6036: area of a plane region

18
6036: Area of a Plane Region AB Calculus

Upload: farren

Post on 08-Feb-2016

37 views

Category:

Documents


0 download

DESCRIPTION

6036: Area of a Plane Region. AB Calculus. Accumulation vs. Area. Accumulation can be positive, negative, and zero. Area is defined as positive . The base and the height must be positive. h = always Top minus Bottom (Right minus Left). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 6036:  Area of a Plane Region

6036: Area of a Plane Region

AB Calculus

Page 2: 6036:  Area of a Plane Region

Accumulation vs. Area

Area is defined as positive.

The base and the height must be positive.

Accumulation can be positive, negative, and zero.

h = always Top minus Bottom (Right minus Left)

𝑓 βˆ’0=h

h=0 βˆ’ 𝑓

Page 3: 6036:  Area of a Plane Region

AreaDEFN: If f is continuous and non-negative on [ a, b ], the

region R, bounded by f and the x-axis on [ a,b ] is

Remember the 7 step method.

b = Perpendicular to the axis!

h = Height is always Top minus Bottom!

( )b

aTA f x dx

a b

( ) 0

lim ( )

b x

h f x

TA f x dx

Area of rectangle

[π‘Ž ,𝑏 ]

Page 4: 6036:  Area of a Plane Region

Ex:

Find the Area of the region bounded by the curve,

and the x-axis bounded by [ 0, ]

siny x x

𝑏=βˆ† π‘₯ [ 0 ,πœ‹ ]h=(π‘₯+sin π‘₯ ) βˆ’0𝐴= (π‘₯+sin π‘₯ ) βˆ†π‘₯

lim𝑛→ ∞

βˆ‘ (π‘₯+sin π‘₯ ) βˆ† π‘₯

𝐴=0

πœ‹

(π‘₯+sin π‘₯ )𝑑π‘₯

𝐴= π‘₯2

2βˆ’cos π‘₯|πœ‹0

𝐴= πœ‹ 2

2βˆ’ (βˆ’1 ) βˆ’ ( 0βˆ’1 )

𝐴= πœ‹ 2

2+2

Page 5: 6036:  Area of a Plane Region

Ex:

Find the Area of the region bounded by the curve,

and the x-axis bounded by [ -1, 1 ]

3 2y x

𝑏=βˆ† π‘₯ [βˆ’ 1,1 ]h=0 βˆ’(βˆ’ 3√π‘₯βˆ’2)

lim𝑛→ ∞

βˆ‘ ( 3√π‘₯+2 )

βˆ’1

1

( 3√π‘₯+2 )𝑑π‘₯

βˆ’1

1 ( (π‘₯ )13 +2)𝑑π‘₯

34

(π‘₯ )43 +2 π‘₯| 1

βˆ’ 1

( 34βˆ—1+2)βˆ’( 3

4βˆ— (1 ) βˆ’2)=( 3

4+2)βˆ’( 3

4βˆ’2)

34

βˆ’34+2+2=4

Page 6: 6036:  Area of a Plane Region

Area between curves

REPEAT: Height is always Top minus Bottom!

( ) ( )b

aTA f x g x dx

a b

f (x)

g (x)1 ( )b

R aA f x dx

2 ( )b

R aA g x dx

Height of rectangle

Page 7: 6036:  Area of a Plane Region

Area between curves

The location of the functions does not affect the formula.

( ) ( )b

aTA f x g x dx

a b

Both aboveh=f-g

One above one belowh=(f-0)+(0-g)h=f-g

Both belowh=(0-g)-(0-f)h=f-g

<Always Top-bottom>

Page 8: 6036:  Area of a Plane Region

Area : Method:

Find the area bounded by the curves and

on the interval x = -1 to x = 2

2 1y x

2y x

𝑏=βˆ† π‘₯ [βˆ’ 1,2 ]h=(π‘₯2+1 ) βˆ’ (π‘₯βˆ’ 2 )

h=π‘₯2βˆ’π‘₯+3

lim𝑛→ ∞

βˆ‘ (π‘₯2βˆ’π‘₯+3 ) βˆ† π‘₯

βˆ’1

2

(π‘₯2βˆ’π‘₯+3 )𝑑π‘₯

π‘₯3

3βˆ’π‘₯2

2+3 π‘₯| 2

βˆ’1

( 83

βˆ’42+3 (2 ))βˆ’(βˆ’1

3βˆ’

12+3 (βˆ’ 1 ))

93

βˆ’32+9=3+9 βˆ’1.5=10.5

Page 9: 6036:  Area of a Plane Region

Area : Example (x-axis):

Find the area bounded by the curves and2( ) 4f x x 2( ) 2g x x

𝑏=βˆ† π‘₯ [βˆ’βˆš3 ,√3 ]

4 βˆ’π‘₯2=π‘₯2βˆ’ 2

6=2 π‘₯2

3=π‘₯2

±√3=π‘₯

h=( 4 βˆ’π‘₯2 ) βˆ’ (π‘₯2 βˆ’2 )h=6 βˆ’ 2π‘₯2

lim𝑛→ ∞

βˆ‘ (6βˆ’ 2π‘₯2 ) βˆ† π‘₯

βˆ’ √3

√3

(6 βˆ’ 2π‘₯2 )𝑑π‘₯

6 π‘₯βˆ’ 2( π‘₯3

3 )| √3βˆ’βˆš3

6 (√3 ) βˆ’ 23

(√3 )3 βˆ’(βˆ’ 6√3βˆ’( 23 ) (βˆ’βˆš3

3 ))6 √3 βˆ’ 2√3+6√3 βˆ’ 2√3=8√3

Page 10: 6036:  Area of a Plane Region

Area: Working with y-axis

Area between two curves.

The location of the functions does not affect the formula.

When working with y-axis, height is always Right minus Left.

( ( ) ( ))

lim ( ( ) ( ))

b y

h h y k y

TA h y k y y

h (y)

k (y)

a

b

( ( ) ( ))b

aTA h y k y dy

Perpendicular to y-axis!

Page 11: 6036:  Area of a Plane Region

Area : Example (y-axis):Find the area bounded by the curves

and

2 2y x2 2y x

π‘₯= 𝑦2

2

π‘₯=𝑦+2

2

Perpendicular to y-axis

𝑦2

2= 𝑦+2

2

𝑦 2βˆ’ π‘¦βˆ’2=0

(π‘¦βˆ’ 2 ) ( 𝑦+1 )𝑦=βˆ’1π‘Žπ‘›π‘‘ 2

𝑏=βˆ† 𝑦 [βˆ’ 1,2 ]

h=( 𝑦+22 )βˆ’( 𝑦

2

2 )h=

12

( 𝑦+2 βˆ’ 𝑦2 )

lim𝑛→ ∞

βˆ‘ 12

(𝑦 +2 βˆ’π‘¦ 2) βˆ† 𝑦

𝐴= 𝑦=βˆ’1

𝑦=212

( 𝑦+2 βˆ’π‘¦ 2 )𝑑𝑦

𝐴=12 ( 𝑦

2

2+2 π‘¦βˆ’

𝑦3

3 )| 2βˆ’1

𝐴=12 ( 22

2+2 (2 )βˆ’ 23

3 )βˆ’ 12 (βˆ’12

2+2 (βˆ’1 ) βˆ’ βˆ’13

3 )𝐴=1+2βˆ’

86

βˆ’14+1 βˆ’

16

𝐴=3βˆ’2112

=1512

Page 12: 6036:  Area of a Plane Region

Multiple Regions

1) Find the points of intersections to determine the intervals.

2) Find the heights (Top minus Bottom) for each region.

3) Use the Area Addition Property.

a b c

b =

h = h =

f (x)

g (x)

x

Page 13: 6036:  Area of a Plane Region

Area : Example (x-axis - two regions):

Find the area bounded by the curve

and the x-axis.

2(1 )y x x

NOTE: The region(s) must be fully enclosed!

Page 14: 6036:  Area of a Plane Region

Area : Example ( two regions):

Find the area bounded by the curve

and . 3

1y x

NOTE: The region(s) must be fully enclosed!

1y x

Page 15: 6036:  Area of a Plane Region

Area : Example (Absolute Value):

Find the area bounded by the curve and the

x-axis on the interval x = -2 and x = 3

( ) 2 3f x x

PROBLEM 21

Page 16: 6036:  Area of a Plane Region

Velocity and Speed: Working with Absolute Value

DEFN: Speed is the Absolute Value of Velocity.

The Definite Integral of velocity is NET distance (DISPLACEMENT).

The Definite Integral of Speed is TOTAL distance. (ODOMETER).

Page 17: 6036:  Area of a Plane Region

Total Distance Traveled vs. Displacement

The velocity of a particle on the x-axis is modeled by the function, .

Find the Displacement and Total Distance Traveled of the particle on the interval, t [ 0 , 6 ]

3( ) 6x t t t

Page 18: 6036:  Area of a Plane Region

Updated:

β€’ 01/29/12

β€’ Text p 395 # 1 – 13 odd

β€’ P. 396 # 15- 33 odd