6. we writedavar/math5010/summer2008/hw9... · 2008. 7. 23. · 2a a (2a-z)g(z)dz = z a 0...

4
(oro) V=r*x (x'&=-r) Figure 1: The region: y + x> 1, x> 0, y> 0 Chapter 8 Problems 3. (a) First, we find the value of c: c = 1 R 0 R 0 exp(-x - y) dx dy = 1 R 1 0 e -x dx · R 1 0 e -y dy = 1. (b) Use Figure 1 to find that P{X + Y> 1} = Z 1 0 Z 1-x e -x-y dy dx + Z 1 Z 0 e -x-y dy dx = Z 1 0 e -x Z 1-x e -y dy dx + Z 1 e -x Z 0 e -y dy dx = Z 1 0 e -x · e -(1-x) dx + Z 1 e -x · 1 dx = 2e -1 0.7358. (c) Without integration: P{Y> 1 + X} = 1, therefore P{X<Y } = 1. 4. First we calculate F Z : F Z (a)= 0 if a< 0 since X, Y > 0 with probability one (why?). And if a > 0, then F Z (a)= P{X + Y 6 a} = Z a 0 Z a 0 f(x , y) dx dy (plot the region) = Z a 0 Z a 0 g(x + y) dx dy. 1

Upload: others

Post on 23-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • (oro)

    V=r*x(x'&=-r)

    Figure 1: The region: y+ x > 1, x > 0, y > 0

    Chapter 8 Problems

    3. (a) First, we find the value of c:

    c =1∫∞

    0

    ∫∞0 exp(−x− y)dxdy

    =1∫1

    0 e−x dx ·

    ∫10 e

    −y dy= 1.

    (b) Use Figure 1 to find that

    P{X+ Y > 1} =∫10

    (∫∞1−x

    e−x−y dy

    )dx+

    ∫∞1

    (∫∞0

    e−x−y dy

    )dx

    =

    ∫10

    e−x(∫∞

    1−x

    e−y dy

    )dx+

    ∫∞1

    e−x(∫∞

    0

    e−y dy

    )dx

    =

    ∫10

    e−x · e−(1−x) dx+∫∞1

    e−x · 1dx

    = 2e−1 ≈ 0.7358.

    (c) Without integration: P{Y > 1 + X} = 1, therefore P{X < Y} = 1.

    4. First we calculate FZ: FZ(a) = 0 if a < 0 since X, Y > 0 with probabilityone (why?). And if a > 0, then

    FZ(a) = P{X+ Y 6 a}

    =

    ∫a0

    (∫a0

    f(x ,y)dx)dy (plot the region)

    =

    ∫a0

    (∫a0

    g(x+ y)dx

    )dy.

    1

  • G-

    \f,n'$w

    Figure 2: The region between: 0 < y < a and y < z < a+ y

    In order to calculate the inner integral: Fix y between zero and a andchange variables [z := x+ y] to find that∫a

    0

    g(x+ y)dx =

    ∫a+yy

    g(z)dz.

    Therefore [see Figure 2],

    FZ(a) =

    ∫a0

    ∫a+yy

    g(z)dzdy

    =

    ∫a0

    g(z)

    (∫z0

    dy

    )dz+

    ∫2aa

    g(z)

    (∫az−a

    dy

    )dz

    =

    ∫a0

    zg(z)dz+

    ∫2aa

    (2a− z)g(z)dz

    =

    ∫a0

    zg(z)dz+ 2a∫2aa

    g(z)dz−

    ∫2aa

    zg(z)dz.

    Differentiate [d/da] to find that if a < 0, then fZ(a) = 0; else if a > 0,then

    fZ(a) = ag(a) + 2∫2aa

    g(z)dz+ 2a {g(2a) − g(a)} − 2ag(2a) − ag(a)

    = 2∫2aa

    g(z)dz− 2ag(a).

    [The fundamental theorem of calculus] We can slightly simplify the latter:fZ(a) = 2

    ∫2aa {g(z) − g(a)}dz.

    6. We writew(x ,y) = x2 + y2 and z(x ,y) = y/x.

    2

  • Then r :=√w and θ := arctan(z) define (x ,y) in polar coordinates. That

    is,x =√w cos(arctan z) and y =

    √w sin(arctan z).

    Then, the Jacobian of this transformation is

    J(w , z) =∂x

    ∂w

    ∂y

    ∂z−∂x

    ∂z

    ∂y

    ∂w.

    But

    ∂x

    ∂w=

    12√w

    cos(arctan z)

    ∂x

    ∂z= −√w

    sin(arctan z)1 + z2

    ∂y

    ∂w=

    12√w

    sin(arctan z)

    ∂y

    ∂z=√w

    cos(arctan z)1 + z2

    .

    Therefore,

    J(w , z) =1

    2(1 + z2).

    Consequently,

    fW,Z(w , z) = fX,Y(x(w , z) ,y(w , z))× |J(w , z)|.

    Because x2(w , z) + y2(w , z) = w2,

    fX,Y(x(w , z) ,y(w , z)) =c

    (1 +w2)3/2,

    and sofW,Z(w , z) =

    c

    2(1 +w2)3/2(1 + z2),

    for w > 0 and −∞ < z < ∞. Else, fW,Z(w , z) = 0. We can writefW,Z(w , z) =

    2(1 +w2)3/2× 1π(1 + z2)

    , w > 0, −∞ < z < ∞.Therefore,W and Z are independent with

    fZ(z) =1

    π(1 + z2)(i.e., Z is Cauchy),

    andfW(w) =

    2(1 +w2)3/2, w > 0.

    3

  • It remains to find c [this is a part of #5]. Clearly,

    c =2

    π∫∞0 (1 +w

    2)−3/2 dw.

    In order to compute the integral, change variables [a = 1/(1 + w2)] tofind that ∫∞

    0

    dw

    (1 +w2)3/2=

    12

    ∫10

    da√1 − a

    = 1.

    Therefore, c = 2/π.

    4