6 // //'ýo - nrc

30
ALLIANT ENERGY - IES UTILITIES INC. Duane Arnold Energy Center Cycle 17 CORE OPERATING LIMITS REPORT Rev. 0 November 1999 Prepared by Verified by Concurred by Reviewed b Approved by /,-I W-f n§/ld(#W7 4 6/. zc- Z f3-siness t•Specialist, N ~ear'Fuels Su pervisor/ erations Support Ma hger, ality Assurance Mana;iI14r Manager/Engine ringC t Chairman, Operations Committee Plant Manager, Nbclear T- J- ý D, Nr-1 /I - z c // //'ýo /.? "'6 r: 1:

Upload: others

Post on 27-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

ALLIANT ENERGY - IES UTILITIES INC.

Duane Arnold Energy Center

Cycle 17

CORE OPERATING LIMITS REPORT

Rev. 0

November 1999

Prepared by

Verified by

Concurred by

Reviewed b

Approved by

/,-I W-f n§/ld(#W7 4 6/. zc- Z

f3-siness t•Specialist, N ~ear'Fuels

Su pervisor/ erations Support

Ma hger, ality Assurance

Mana;iI14r

Manager/Engine ringC t

Chairman, Operations Committee

Plant Manager, NbclearT- J- ý D, Nr-1 /I -z c

// //'ýo /.?"'6r:

1:

1.0 Core Operating Limits Report

This Core Operating Limits Report for Cycle 17 has been prepared in accordance with the requirements of Technical Specification 5.6.5. The core operating limits have been developed using NRC-approved methodology (Ref. 1) and are documented in References 2, 3, 4, 7, and 8 9. The Cycle 17 values for the core operating limits are provided in Section 3.0 of this report.

2.0 References

1. General Electric Standard Application for Reactor Fuel (GESTAR-II), NEDE-2401 1-P-A*

2. Duane Arnold Energy Center SAFER/GESTR-LOCA Loss-of-Coolant Accident Analysis, NEDC-31310P, Supp. 1, August 1993*

3. Supplemental Reload Licensing Submittal for Duane Arnold Energy Center, Reload 16, Cycle 17, J11-03517SRLR, Rev 0, October, 1999

4. Duane Arnold Energy Center GE12 Fuel Upgrade Project, NEDC32915P, November, 1999

5. Average Power Range Monitor, Rod Block Monitor and Technical Specification Improvement (ARTS) Program for the Duane Arnold Energy Center, NEDC-30813, December 1984

6. GE Fuel Bundle Designs, NEDE-31152P*

7. Application of the "Regional Exclusion with Flow-Biased APRM Neutron Flux Scram" Stability Solution (Option I-D) to the Duane Arnold Energy Center, GENE-AOO-04021-01, September 1995

8. Impact of EOC RPT and TBV OOS on ARTS Limits for Duane Arnold Energy Center, GE-NE-A0005785-21, October 1996

9. GE12 Compliance with Amendment 22 of NEDE-2401 1-P-A (GESTAR II), NEDE-32417P, December 1994

Approved revision number at time reload fuel analyses are performed.

Page 2 Preparer Initials: Verifier Initials:

3.0 Core Operating Limits

1. Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) TS 3.2.1.

a. The MAPLHGR for each fuel type as a function of planar average exposure (PAE) shall not exceed the limiting value shown in Figures 1, 2, 3, 4, 5, and 6 multiplied by the smaller of the two MAPFAC factors determined from Figures 7 and 8.

b. During SLO, the actual MAPLHGR for each type of fuel as a function of average planar exposure shall not exceed the limiting value shown in Figures 1, 2, 3, 4, 5, and 6 multiplied by the smaller of the two MAPFAC factors determined from Figures 8 and 9.

c. Tables 1, 2, 3 and 4 provide the MAPLHGR values (KW/ft) for the exposure points (GWd/ST) used in the SAFER/GESTR-LOCA analysis. These tables are applicable to the re-insert GE 10 fuel for Cycle 17.

Tables 5 and 6 provide the MAPLHGR values (KW/ft) for the exposure points (GWd/ST) conservatively bounded by the SAFER/GESTR-LOCA analysis (see reference 3). These tables are applicable to the GE 12 fresh fuel for Cycle-17.

Tables 1, 2, 3, 4, 5, and 6 correspond to Figures 1, 2, 3, 4, 5, and

6, respectively.

2. Linear Heat Generation Rate (LHGR) - TRM: 3.2.

a. The LHGR of any rod in any GE 10 fuel assembly shall not exceed 14.4 KW/ft.

b. The LHGR of any rod in any GE 12 fuel assembly shall not exceed 11.8 KW/ft. (Reference 4)

3. Minimum Critical Power Ratio (MCPR) -TS 3.2.2.

a. The MCPR shall be equal to or greater than the Operating Limit MCPR, which is a function of core thermal power, core flow, fuel type, and scram time (Tau). For core thermal power greater than or equal to 25% of rated and less than 30% of rated (25% < P < 30%), the Operating Limit MCPR is given by Figure 10. For core

Page 3 Preparer Initials: Verifier Initials:

thermal power greater than or equal to 30% of rated (P _ 30%), the Operating Limit MCPR is the greater of either:

i) The applicable flow-dependent MCPR determined from Figure 11, or

ii) The appropriate RATED POWER MCPR from Figure 12 or 13 [Figure 14 for Recirculation Pump Trip Out of Service (RPTOOS) Figure 15 for both Turbine Bypass Valves Out-ofService (TBVOOS); Figure 16 for TBVOOS and RPTOOS; Figure 17 for a single Turbine Bypass Valve Out of Service; Figure 18 for a single Turbine Bypass Valve Out of Service and RPTOOS.], multiplied by the applicable power-dependent MCPR multiplier determined from Figure 10.

b. During SLO with core thermal power greater than or equal to 25% of rated, the SLO Operating Limit MCPR is determined by adding 0.02 to the Operating Limit MCPR determined above.

4.0 Reload Fuel Bundles

FUEL TYPE CYCLE LOADED NUMBER

GE1 O-P8DXB327-8GZ2-1 OOM-1 50-T 15 40

GE1 O-P8DXB327-1 OGZ1 -1 OOM-1 50-T 15 80

GEl O-P8DXB342-12GZ-1 OOT-1 50-T 16 40

GE1 0-P8DXB341-9GZ-1 OOT-1 50-T 16 80

GE1 2-P1 ODSB370-14GZ-1 00T-1 50-T 17 48

GE1 2-P 1ODSB371-12GZ-100T-150-T 17 80

5.0 Thermal-Hydraulic Stability - TS 3.4.1.

a. Continued reactor operation within the "Exclusion Zone" on the power/flow map, as defined on Figure 19, is not permitted.

Page 4 Preparer Initials: Verifier Initials:

b. Continued reactor operation within the "Buffer Zone" on the power/flow map, as defined on Figure 19, is not permitted when the thermalhydraulic stability monitor (SOLOMON) is not operational.

Page 5Preparer Initials:

Verifier Initials:

TABLE 1

Linear Heat Generation Rate as a function of

Planar Average Exposure*

Fuel type: GE10-P8DXB327-8GZ2-10OM-150-T

Planar Linear Heat Average Generation Exposure Rate (GWd/ST) (KW/ft)

0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

10.0 12.5 15.0 20.0 25.0 35.0 45.0 50.1

11.72 11.77 11.88 11.96 12.04 12.10 12.17 12.24 12.31 12.39 12.47 12.56 12.57 12.33 11.81 11.29 10.20 8.48 5.90

* These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Preparer Initials: Verifier Initials:

Page 6

TABLE 2

Linear Heat Generation Rate as a function of

Planar Average Exposure*

Fuel type: GE10-P8DXB327-10GZ1-100M-150-T

Planar Linear Heat Average Generation Exposure Rate (GWd/ST) (KW/ft)

0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

10.0 12.5 15.0 20.0 25.0 35.0 45.0 50.7

11.49 11.56 11.71 11.88 12.05 12.23 12.42 12.57 12.70 12.82 12.95 13.09 13.17 12.90 12.16 11.38 9.92 8.51 5.77

* These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Preparer Initials: Verifier Initials: A

Page 7

TABLE 3

Linear Heat Generation Rate as a function of

Planar Average Exposure*

Fuel type: GE10-P8DXB342-12GZ-10OT-150-T

Planar Linear Heat Average Generation Exposure Rate (GWd/ST) (KW/ft)

0.00 0.20 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

10.00 12.50 15.00 20.00 25.00 35.00 45.00 50.98

11.27 11.32 11.42 11.63 11.87 12.01 12.15 12.29 12.44 12.61 12.81 13.02 13.15 13.09 12.27 11.47 9.90 8.53 5.64

* These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Page 8Preparer Initials:

Verifier Initials:

TABLE 4

Linear Heat Generation Rate as a function of

Planar Average Exposure*

Fuel type: GE10-P8DXB341-9GZ-10OT-150-T

Planar Linear Heat Average Generation Exposure Rate (GWd/ST) (KW/ft)

0.00 0.20 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

10.00 12.50 15.00 20.00 25.00 35.00 45.00 51.02

11.87 11.89 11.94 12.08 12.26 12.44 12.55 12.66 12.76 12.86 12.99 13.12 13.35 12.89 12.02 11.20 9.73 8.54 5.65

These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Preparer Initials: ./ Verifier Initials:

Page 9

TABLE 5

Linear Heat Generation Rate as a function of

Planar Average Exposure*

Fuel type: GE12-P1ODSB371-12GZ-10OT-150-T

Planar Linear Heat Average Generation Exposure Rate (GWd/ST) (KW/ft)

0.00 0.20 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

10.00 11.00 12.00 13.00 14.00 15.00 17.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 57.84

8.99 9.04 9.13 9.26 9.40 9.54 9.69 9.84 9.98 10.11 10.17 10.23 10.30 10.30 10.29 10.28 10.19 9.99 9.69 9.21 8.73 8.26 7.81 7.29 6.79 6.29 6.01

These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Preparer Initials: _

Verifier Initials: 2

Page 10

TABLE 6

Linear Heat Generation Rate as a function of

Planar Average Exposure*

Fuel type: GE12-P1ODSB370-14GZ-10OT-150-T

Planar Linear Heat Average Generation Exposure Rate (GWd/ST) (KW/ft)

0.00 0.20 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 17.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 57.68

8.92 8.95 9.01 9.13 9.27 9.41 9.56 9.72 9.88

10.01 10.13 10.23 10.31 10.31 10.31 10.30 10.21 10.00 9.69 9.20 8.72 8.25 7.79 7.27 6.77 6.27 6.00

These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Preparer Initials: Verifier Initials:

Page 11

MAPLHGR VS PAE GE10-P8DXB327-8GZ2-100M-150- T

Preparer Inintials W . Verifier Initials ýa64

20.00 30.00 PLANAR AVERAGE EXPOSURE (GWDIST)

Figure 1

14.00

13.00

12.00

P IL

z 5

w

11.00

10.00

9.00

8.00

7.00

6.00

5.00 1

0.0(0 10.00 40.00 50.00 60.00

oe

44,444"*44 1444 ---- -k%4%1-NN

MAPLHGR VS PAE GE10-P8DXB327-10GZ1-100M-150- T

Preparer Initials &ý Verifier Initials

14.00

13.00

12.00

11.00

10.00

9.00

8.00

7.00

6.00

5.00 !0.00 10.00 20.00 30.00 40.00 50.00

PLANAR AVERAGE EXPOSURE (GWD/ST) Figure 2

J

z

w

C,

60.00

MAPLHGR VS PAE GE10-P8DXB342-12GZ-100T- 150- T

Preparer Initials" Verifier Initials

14.00

13.00

12.00

11.00

10.00

9.00

8.00

7.00

6.00

5.00 I0.00 10.00 20.00 30.00 40.00 50.00

PLANAR AVERAGE EXPOSURE (GWDIST) Figure 3

0, -J

Il w L0

60.00

MAPLHGR VS PAE GE10-P8DXB341-9GZ-100T-150_T

Preparer Initials ±O Verifier Initials

14.00

13.00

12.00

11.00

CD

10.00 z a.

9g 1.00

w Ill

_ 8.00

7.00

6.00

5.00 ý0.00 10.00 20.00 30.00 40.00 50.00

PLANAR AVERAGE EXPOSURE (GWD/ST) Figure 4

60.00

MAPLHGR VS PAE GE12-P10DSB371-12GZ-100T-150-T (GE12B) Preparer Initial

Verifier Initials

11.00

"10.00 • --- - . ... . .

8.00 -.-. ..- ..

LU

E 7.00 -. . . .

6.00 *--

5.00 0.00 10.00 20.00 30.00 40.00 50.00 60.00

PLANAR AVERAGE EXPOSURE (GWDIST)

Figure 5

MAPLHGR VS PAE Inittals• _ GE12-P10DSB370-14GZ.100T.150.T (GE12B) Preparer Initials

Verifier Initials

11.00

10.00

9.00

8.00 C,

7. 00

6.00 - -

5.00 0.00 10.00 20.00 30.00 40.00 50.00 60.00

PLANAR AVERAGE EXPOSURE (GWDIST)

Figure 6

FLOW DEPENDENT MAPLHGR MULTIPLIERTWO LOOP OPERATION Preparer Initia I

Verifier Initials

60

CORE FLOW (% RATED) Figure 7

1.10

1.00

0.90

U!.

• 0.80 0

u, 0.70 I(L

0.6 C,I

0.

0.60

0.50

0.40

80

For F<75 MAPFACf=0.006784F+0.4861

For F>=75 MAPFACf=1.0

Where: F=Core Flow in % of Rated

0 20

40 100 1200 20

POWER DEPENDENT MAPLHGR MULTIPLIERPreparer Initials Verifier Initials *.,-

<=50% CORE FLOW

20

1 000

0.80 i-, 0.

4

n: o 0.70 a.

0.60

0.50

0.40

40 60 CORE THERMAL POWER (% RATED)

Figure 8

1.10

1.00 1 .... . .

0.90 1

>50% CORE FLOW

For P<25 No Thermal Limits Required

For 25<=P<30 and F<=50 MAPFACp=0.6+0.005224(P-30)

For 25<-P<30 and F>50 MAPFACp=0.50+0.005224(P-30)

For 30<-P<96 MAPFACp=1.00+0.005224(P-96)

For P>=96 MAPFACp=1.00

Where: P=Core Power in % of Rated F=Core Flow in % of Rated

0 80 100 120

0e00e00

FLOW DEPENDENT MAPLHGR MULTIPLIER SINGLE LOOP OPERATION Preparer Initials6d '

Verifier Initials 4L'5

1.10

1.00 1 -- - - -

V

40

GEl2

60 CORE FLOW (% RATED)

Figure 9

c U

IL a.

, 0.80 0 I.

U

0 -J "LL 0.70

-J

0.60

0.50

0.40

GEIO0

80 100

MAPFACf=0.006784F+0.4861

GE 10 F >= 40.3% MAPFACf=0.76 GE 12 F >= 35.2% MAPFACf=0.73

Where: F=Core Flow in % of Rated

- . . -

0 20 120

0.g0 1 - -- - -

80 100

Power Dependent MCPR LIMITS

Note: Y-axis Numbers Represent (a) OLMCPRP for 25<=P<30 (b) KP for P>=30

Preparer Initials JW Verifier Initials

II

50

POWER (% rated) Figure 10

3.0

2.8

2.6

2.4

a. U 2.2 -J 0

2.0

1.8

1.6

0.

1.4

1.2

1.0

1<-50% COREFO

0 10 20 30 40 60 70 80 90 100

i " " II

For P<25 No Thermal Limits Required

For 25=P<30 and F-50 OLMCPR,=2 10+0 052(30-P)

For 25-=P<30 and F>50 OLMCPRP=2 61+0 052(30-P)

For 30-=P<45 K4=1.28+.0O134(45-P)

For 45<=P<60

Kp=1.15+0 00867(60-P)

For P-=60

Kp=1.0+0 00375(100-P)

Where: OLMCPRP=Power Dependent Operating Limit MCPR KP=Power Dependent MCPR Multiplier P=Core Power in % of Rated F=Core Flow in % of Rated

FLOW DEPENDENT MCPR LIMITS

1.8

Preparer Initials " Verifier Initials

.. .... . . ... .. ... . . ... . . .. ... ,..

..... ..... ..... .. ...... ..... ..... ....

I I

50 Core Flow (% rated)

Figure 11

1.7

1.6

1.5 1

N...........IL

0. O

1.4

1.3

For F<40 (GE10 Fuel Only) OLMCPRf =(-0.00587F+1.701 )x(1+0.0032(40-F))

For F< 40 (GEl2 Fuel Only) and 40 <=F<80.2 (All Fuel)

OLMCPRf=-(-0.00587F+1.701) For F>=80.2 OLMCPRf-1.23

Where: F=Core Flow in % of Rated

1.2 1

1.10 10 20 30 40 60 70 80 90 100

----------

..............

................ ..................

MCPR vs TAU BOC to (EOC - 2000 MWDISTU)

Option BPreparer Initials Verifier Initials ,4, .

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TAU Limiting Event: Figure 12 GEl0-> LRNBP Standard

GE12 -> LRNBP ELLL

Option A

1. U

1.42

1.4

1.38

1.36

1.34

1.32

1.3

1.28

1.26

1.24

0

MCPR vs TAU (EOC - 2000 MWD/STU) to EOC

Option B

Preparer Initials Verifier Initials

1.42

1.4

1.38

1.36

1.34

1.32

1.3

1.28

1.26

1.24

GE12

0.7 0.8

Limiting Event GEl0 -> LRNBP Standard GE12 -> LRNBP ELLL

Option A

a. U M•

1 1 t 7 1

0 0.1 0.2 0.3 0.4 0.5

TAU Figure 13

0.6 0.9 I

GE10

MCPR vs TAU RPTOOS

Option B

Preparer Initials Verifier Initials

1.5

1.48

1.46

1.44

1.42

1.4

1.38

1.36

1.34

1.32

1.3

1.28

GEl0

7 1 1 4

0.7 0.8

Limiting Event LRNBP Standard for all fuel

Option A

w. U

GEl2

0 0.1 0.2 0.3 0.4 0.60.5

TAU Figure 14

0.9 1

MCPR vs TAU TBVOOS Preparer Initials

Verifier InitialsOption A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TAU Limiting Event Figure 15 GEI0 -> FWCF Standard

GE12 -> FWCF ELLL

Option B

a. C)

1.44

1.42

1.4

1.38

1.36

1.34

1.32

1.3

1.28

0

MCPR vs TAU TBVOOS - RPTOOS

Preparer Initials Verifier Initials

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TAU Limiting Event Figure 16 FWCF Standard for all fuel

Option B

0. C.,

1.52

1.5

1.48

1.46

1.44

1.42

1.4

1.38

1.36

1.34

1.32

0

Option A

MCPRvsTAU 1TBVOOS Preparer Initials

Verifier Initials

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TAU Limiting Event Figure 17 GEI0 -> FWCF Standard

GE12 -> FWCF ELLL

Option A

0,

1.4

1.38

1.36

1.34

1.32

1.3

1.28

1.26

1.24

0

MCPR vs TAU ITBVOOS - RPTOOS

1.48 Option B

1.46

1.44 . . . . ..

1.42

1.4 _._-__

a.1.38

1.36

1.34

1.32

1.32

1.28

Preparer Initialsw Verifier Initials

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

TAU Limiting Event Figure 18 FWCF Standard for all fuel

DAEC Stability Power/Flow Map Preparer Initials Verifier Initials

120

110

100

90

15 20 25 30 35 40 45 50

Core Flow (MlbIhr) Figure 19

S.. .... .... . ..... .. ... .. ....... .. ...... ... . . 1 0 8 % L o a d L in e • .. . . . . . .

100% Load Line

- - Buffer Zone

67% Load Line

.-. Low F"W Protection Line .

:: -. Natural Circulation Lin~e I- .. --:• :: - -: :: - : -:- i... . .... . - -- :--- - -... . .. "' : -

' ' ' " Minimum Pump Speed ....--- ___ -• --• I- 4-!• 47 = I -- ý4. ..... ..... ... . ...-:.... .

0

I0 CL

2.

0

(a

80

70

60

50

40

30

20

10

0

0 5 10