t h p o i n t i n g o u t

    h e r e th a t , i n t h e m e a s u r e m e n t s o f e n t r a i n m e n t b y R i c o u a n d S p a l d in g , ~9 t h e

    p l u m e / j e t w a s e n c l o s e d b y a p o r o u s c y l i n d e r , w i t h e n t r a i n m e n t b e i n g e s t i -

    m a t e d f r o m t h e m a s s f lu x th r o u g h t h e c y l in d e r r e q u i r e d to r e m o v e t h e

    p r e s s u r e d i f f e r e n c e a c r o s s i t. T h e s e e x p e r i m e n t s l e d t o a n e s t i m a t e d v a l u e o f

    ~ 0 ' 0 8 f o r j e t s , w i t h a h i g h e r ( u n s p e c i f i e d ) v a l u e f o r p l u m e s , a n d , s i g n i fi -

    c a n t l y , r e d u c e d e n t r a i n m e n t f o r t h e c a se o f c o m b u s t i n g p l u m e s / j e ts ( m a i n l y in

    t h e p r e - m i x e d ca se ). T h i s e x p e r i m e n t a l m e t h o d w o u l d p r e s u m a b l y l a c k m o s t

    o f t h e e r r o r a s s o c i a t e d w i t h t h e h o o d m e t h o d , t h e p o r o u s c y l i n d e r s h i e ld i n g

    t h e p l u m e f r o m a m b i e n t d i s tu r b a n c e s , a n d t h e a b se n c e o f a n u p p e r l a y e r

    d i s c o u n t i n g a n y p o s s ib i li ty o f e x c es s e n t r a i n m e n t .

    3 N A T U R A L V E N T I L A T I O N O F S M A L L F I R E S

    3 1 P r e v i o u s w o r k

    R e l e v a n t p r e v i o u s w o r k i n n a t u r a l v e n t i l a t io n h a s b e e n p e r f o r m e d in P a p e r I,

    a n d b y L i n d e n e t a l . 2 ° h e r e a f t e r r e f e r r e d t o a s P a p e r I I. P a p e r I c o n s i d e r s t h e

    n a t u r a l v e n t i l a ti o n o f a c o m p a r t m e n t a b o v e a s m a l l f ire . T h e c o m p a r t m e n t

    c o n s i s t s o f a h o r i z o n t a l c e i li n g c o n t a i n i n g a s i n g le v e n t , w i t h a v e r t i c a l s c r e e n

    a r o u n d its p e r i m e t e r e x t e n d i n g d o w n w a r d s f r o m c e i li n g l ev e l t o s o m e d i s ta n c e

    a b o v e t h e f l o o r . T h e f i re is a t fl o o r l ev e l, a n d t h e b u o y a n t g a s e s i t p r o d u c e s r is e

    a n d c o l le c t in t h e c o m p a r t m e n t , f o r m i n g a h o t l a ye r . F i g u r e 1 g iv e s a s c h e -

    m a t i c o f t hi s c o n f i g u r a t i o n . T h e h y d r o s t a t i c p r e s su r e i m b a l a n c e b e t w e e n t h e

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    9/24

    S trong ly buoyan t p lum e s imi lar i ty

    243

    hc

    ceiling I ven t,areaA v

    hot layer

    )~)~)~ power Qf

    I .

    r e

    e

    screen

    F i g 1 P a p e r I e x p e r i m e n t a l c o n f i g u r a t io n

    i ns id e a n d o u t s id e o f th e c o m p a r t m e n t , c a u s e d b y t h e l o w e r d e n s i ty o f th is

    l a y e r, d r i v e s a f lo w t h r o u g h t h e c o m p a r t m e n t . A f t e r a s h o r t t i m e t h is f lo w

    s e tt le s to a s t e a d y s ta t e , so t h a t t h e d e p t h o f t h e h o t l a y e r b e c o m e s c o n s t a n t .

    P a p e r I c o n s i d e r s b o t h t h e c a s e w h e r e t h e l e v el o f t h e h o t l a y e r is h i g h e r t h a n

    t h e e d g e o f t h e s c r e e n , s o t h a t a l l f lo w o u t o f t h e c o m p a r t m e n t is t h r o u g h t h e

    v e n t a n d t h e f lo w b e t w e e n t h e s c r e e n a n d t h e f l o o r is i n w a r d o n l y , a n d t h e c a s e

    w h e r e t h e l e ve l o f t h e h o t l a y e r is l o w e r t h a n t h e e d g e o f t h e s c r ee n , w i th f l u id

    f r o m t h e h o t l a y e r le a v i n g th e c o m p a r t m e n t b e l o w t h e s c r e e n a s w e ll a s

    t h r o u g h t h e v e n t. I n t h i s s e c o n d c a s e, th e f lo w b e t w e e n t h e s c r e e n a n d t h e f l o o r

    is b i d i r e c ti o n a l , w i t h h o t g a s e s l e a v in g t h e c o m p a r t m e n t a t t h e t o p o f t h e g a p ,

    a n d a m b i e n t a ir f lo w i n g i n to t h e c o m p a r t m e n t l o w e r d o w n . O n l y t h e f ir st c a se

    is r e le v a n t t o o u r p r e s e n t s t u d y , s o w e w i ll n e g l ec t t h o s e p a r t s o f P a p e r I w h i c h

    p e r t a i n t o t h e s e c o n d .

    D a t a a r e p r e s e n t e d f r o m e x p e r i m e n t s p e r f o r m e d o n a r i g a s d e s c ri b e d

    a b o v e , w i t h t h r e e s e t t i n g s o f t h e v e n t a r e a , a n d t h r e e s e t t i n g s o f t h e s c r e e n

    d e p t h . T h e f ir e is f r o m a r i n g g a s b u r n e r . T h e d i m e n s i o n s o f t h e c e il in g a n d t h e

    f ir e p a r a m e t e r s a r e s e t o u t i n T a b l e 1. A s s t a t e d p r e v i o u s l y , w e a r e o n l y

    c o n c e r n e d w i t h t h e c a s e w h e r e t h e h o t l a y e r is a b o v e t h e e d g e o f t h e s c r e e n,

    a n d h e n c e w e o m i t t h e s c re e n d e p t h f r o m o u r c o n s i d e r a t io n s .

    T h e a n a l y s i s in P a p e r I m a y b e d e s c r i b e d a s f o ll ow s . A h y d r o s t a t i c b a l a n c e

    is p e r f o r m e d o n a b o x p a r t i a l ly f il le d w i t h b u o y a n t f l u id t o o b t a i n t h e

    h y d r o s t a t i c a l l y d r iv e n m a s s f lu x t h r o u g h t h e o p e n i n g . T h e i n t e r f a c e h e i g h t

    m a y t h e n b e p r e d i c t e d b y m a t c h i n g t hi s f l ux to t h e m a s s f l ux o f a b u o y a n t

    p l u m e w i t h in t h e b o x ( g iv e n b y e q n (7)), w h i c h is t h e o n l y m e c h a n i s m o f f lu i d

    t r a n s p o r t a c r o s s t h e b u o y a n t / a m b i e n t i n t e r f a c e .

    T h e e x p r e s s i o n f o r t h e h o t - l a y e r d e p t h d th u s o b t a i n e d ( e q n (3 1) i n P a p e r I),

    Kad 1/2 =

    0 043(Zv

    H

    - - d 5 /2 (21)

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    10/24

    244

    G. G. Rooney, P. F. Linden

    TABLE 1

    Paper I Experimental Parameters

    Sym bol Qu antity Paper I value S.I. equivalent

    hc Ce iling height 18 in 0'46 m

    Ceiling length x width 24 x 36 in-' 0 61 x 091 m z

    A, Ve nt areas 16, 24, 40 in 2 0.0 10 ,0 016, 0.026 m 2

    Qf H eat ou tput 2 1 Btu s 1 2 2 kW

    rg De pth of virtual origin 6 in 0-15 m

    d e p e n d s o n l y u p o n t h e e ff e ct iv e a r e a o f t h e t o p o p e n i n g K a , w h e r e K i s

    a c o n s t a n t l es s t h a n u n i ty ) , t h e r o o m h e i g h t H , a n d t h e d e p t h Z v o f t h e v i r t u a l

    o r ig i n o f t h e f ire . F r o m c o n s i d e r a t i o n o f t h e a s p e c t r a t i o o f a p u r e B o u s s i n e s q

    p l u m e , i t is s t a t e d t h a t t h e d e p t h o f t h e v i r tu a l o r i g in m a y b e t a k e n a s

    a c o n s t a n t p r o p o r t i o n o f t h e h o r i z o n t a l d i m e n s i o n o f t h e f ir e (i.e. t h e s q u a r e

    r o o t o f t h e f l o o r a r e a c o v e r e d b y t h e f ire ). T h e r e f o r e , b a s e d o n t h is a n a l y s i s , th e

    d e p t h o f t h e h o t l a y e r is g o v e r n e d o n l y b y g e o m e t r i c a l f a c to r s , a n d h a s n o

    d e p e n d e n c e o n t h e p o w e r o f t h e f ire .

    P a p e r I u s e s t h e p l u m e m a s s f lu x in c o n j u n c t i o n w i t h th e a s s u m p t i o n t h a t

    h e a t is c o n s e r v e d i n t h e p l u m e t o o b t a i n a n e x p r e s s i o n f o r t h e t e m p e r a t u r e o f

    t h e c e i li n g l a y e r in t e r m s o f h e a t o u t p u t , l a y e r d e p t h , c e i li n g h e ig h t , a n d d e p t h

    o f t h e h o t l a y e r. I t a l s o s t a t e s t h e f o r m o f t h e e x p r e s s i o n ( s im i l a r t o e q n (2 4)) t o

    r e p l a c e t h e v e n t a r e a a in e q n ( 21 ) i n t h e c a s e w h e r e t h e s c r e e n b e c o m e s s o l o w

    t h a t t h e a r e a o f t h e g a p b e t w e e n t h e s c r e e n a n d t h e fl o o r a l s o b e c o m e s o n e o f

    t h e c o n t r o l l i n g f a c t o r s i n t h e s y s t e m .

    P a p e r I I ( a n d e x t e n s i o n s t h e r e o f 2 1'2 2) c o n s i d e r s n a t u r a l v e n t i l a t i o n i n t h e

    B o u s s i n e s q c a se , f o r a b o x o f h e i g h t H w i th s m a l l o p e n i n g s t o p a n d b o t t o m

    s u c h a s th a t s h o w n i n F ig . 2 . I t c o n t a i n s a n a l y s i s s i m i la r t o t h a t d e s c r i b e d

    a b o v e , u s i n g B e r n o u l li 's t h e o r e m a n d t h e B o u s s i n e s q p l u m e s i m i l a ri ty s o l u -

    t i o n t o o b t a i n a n e x p r e s s i o n f o r t h e i n te r f a c e h e i g h t h o f

    N - 3 : 2 = _ _

    _ H 2 2 2 )

    w h e r e

    = h / H 2 3 )

    i s t h e f r a c t i o n a l h e i g h t o f t h e i n t e r f a c e , a n d

    K6 A¢I C

    A

    [ ½ K 2 / k )

    a 2

    +

    a ~ ) ] , / 2 2 4 )

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    11/24

    90

    Strongly buoyant plume similarity

    C ~ z = H

    t

    91

    9

    +

    z h

    z O

    Fig. 2. Steady-state natural ventilation.

    245

    is th e e f fe c ti v e a r e a , w h i c h is a f u n c t i o n o f th e t o p a n d b o t t o m o p e n i n g

    a r e a s , a c a n d aA . A a l s o d e p e n d s u p o n a p r e s s u r e - l o s s c o e f f i c i e n t k ,

    w h i c h a c c o u n t s f o r v e n t - e d g e e ff e ct s o n t h e i n f lo w a t A , a n d a d i s c h a r g e

    c o e f fi c ie n t K w h i c h p a r a m e t e r i z e s t h e e f fe c t o f th e vena con t rac ta a t t h e o u t l e t

    C . E x p r e s s i o n o f e q n (2 2) is u s e d t o e x a m i n e t h e i n t e r f a c e b e h a v i o u r i n th e

    c a s e o f a s i n g le p l u m e , m u l t i p l e p l u m e s , a n d p l u m e s o f d i f f e r e n t s t r e n g t h s .

    V e r t i c a l ly d i s t r i b u t e d s o u r c e s o f b u o y a n c y w i t h in t h e b o x a r e a l s o c o n s i d e r e d .

    T h e f l o w i s a g a i n a s s u m e d t o b e s t e a d y , a n d f l u i d l e a v e s t h e b o x b y t h e t o p

    v e n t o nl y . C o m p a r i s o n s a r e m a d e w i th e x p e r i m e n t s r e c r e a t in g th e a b o v e

    s i t u a t i o n s .

    N o t i c e t h a t t h e i n t e r f a c e p o s i t i o n e x p r e s s i o n i n P a p e r I, e q n ( 21 ), is t h e s a m e

    a s t h a t i n P a p e r I I , e q n (2 2), f o r t h e l i m i t o f l a r g e l o w e r - o p e n i n g a r e a , a A - ~ ,

    i f t h e i n t e r f a c e h e i g h t i n c l u d e s t h e d e p t h o f th e v i r t u a l o r ig i n , a n d t h e

    u p p e r - o p e n i n g a r e a i n c l u d e s a d i s c h a r g e f l o w - c o n t r a c t i o n c oe f fi ci e nt .

    3 . 2 N a t u r a l v e n t i la t io n o f a n o n B o u s s i n e s q p l u m e

    W e m a y u s e t h e m o d e l ~4 o f a n o n - B o u s s i n e s q f ir e p l u m e t o r e - e x a m i n e t h e

    p r o b l e m o f n a t u r a l v e n t i l a t io n i n t h e n o n - B o u s s i n e s q c a se . W e r e fe r t o F i g . 2

    f o r a s c h e m a t i c o f t h e f l o w c o n s i d e r e d . T h is c o n s i s t s o f a p l u m e i n a b o x o f

    h e i g h t H w i t h o p e n i n g s a t t h e t o p a n d t h e b o t to m . T h e p l u m e w i t h i n t h e b o x

    m a i n t a i n s a l a y e r o f f lu id l ig h t e r t h a n a m b i e n t ( in t h e p o s i ti v e ly b u o y a n t c a se )

    in t h e u p p e r p a r t o f t h e b o x . A m b i e n t f lu id e n t e r s t h e b o x a t A , is e n t r a i n e d b y

    t h e p l u m e , c r o s s e s t h e d e n s i t y i n t e r f a c e a s p l u m e f l u id a t B , a n d l e a v e s t h e b o x

    a t C . T h e f l o w w e c o n s i d e r is s te a d y , s o t h a t t h e i n t e r f a c e i s a t a f i x e d h e i g h t

    z = h a b o v e t h e fl oo r . U s i n g s u c h a m o d e l m e a n s w e ta c i t ly a s s u m e t h a t t h e

    f lu id in t h e s y s t e m is i n h o m o g e n e o u s i n d e n s i t y a n d m a y c h a n g e its d e n s i t y b y

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    12/24

    246 G. G. Rooney, P. F. Linden

    s i m p l e m i x i n g , b u t b y n o o t h e r m e a n s , i .e. t h e f lu id is i n c o m p r e s s i b l e e v e r y -

    w h e r e e x c e p t a t t h e p o i n t o f t h e p l u m e s o u rc e .

    A s d e t a i le d in t h e A p p e n d i x , w e m a y s h o w t h a t t h e h o t l a y e r is h o m o g e n e -

    o u s , a n d o b t a i n e x p r e s s i o n s fo r t h e f r a c t i o n a l h e i g h t ~ o f t h e i n t er f ac e , a n d t h e

    d e n s i t y P l o f t h e u p p e r l a y e r ,

    1 - ~ = g ~ 2 5 )

    a n d

    w h e r e

    a n d

    ( ) -

    F2/3 5, 3 0 (~ ) 26)

    -~ = 1 + ~ ~ - .

    P o g H

    = h / H 27)

    O 1 / 2 g a A a c

    = [½ ( ( K 2 / k ) a 2 + a 2 / 0 ) ] 1 / 2 28)

    T h e r e l a t i o n s h i p , e q n 2 5), r e p r e s e n t s t h e d e p e n d e n c e o f t h e f r a c ti o n a l h e i g h t

    o f t h e i n te r f a c e u p o n t h e p l u m e p r o p e r t i e s , t h e p o w e r o f t h e fi re a n d t h e

    g e o m e t r y o f t h e b o x . T h e p l u m e p r o p e r t i e s a re r e p r e s e n t e d b y N , w h i c h

    d e p e n d s u p o n t h e e n t r a i n m e n t c o n s t a n t c~. T h e d e p e n d e n c e u p o n t h e b o x

    g e o m e t r y is c o n t a i n e d in A / H 2. T h e n o n - B o u s s i n e s q n a t u r e o f t h e f lo w , as

    r e p r e s e n t e d b y t h e p o w e r o f t h e fir e, is c o n t a i n e d i n O , t h e n e w t e r m i n th i s

    m o d e l c o m p a r e d w i t h th e B o u s s i n e s q ca s e, e q n s 2 2) - 2 4) . N o t e t h a t i n t h e

    B o u s s i n e s q l im i t , O ---, 1, t h e p o w e r c e a s e s t o b e c o m e a f a c t o r a n d A / H 2 is

    a p u r e l y g e o m e t r i c a l t e r m , r e p r e s e n t i n g th e d e p e n d e n c e o f t h e i n t e rf a c e h e i g h t

    o n t h e b o x h e i g h t a n d t h e e ff ec ti ve a r e a s o f t h e t o p a n d b o t t o m o p e n i n g s . I n

    t h i s l i m i t , t h e m o d e l i s i d e n t i c a l t o t h a t f o r o n e p l u m e b y C o o p e r a n d

    L i n d en .2 1

    3 . 3 C o m p a r i s o n w i t h P a p e r I

    W e n o w l et aA --* oC t o c o m p a r e t h e a b o v e m o d e l w i t h t h e e x p e r i m e n t s i n

    P a p e r I . In t h i s l i m i t w e h a v e t h a t

    .~ = x ~ K O a c

    s o t h a t e q n 2 5) b e c o m e s

    29)

    K a c

    H 2

    (30)

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    13/24

      trongly buoyant plume similarity

    247

    TABLE 2

    Cases Conside red in Model Simula-

    tions

    H

    0 46 m 0 61 m

    0 083 1 2

    0 124 3 4

    0 20 5 6

    This equation is different from the expression in Paper I, eqn (21), in tha t it

    contains the term O which is a measure of the non-Boussinesq nature of the

    fire plume.

    We may solve eqns (30) and (26) simultaneously for the various values of the

    entrainment constant ~ obtained from Paper I (~ = 0.124), Cetegen e t a l 17

    (~ = 0 20), and Turner 18 (~ = 0 083), and the effective enclosure height, H, as

    either the actual enclosure height in Paper I (H = 0.46 m), or the height used

    in Paper I as obtained from the enclosure height plus the depth of the virtual

    origin (H = 0 61 m). We cannot estimate the virtual-origin depth from the

    expression given in Cetegen e t a l 1 7 as the flame height of the fire in Paper I is

    not recorded. The cases we may therefore consider are listed in Table 2.

    The best results for tempera ture vs. depth of the hot layer, and for hot-layer

    depth vs. upper-opening area, as compared with the experimental results of

    Paper I, are those for cases 2 and 3. These results are presented in Figs 3 and 4,

    together with the results of the Paper I small-fire theory outlined above.

    Case 2 shows good agreement with both temperature and depth for smaller

    ceiling-layer depths, whereas case 3 accurately predicts the upper-layer

    temperature, but underpredicts the layer depth. It may be seen from these

    figures that the Boussinesq model of Paper I gives results of similar accuracy

    to the non-Boussinesq model, and it is interesting to note from Fig. 4 that both

    the present model and the model of Paper I predict a continual increase of

    layer depth with vent area, whereas the data points seem to show a gradual

    levelling-off of layer depth, despite the increase in vent area. This interpreta-

    tion of the data is somewhat uncertain as the size of the possible errors are

    unknown, however, it may indicate a more complicated behaviour at the vent

    than the simple flow contraction parameterized by K.

    3 4 P a r a m e t e r o p t i m i z a t io n

    We may further consider optimizing the present model parameters to obtain

    the best fit to the Paper I data. The results of solving the present model with

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    14/24

    2 4 8 G. G. Rooney P. F. L inden

    2 5 0

    5 0

    0

    2 0 0

    o

    I . { ; ,

    I 0D

    eO

    £ 5

    ' 0 . 1 5

    e-,

    , .o

    0 . 2

    0 2 5

    0 0 0 5

    i

    P a p e r I e x p e r i m e n t s

    P a w r I t h e o r y • -

    C a s e 2 - - -

    C a s e 3

    /

    /

    /

    j ~

    I I f I

    0 0 5 0 , 1 ( I . 1 5 0 . 2 ( 1 ,2 5

    Depth of ce i ling layer m )

    F i g . 3 . C e i l i n g l a y e r t e m p e r a t u r e i n c r e a s e v s . d e p t h .

    P a p e r I e x p e n m e n l s

    < )

    P a p e r

    I l h e o r v -

    C a s e 2 - - -

    C a s e 3 - -

    / /

    /

    / . '

    , /

    , /

    i

    0 0 1

    f ~ f

    j j .

    f J . . - *

    /

    / / ' ~ , ,

    @ , ,

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    15/24

    o

    k . t

    , . )

    [..

    2 4 0

    2 2 0

    2 ( X 3

    1 8 0

    1 6 0

    1 4 0

    1 2 0

    1 0 0

    8 O

    0 . 0 5

    trongly buoy nt lu me imilarity

    j J

    / / / ,

    / / / / , , / , / : / / i

    / / ~ , / / . /i

    / , ~ / : / / / /

    < ......... j . ¸-

    P t

    0 1 0 . 1 5 0 . 2 0 . 2 5

    Depth o f cei ling layer (m)

    F i g . 5 . T e m p e r a t u r e v s . d e p t h v a r y i n g ~ .

    a l p h a = 1 1

    - -

    a l p h a = . 1 2 . . . . .

    a l p h a = . 1 3 . . . . .

    alph~

    = . 1 4 . . . .

    a l p h a = . 1 5 . . . .

    P a p c r l c x p t , O

    I

    0 . 3

    2 4 9

    n o v i r tu a l o r i g i n f o r v a r y i n g v a l u e s o f t h e e n t r a i n m e n t c o n s t a n t 0~ a r e p r e s e n t -

    e d i n F i g s 5 a n d 6 . I t c a n b e s e e n t h a t a t t e m p t i n g t o o p t i m i z e t h e f i t w i t h t h e

    o t h e r p a r a m e t e r s a t t h e i r p r e s e n t v a l u e s w i l l l e a d t o a b a d f i t o n b o t h g r a p h s .

    T h a t is , t h e r a n g e o f e n t r a i n m e n t c o n s t a n t 0 .1 1 < ~ < 0 15 c o n t a i n s t h e

    o p t i m u m f it t o t h e d a t a o f t e m p e r a t u r e d i ff er e n c e v s. l a y er d e p t h , b u t o n l y

    b e g i n s t o t o u c h o n t h e d a t a o f l a y er d e p t h v s. ar e a. T o t w o s i gn i f ic a n t f ig u r es ,

    t h e b e s t fit o n t e m p e r a t u r e d i ff e re n c e ( F i g u r e 5 ) c o m e s f r o m a v a l u e o f t h e

    e n t r a i n m e n t c o n s t a n t o f e - - 0 - 1 3, w i t h z e r o v i r t u a l o ri g in .

    A p o s s i b l e c a u s e f o r t h e p o o r f it o f t h e v e n t a r e a v s . l a y e r d e p t h a t t h i s v a l u e

    o f e m a y b e t h e v a l u e o f t h e d i s c h a r g e c o e f fi c ie n t K . T h e v a l u e o f K = 0 .6 h a s

    b e e n c h o s e n i n P a p e r s I a n d I I a s r e p r e s e n t i n g t h e v a l u e f o r a l a m i n a r v e n a

    c o n t r a c t a b u t it i s l ik e l y t h a t a d d i t i o n a l t u r b u l e n t d i s s i p a t i o n a t t h e o u t l e t i n

    t h e P a p e r I e x p e r i m e n t s i m p l y a l o w e r v a l u e t h a n t hi s. W e m a y t h e r e f o r e h o l d

    t h e e n t r a i n m e n t c o n s t a n t a t t h e o p t i m u m v a l u e (f or t h e t em p e r a t u r e d a t a ) o f

    = 0 - 1 3 a n d s e e k t o o b t a i n a b e t te r fit t o t h e v e n t - a r e a d a t a b y v a r y i n g K .

    C l e a r l y , a d d i t i o n a l d i s s i p a t i o n w i l l l e a d t o a s m a l l e r o u t f l o w t h r o u g h t h e

    v e n t , a n d s o w e s h o u l d c o n s i d e r v a l u e s o f K l es s th a n 0 -6 . A l o w e r v a l u e o f

    K w i l l r e d u c e t h e e f f e c t i v e u p p e r - v e n t a r e a K a c w h i c h s h o u l d t h e r e f o r e l e a d

    t o a g r e a t e r l a y e r d e p t h ( l o w e r i n t e r f a c e ) f o r t h e s a m e a c t u a l v e n t a r e a a c .

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    16/24

    2 5 0

    0 . 0 5

    ~ 0 . 1

    •~ 0 15

    O

    -5

    ~9

    0 . 2

    G. G. Rooney P. F. Linden

    i i i i i i

    / / . ~ @

    / / / / • , ~

    : . . ,

    : , ,

    ¢ I 1

    [ ) 0 1 0 . 0 2 5

    ( 1 2 5 I I I

    0 . 0 0 5 0 . 0 1 5 0 . 9 2 0 0 3

    Area of ceil ing vent (m2 )

    F i g 6 D e p t h v s . a r ea v a y i n g ~

    i

    l p h = . 1 1 - -

    l p h = . 1 2 - - -

    l p h = . 1 3 . . . .

    l p h

    = . 1 4

    l p h - . 1 5 . . . . .

    P a p e r l e x p t .

    T h e c u r v e f o r ~ = 0 1 3 o n F i g . 6 s h o w s t h a t a n i n c r e a s e i n d e p t h i s i n d e e d

    r e q u i r e d t o p r o d u c e a b e t t e r fi t. W e f i n d t h a t , t o o n e s i g n i f ic a n t f i g u r e , t h e

    o p t i m u m v a l u e o f t h e d i s c h a r g e c o e f f i c i e n t is f o u n d t o b e K = 0. 4, a n d t h e

    r e s u l t s o f t h e s i m u l a t i o n w i t h t h e s e v a l u e s (0~ = 0 1 3 , K = 0 - 4, n o v i r t u a l

    o r i g i n ) a r e p r e s e n t e d i n F i g s 7 a n d 8 .

    W h e n c o n s i d e r i n g o p t i m i z a t i o n w .r .t , t h e v e n t -a r e a d a t a , g re a t er e m p h a s i s

    h a s b e e n p l a c e d o n t h e d a t a p o i n t s f o r th e t w o l o w e r v e n t - a r e a v a l u e s. T h i s

    i s b e c a u s e , b e t w e e n t h e m i d d l e a n d l a r g e s t - a r e a s e t s o f p o i n t s , t h e v a lu e o f

    t h e v en t a r e a h a s i n c r e a s e d b y m o r e t h a n h a l f w i t h o u t t h e m e a s u r e d l ay e r

    d e p t h c h a n g i n g b y a n y g r e a t a m o u n t . T h i s is p o s s i b l y d u e t o t h e a c t u a l f lo w

    d e p a r t i n g f r o m o u r i d e a l p i c t u r e a s t h e la y e r d e p t h d e c r e a s e s a n d t h e v e n t a r e a

    i n c r ea s e s , e .g . b y t h e m o m e n t u m w i t h w h i c h t h e p l u m e e n t e r s t h e u p p e r la y e r

    h a v i n g s o m e e f f ec t o n t h e u p p e r - l a y e r f l o w . W e t h e r e f o r e e x p e c t t h e d a t a p o i n t s

    a t l o w e r v e n t a r e a s t o b e t t e r r e p r e s e n t t h e f l o w i n t h e p r e s e n t m o d e l .

    3 . 5 C o m p a r i s o n w i t h B o u s s i n e s q v e n t i la t i o n

    W e m a y n o w m a k e a s a m p l e c o m p a r i s o n o f o u r m o d e l w i th it s B o u s s i n e s q

    l im i t , i n o rd e r t o o b t a i n a n e s t im a t e f o r t h e m a g n i t u d e o f n o n - B o u s s i n e s q

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    17/24

    0

    ©

    0

    k~

    ¢

    E

    E-

    2 2 0

    2 0 0

    1 8 0

    1 6 0

    1 4 0

    1 2 9

    1 0 0

    8 0

    0 , 0 5

    trongly buoyant plume similarity

    /

    0 . 1 0 . 1 5 0 . 2 0 . 2 5

    D e p t h o f c e i l in g l a ye r m )

    F i g . 7 . T e m p e r a t u r e v s . d e p t h , o p t i m u m v a l u e s .

    i

    S i m u l a t i o n - -

    P a p e r l e x p t . < ~

    2 5 1

    0 . 3

    0

    e~

    0

    0.1

    0 . 1 2

    0 , 1 4

    0 . 1 6

    0 . 1 8

    0 . 2

    0 . 2 2

    0 . 2 4

    0 . 0 0 5

    i

    S i m u l a t i o n - -

    P a p e r I e x p t .

    0 . 0 1 0 . 0 1 5 0 . 0 2 0 . 0 2 5

    A r e a o f c e i l in g v e n t n ~ )

    F i g . g . D e p t h v s . a r e a , o p t i m u m v a l u e s .

    0 . 0 3

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    18/24

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    19/24

      trongly buoyant plum e similarity 2 5 3

    r-

    e-

    0 . 36 i i i F i i ~ t i i i i i i i

    N o n B o u s s i n e sq

    B o u s s i n e s q . . . .

    0 3 7

    0 . 3 8 ~ ~ _

    0 . 3 9

    0 4

    \

    04

    0 . 4 2

    0 . 4 3

    0 . 44 I I I I I I I I I I I I I I 1 I I

    1 1 0 5 0

    C o n v e c t i v e p o w e r o f f ir e k W )

    F i g . 1 0 . D e p t h o f u p p e r l a y e r v s . c o n v e c t i v e p o w e r o f t h e fir e , c a s e 3 v a l u e s .

    5 O

    b

    40

    m

    ¢P

    3

    ~. 20

    g

    E

    1 0

    U p p e r L a y e r

    A m b i e n t . . . . .

    / /

    f

    J

    i i f

    I I 0 5 0

    C o n v e c t i v e p o w e r o f f ir e k W )

    F i g . 1 1 . T e m p e r a t u r e o f u p p e r la y e r v s. c o n v e c t i v e p o w e r o f t h e fir e , o p t i m i z e d v a l u e s .

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    20/24

    2 5 4 G. G. Rooney. P. F.

    i n d e n

    ¢...

    e ,

    m

    Q

    0.52

    0.53

    0.54

    0.55

    0.56

    0.57

    0.58 ~-

    0.59 [

    0 6 ] I

    i l

    0.61

    I

    i i i i

    N o n B o u s s m e s q

    - -

    Bouss lnesq - -

    \ \

    \

    i i

    I

    I

    5O

    Convective power of fire kW )

    Fig. 12. Dep th o f upper layer vs. convective power of the fire, optimized values.

    Th e r e f o r e , w i t h e it h e r s et o f p a r a m e t e r s in t h i s c a se, t h e m e t h o d in P a p e r s

    I a n d I I o f c a l c u la t in g t h e u p p e r - la y e r t e m p e r a t u r e f r o m c o n se r v a t io n o f h e a t

    f lu x o r r e d u c e d g r a v i t y , a n d c a l c u la t in g t h e l a y e r d e p t h f r o m t h e Bo u ss in e sq

    inter face express ion , ought to g ive reasonably accurate resu l t s .

    4 C O N C L U S I O N S

    W e h a v e c o n s id e r e d t h e n a t u r a l v e n t i l a t io n o f fi re s in e n c lo su r e s, u s in g t h e

    n o n - B o u s s i n e s q p l u m e t h e o r y d e v e l o p e d e l s e w h e r e . T h i s i s a n i m p o r t a n t

    c o n c e r n , as p r e v io u s m o d e l s o f n a t u r a l v e n t i l a t io n h a v e in c o r p o r a t e d n o n -

    Bo uss in esq co rrec t io ns e i ther incorrec t ly based on conjec ture ) , or no t a t a ll .

    W e h a v e t h e r e f o r e a p p l i e d o u r p r e se n t m o d e l t o th e p r o b le m , a n d c o m p a r e d i t

    w i t h e x p e r i m e n t a l d a ta f r o m T h o m a s e t a l 2 F r o m t h i s c o m p a r i s o n , t h e m o s t

    a p p r o p r ia t e v a lu e o f t h e e n t r a in m e n t c o n s t a n t h a s b e e n se l e c t ed , a n d u se d in

    t h e s im u la t io n o f a m o d e l p r o b le m o f sm a l l f ir e s in a r o o m - s i z e d , v e n t i l a te d

    c o m p a r t m e n t . W e h a v e a l s o o p t i m i z e d t h e e n t r a i n m e n t c o n s t a n t a n d t h e

    o u t p u t d i s c h a r g e c o e f f i c ie n t t o o b t a in a b e s t fi t t o t h e se d a t a , a n d u se d t h e se

    v a lu e s t o s im u la t e t h e m o d e l p r o b le m .

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    21/24

      trongly buoyant plume similarity 255

    O p t i m i z i n g t h e e n t r a i n m e n t c o n s t a n t, r a t h e r t h a n u s in g t h e m o s t a c c u r a te

    l a b o r a t o r y m e a s u r e m e n t , is p e r m i ss i b le g iv e n t h e o b s e r v a t i o n s o f C e t e g e n

    et al . 17 a n d o t h e r s t h a t s m a l l a m b i e n t d i s t u r b a n c e s c a n g r e a t l y i n c r e a s e t h e

    m a s s f l u x i n a p l u m e . A s i t is u n l i k e l y t h a t a n a c c i d e n t a l fi re in a v e n t i l a t e d

    b u i l d i n g w il l p r o c e e d i n a c o m p l e t e l y q u i e s c e n t a m b i e n t , t h e b e s t p r o c e d u r e

    w h e n m a k i n g p r e d i c t i o n s o f v e n t i la t i o n b e h a v i o u r is p r o b a b l y t o e n s u r e t h a t

    m o d e l e s t im a t e s o f c e il in g - la y e r t e m p e r a t u r e a n d d e p t h a r e a c c o m p a n i e d b y

    c l e a rl y s t a t e d l ik e l y e r r o r s a r i s in g f r o m t h e p o s s i b l e r a n g e o f v a r i a t i o n o f ~.

    S e c o n d l y , i t c a n b e s e e n f r o m F i g s 9 - 1 2 t h a t v a r y i n g t h e d i s c h a r g e c o e f fi c ie n t

    K r e su l ts i n a si m i la r f r a c ti o n a l c h a n g e in th e la y e r d e p t h ( ~ 4 0 ) , b u t a m u c h

    s m a l l e r c h a n g e i n t e m p e r a t u r e , a s t h e l a y e r - d e p t h c h a n g e i s s t i l l s m a l l c o m -

    p a r e d t o t h e p l u m e l e n g th . O p i m i z i n g K ( o r e v e n p o s s ib l y in t r o d u c i n g a f u n c-

    t io n d e p e n d i n g o n o u t l e t a re a a n d / o r v e lo c it y, sa y) w ill u n d o u b t e d l y l e a d t o

    a m o r e a c c u r a t e m o d e l .

    F i n a ll y , a l t h o u g h w e h a v e s h o w n t h a t t h e n o n - B o u s s i n e s q r e g i o n o f a f ir e

    p l u m e m a y e x t e n d s e v e ra l f la m e l e n g t h s i n t o t h e f ar f ie ld , t h e m o d e l s i m u l a t i o n

    i n d ic a t e s t h a t t h e n o n - B o u s s i n e s q d e p a r t u r e s f r o m B o u s s i n e s q v e n ti l a ti o n

    v a l u e s a r e s m a l l , a n d s o B o u s s i n e s q t h e o r y c a n b e a p p l i e d w i t h r e a s o n a b l e

    c o n f i d e n c e w h e n s i m u l a t i n g t h e n a t u r a l v e n t i l a t i o n o f s m a l l fir es . A s s t a t e d

    p r e v i o u s l y , th e t e r m ' s m a l l f ir e ' r e fe r s s o le l y t o t h e g e o m e t r y o f t h e f i re p l u m e ,

    a n d i m p a r t s n o i n f o r m a t i o n a b o u t t h e p o w e r o u t p u t o f t h e fire . H o w e v e r , fo r

    a f ir e w i t h a c o n v e c t i v e p o w e r o u t p u t s u c h t h a t n o n - B o u s s i n e s q e ff ec ts w o u l d

    s i g n if i c a n tl y a l te r t h e v e n t i l a t i o n b e h a v i o u r , i t se e m s t h a t t h e l i k el y g e o m e t r i -

    c a l si ze o f s u c h a f ir e w o u l d r e n d e r a ' s m a l l- f ir e ' m o d e l o f t h e t y p e u s e d h e r e

    i n a p p r o p r i a t e .

    A C K N O W L E D G E M E N T S

    T h i s w o r k w a s s u p p o r t e d b y a r e se a rc h s t u d e n t s h i p f r o m t h e D e p a r t m e n t o f

    E d u c a t i o n fo r N o r t h e r n I re la n d , a n d b y a C A S E s t u d e n t s h ip fr o m t h e H e a l t h

    & S a f e t y E x e c u t i v e .

    R E F E R E N C E S

    1. Kramer , C. & Gerhard t , H . J . , Ven t i l a t ion and hea t smoke ex t rac t ion f rom

    industr ial bui ld ings . J . W i n d E n g n 9 I n d . A e r o d y n . 29 (1988) 309-35.

    2 . Th om as , P . H . , Hink ley , P . L ., The obald , C. R. & Simm s, D. L . , Inves t iga t ions in to

    the f low of ho t gases in r oof ven t ing . F i r e R e s e a r c h T e c h n ic a l P a p e r N o . 7, Fire

    Research Sta t ion , Wat fo rd , UK, 1963 .

    3. Drysdale, D., A n I n t r o d u c t i o n t o F i r e D y n a m i c s . Wiley, New York, USA, 1985.

    4 . Hink ley , P . L ., Ra tes o f 'p ro du ct io n ' o f ho t gases in roo f ven t ing exper iments .

    F i r e

    Sa f e t y J . 10 (1986) 57-65.

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    22/24

      5 6 G. G. Rooney P. F. Linden

    5 . T h o m a s , P . H . , O n f o r m u l a e f o r t h e m o v e m e n t o f s m o k e i n f ir es . F ire Sci . Tech. 9

    (1989) 1 3

    6 . D e m b s e y , N . A ., P a g n i , P . J . W i l l i a m s o n , R . B ., C o m p a r t m e n t f ir e n e a r - f ie l d

    m e a s u r e m e n t s . Fire Sa je ty J . 24 (1995) 383-419.

    7 . Y i h , C . S., F r e e c o n v e c t i o n d u e t o a p o i n t s o u r c e o f h e a t. I n Proc . 1 s t US Na t .

    Congr . App l . Mech . 1952, pp . 941-7 .

    8 . M o r t o n , B . R ., T a y l o r , G . I . T u r n e r , J . S ., T u r b u l e n t g r a v i t a t i o n a l c o n v e c t i o n

    f r o m m a i n t a i n e d a n d i n s t a n t a n e o u s s o u r c e s . Proc . Roy . Soc . A234 (1956) 1 23.

    9 . M c C a f f r e y , B. J ., P u r e l y b u o y a n t d i f f u s i o n f l am e s : s o m e e x p e r i m e n t a l r e s u lt s ,

    N a t i o n a l B u r e a u o f S t a n d a r d s , N S B I R 7 9- 19 10 , 1 97 9.

    1 0. D e l i c h a t s i o s , M . A ., O n t h e s i m i l a r i ty o f v e l o c i ty a n d t e m p e r a t u r e p r o f i le s in

    s t r o n g ( v a r ia b l e d e n s it y ) t u r b u l e n t b u o y a n t p l u m e s . Combust. Sci . Technol. 60

    (1988) 253-66.

    1 1. G u p t a , A . K . , K u m a r , S . S i n g h , B ., P l u m e a n a l y s i s a b o v e f i n it e -s i z e f ir e s o u r c e s

    I n Fire Safe ty Sc ience Proc . 3rd In t . Syrup. 1991, pp . 445 54.

    1 2 . G u p t a , A . K . , F i r e - p l u m e t h e o r i e s a n d t h e i r a n a l y s i s . J. Appl. Fire Sci . 2 (1993)

    269 98.

    1 3. C o x , G . C h i t t y , R ., S o m e s o u r c e - d e p e n d e n t e f fe c ts o f u n b o u n d e d fi re s Combus t .

    F l a m e 6 (1985) 219 32.

    1 4. R o o n e y , G . G . L i n d e n , P . F . , S i m i l a r i ty c o n s i d e r a t i o n s f o r n o n - B o s s i n e s q

    p l u m e s i n a n u n s t r a t if i e d e n v i ro n m e n t . J . F lu id Mech . 318 (1996) 237 50.

    15. H e s k e s t a d , G . , F i r e p l u m e a i r e n t r a i n m e n t a c c o r d i n g t o t w o c o m p e t i n g a s s u m p -

    t ions . Proc . 21s t In t . Symp . on Combus t ion 1986, pp . 111 20.

    1 6. M o r t o n , B . R ., M o d e l l i n g fi re p l u m e s . Proc . lOth In t . Symp. on Combus t ion 1965,

    pp . 973-82 .

    1 7. C e t e g e n , B . M . , Z u k o s k i , E . E . K u b o t a , T . , E n t r a i n m e n t i n t h e n e a r a n d f a r f ie l d

    o f f i re p lum es . Combust. Sci . Technol. 39 (1984) 305 31.

    18. T u r n e r , J . S., T u r b u l e n t e n t r a i n m e n t : t h e d e v e l o p m e n t o f t h e e n t r a i n m e n t a s s u m p -

    t i o n , a n d i ts a p p l i c a t i o n t o g e o p h y s i c a l f lo w s . J . F lu id Mech . 173 (1986) 431 71.

    1 9. R i c o u , F . P . S p a l d i n g , D . B ., M e a s u r e m e n t s o f e n t r a i n m e n t b y a x i s y m m e t r i c a l

    t u r b u l e n t j e t s . J . F lu id Mech . 8 (1961 ) 21 32.

    20 . L i nd en , P . F . , Lane -Se r i f , G . F . Sm eed , D . A ., E m pt y in g f i ll i ng boxes : t he f lu id

    m e c h a n i c s o f n a t u r a l v e n t i la t io n . J . F l u i d M e c h . 212 (1990) 303 14.

    2 1. C o o p e r , P . L i n d e n , P . F . , N a t u r a l v e n t i l a t i o n o f a n e n c l o s u r e c o n t a i n i n g t w o

    b u o y a n c y s o u rc e s. J . F l u i d M e c h . 311 (1996) 153 76.

    2 2. L i n d e n , P . F . C o o p e r , P ., M u l t i p l e s o u r c e s o f b u o y a n c y i n a n a t u r a l l y v e n t i l a t e d

    e n c l o s u r e . J . F lu id Mech . 311 (1996) 177 92.

    A P P E N D I X

    W e r e f e r to F i g . 2 f o r t h e p o s i t i o n s A , B , C e t c . i n t h e v e n t i l a t i o n s y s t e m .

    F o r t h e s t e a d y - s t a t e c a se w i t h t h e p r e s e n c e o f a p l u m e , w e m u s t r e p la c e t h e

    c o n s e r v a t i o n o f v e r t i c a l v o l u m e f l u x w i t h t h e c o n s e r v a t i o n o f v e r ti c a l m a s s

    f lu x , i.e . t h e v e r t ic a l m a s s f l u x W t h r o u g h a n y h o r i z o n t a l p l a n e m u s t b e

    c o n s t a n t , a n d i n p a r t i c u l a r ,

    W A = W B : W C A1)

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    23/24

    Strongly buoyant plum e similari~ 57

    We note the difference that the presence of the plume makes. It provides

    a mechanism for transferring fluid from the lower layer to the upper whilst

    keeping the interface steady. Without the plume, the interface would have to

    move, and we would be forced to have conservation of volume flux. We may

    interpret the change to the conservation of mass flux in, e.g. the case of thermal

    buoy ancy as showing that the ambient air is heated at the plume source and

    expands by a significant amount, so that a grea ter volume flux is needed at the

    exit to maintain the steady state.

    Paper II uses the conservation of buoyancy flux between B and C to

    demon strat e that the density of the upper layer is uniform. We may obtain the

    same result here, either from the conservation of buoyancy flux or the

    conservation of pseudo-buoyancy flux F,

    F B = F c , W B = W c = ~ p B = p c

    ~P[h _z _H = PI, const (A2)

    i.e. the upper layer is of uniform density P l equal to the plume density at B.

    We may also use Bernoulli s theorem to obtain a relationship between the

    entry and exit velocities and the hydrostatic head,

    w 2 = 2 g ( H - h ) w 2 P o

    (a3)

    k Pl

    where k( < 1) is a pressure loss coefficient to account for vent-edge effects upon

    the inflow at A. This is almost identical to the Boussinesq case, except for the

    factor of

    P o / P l

    on the r.h.s., which would be unity in that case.

    If we denote the area of an opening by a, we have from eqn (A1) that

    w ~ = w ~ \ K a c p ,a a p o ) 2

    (a4)

    where K is a discharge coefficient, as used in Paper I and by Cooper and

    Linden. z~ Combin ing this mass balance with eqn (A3) gives

    2 g ( H - - h)

    (A5)

    w 2 = ( 1 / k ) ( p o / p l ) + ( a A p o / K a c P x ) 2

    We may now obtain the interface height from the plume similarity solution,

    eqns (8)-(10) by matching the mass flux in the plume at B with the mass flux at

    A obtained from the velocity at A.

    Rear ranging eqn (10) gives the expression for the ratio of plume to ambient

    densities,

    p 1

    P o 1 + ( N F Z / 3 / g ) z- 5/3 (A6)

  • 8/9/2019 61rl97 - Strongly Buoyant Plume Similarity and 'Small Fire' Ventilation

    24/24

      5 8 G. G. Rooney, P. F. Linden

    and so the ratio of the densities in the upper and lower layers is given by

    Pl _ P = 1

    P o P o z = h 1 + ( N F Z / 3 / g ) h - s /3 = O ( h ) , say A7)

    This is equivalent to obtaining the upper-layer temperatu re from conserva-

    tion of heat flux in the plume, which is the method used in Paper I, or to

    obtaining the reduced gravity of the upper layer from the reduced gravity of

    the plume, as in Paper II.

    We may also obtain the mass flux at B, which is given by

    W n = 7 z w b 2 p [ z = h = N - l p o F 1 / 3 h S / 3 A8)

    Hence, from eqns A1), 10), and using

    W 2 p0 2 2 a9)

    ~-- W A a A

    eqn A5) becomes the expression for the interface height,

    ~ 5 ) 1 / 2 N - 3 / 2 ~1

    = A I O )

    where

    = h / H A 11)

    is the fractional height of the interface, and

    - - - - 0 1 / 2 K a A a c

    A12)

    [ ½ ( ( K 2 / k ) a 2 + ( a ~ / O ) ) ] / 2