6. measles post eradication risk analysis...although there is no direct evidence for...

31
Risk analysis for measles reintroduction post global certification of eradication Dr Ray Sanders. July 2010 Summary and conclusions Measles virus will continue to exist after certification of global eradication as virus stocks and infectious materials held in laboratories. Live virus may also exist in undetected foci of transmission and in persistently and chronically infected individuals. This analysis attempts to identify and evaluate the main risks for re‐introduction of measles transmission post certification of eradication in a world in which universal routine measles immunization is no longer a feature. Risk of continuing, undetected wild‐type measles transmission in humans There are, as yet, no definitive criteria for certification of global measles eradication or agreed requirements for validation of these criteria. Without these criteria, and the detailed requirements for demonstrating they have been met, it is not possible to accurately estimate the risk presented by undetected continuing transmission. Mild or asymptomatic measles infections are probably very common among measles‐immune persons exposed to measles cases, but transmission from asymptomatic cases is likely to be very rare. If it occurs it is unlikely to be efficient enough to sustain transmission, especially in the highly vaccinated populations expected in the years immediately following global certification of eradication. However, the potential role of asymptomatic infections in maintaining transmission requires further investigation. If the criteria for global certification of eradication are firm enough, and require rigorous validation, then the risk of undetected measles transmission after certification is very low. If the certification criteria are lax, or validation requirements are inadequate, the risk will be higher. Risk of transmission of vaccine‐derived virus The currently licensed live‐attenuated measles vaccines are safe and efficient and have been used successfully to protect many millions of individuals and prevent measles transmission. All current vaccine viruses are closely related and belong to genotype A. There is no published conclusive evidence for currently licensed live attenuated vaccine viruses reverting to wild‐type transmissibility or virulence. On the contrary, the vast majority of evidence points to an impressive level of genetic stability. However, since they are live viruses that replicate within vaccine recipients, the remote possibility must exist that they could revert to wild‐type characteristics. There is also no evidence for the establishment of vaccine‐escape mutants. Even if vaccine viruses were to revert to wild‐type transmissibility, there is no reason to suspect that transmission could not be controlled using current vaccines. Risk from persistent infections There is no published evidence that cases of persistent measles infection are associated with the shedding of infectious virus or play any part in measles transmission. As the number of acute measles virus cases declines in the years leading to global eradication, we can expect a decline in the

Upload: others

Post on 27-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

Riskanalysisformeaslesreintroductionpostglobalcertificationoferadication

DrRaySanders.July2010

SummaryandconclusionsMeaslesviruswillcontinuetoexistaftercertificationofglobaleradicationasvirusstocksandinfectiousmaterialsheldinlaboratories.Livevirusmayalsoexistinundetectedfocioftransmissionandinpersistentlyandchronicallyinfectedindividuals.Thisanalysisattemptstoidentifyand

evaluatethemainrisksforre‐introductionofmeaslestransmissionpostcertificationoferadicationinaworldinwhichuniversalroutinemeaslesimmunizationisnolongerafeature.

Riskofcontinuing,undetectedwild‐typemeaslestransmissioninhumansThereare,asyet,nodefinitivecriteriaforcertificationofglobalmeasleseradicationoragreed

requirementsforvalidationofthesecriteria.Withoutthesecriteria,andthedetailedrequirementsfordemonstratingtheyhavebeenmet,itisnotpossibletoaccuratelyestimatetheriskpresentedbyundetectedcontinuingtransmission.

Mildorasymptomaticmeaslesinfectionsareprobablyverycommonamongmeasles‐immune

personsexposedtomeaslescases,buttransmissionfromasymptomaticcasesislikelytobeveryrare.Ifitoccursitisunlikelytobeefficientenoughtosustaintransmission,especiallyinthehighlyvaccinatedpopulationsexpectedintheyearsimmediatelyfollowingglobalcertificationof

eradication.However,thepotentialroleofasymptomaticinfectionsinmaintainingtransmissionrequiresfurtherinvestigation.

Ifthecriteriaforglobalcertificationoferadicationarefirmenough,andrequirerigorousvalidation,thentheriskofundetectedmeaslestransmissionaftercertificationisverylow.Ifthecertification

criteriaarelax,orvalidationrequirementsareinadequate,theriskwillbehigher.

Riskoftransmissionofvaccine‐derivedvirusThecurrentlylicensedlive‐attenuatedmeaslesvaccinesaresafeandefficientandhavebeenusedsuccessfullytoprotectmanymillionsofindividualsandpreventmeaslestransmission.Allcurrent

vaccinevirusesarecloselyrelatedandbelongtogenotypeA.Thereisnopublishedconclusiveevidenceforcurrentlylicensedliveattenuatedvaccinevirusesrevertingtowild‐typetransmissibilityorvirulence.Onthecontrary,thevastmajorityofevidencepointstoanimpressivelevelofgenetic

stability.However,sincetheyarelivevirusesthatreplicatewithinvaccinerecipients,theremotepossibilitymustexistthattheycouldreverttowild‐typecharacteristics.Thereisalsonoevidencefortheestablishmentofvaccine‐escapemutants.Evenifvaccinevirusesweretoreverttowild‐type

transmissibility,thereisnoreasontosuspectthattransmissioncouldnotbecontrolledusingcurrentvaccines.

RiskfrompersistentinfectionsThereisnopublishedevidencethatcasesofpersistentmeaslesinfectionareassociatedwiththe

sheddingofinfectiousvirusorplayanypartinmeaslestransmission.Asthenumberofacutemeaslesviruscasesdeclinesintheyearsleadingtoglobaleradication,wecanexpectadeclineinthe

Page 2: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page2

numberofpotentialSSPEandMIBEcases.AcutemeaslesinfectioninHIV‐infectedindividualstendstobemoresevere,lastlongerandresultinashorterlivedimmunitytore‐infection,butthereisno

publishedevidencetosuggestthatco‐infectionincreasesthepotentialforestablishmentofpersistentmeaslesinfections,eitherwithwild‐typevirusorwithvaccine‐derivedvirus.

Riskfromnon‐humanprimatesAlthoughnon‐humanprimatescanbeexperimentallyandnaturallyinfectedwithmeaslesvirus,and

animal‐animaltransmissionoccurs,populationsizesaretoosmalltomaintainepizootictransmissionorposeathreattohumanpopulations.

Riskoflaboratory‐associatedmeaslesinfectionAlthoughthereisnodirectevidenceforlaboratory‐acquiredmeaslesinfectionsitispossiblethat

theyhaveoccurredamongimmunelaboratorystaffandresultedinasymptomaticorverymildinfections.Thereisnopublishedevidencetosuggestthattheseasymptomaticormildinfectionsresultinfurthertransmissionofvirus.Measlesviruslosesinfectivitywithinafewhoursatambient

temperatures,andinfectiousmaterialsstoredattemperaturesabove‐30oCcanbeexpectedtoloseallinfectivityoverthecourseofonetotwoyears.Materialsstoredatorbelow‐70oC,orfreezedried,maintaininfectivityformanyyears.

Despitethelackofevidenceforlaboratory‐acquiredmeaslesinfectionsorescapeofvirusintothe

community,thesemustbeconsideredpossibilitiesinapost‐eradicationworld.Anappropriatesystematiclaboratorycontainmentstrategyformeasles,learningfromtheexamplesetbythePolioEradicationInitiative,shouldbedeveloped.

Riskofintentionalreleaseofmeaslesvirus

Measlesisahighlyinfectiousvirusthathashaddevastatingeffectsonsusceptiblepopulationsinthepast.Althoughitisunlikelythatthehighmortalitiesseenintheseisolatedcommunitieswouldbe

repeated,thethreatofmeaslesreleasewouldprobablybeveryeffectiveonceasizablepopulationofsusceptibleindividualshadaccumulated.Thisthreatcouldbecounteredbytheestablishmentofameaslesvaccinestockpile,preferablyusinganew,easytomass‐administer,non‐replicativemeasles

vaccine.Thesizeandnatureofanystockpileshouldbedefinedwithinasystematicandcomprehensivepost‐eradicationriskmanagementstrategy.

Risksforreintroductionofmeaslescanbesummarisedasfollows:

Risk Magnitude Tendencyovertime MitigatingactionsContinuingwild‐typemeaslestransmissioninhumans

Lowbutdependsoncertificationcriteriaandvalidationrequirements

Decreasing Basecertificationcriteriaandvalidationrequirementsondynamicandstochasticmodellingdata

Transmissionofvaccine‐derivedvirus

Verylow Dependsonlevelofvaccineuse

Developalternative,non‐replicatingvaccines

Persistentinfections Verylow Decreasing MaintainsurveillanceNon‐humanprimates Verylow Decreasing Maintainsurveillance

Laboratory‐associatedinfection

Verylowbutrisingposteradication

Increasing Developsystematiclaboratorycontainmentstrategy

Intentionalrelease Verylowbutrisingposteradication

Increasing Developvaccinestockpilesaspartofacomprehensiveriskmanagementstrategy

Page 3: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page3

Areasrequiringfurtherresearchandinvestigationinclude:GreaterunderstandingofthetransmissiondynamicsofmeaslesDevelopingmoremodels,particularlydynamicandstochasticmodelsofmeaslestransmission,

persistenceandeliminationwillberequiredfordevelopingthecertificationcriteriaandvalidationrequirements,particularlyforlow‐income,highdensitypopulations.

Additionaldetailedepidemiologicalandmolecularanalysisisrequiredonimportationsandoutbreaks,particularlythoseoccurringinhighlyimmunizedpopulationsandinpopulationswith

recognizedinadequatelyimmunizedsub‐populations.

Withtherapidincreaseinthenumberofhighlyimmunizedpopulations,opportunitiesforstudyingasymptomaticandatypicalinfectionsandtheirpotentialroleintransmissionshouldbetaken.

Greaterunderstandingofthechangesbroughtaboutbytheattenuationprocess

Moreinformationonthenatureofthechangescausedbyattenuationandthepotentialforvaccinevirusreversiontowild‐typecharacteristicsisrequired.

Moreunderstandingofthenatureofthecomplexinteractionbetweenmeaslesvirusandthehostimmunesystem,includingbothhumoralandcell‐mediatedresponses,wouldprobablybenefit

continueduseofexistingvaccinesanddevelopmentofnewvaccines.

AllgenotypeAvirusesdetectedinassociationwithacutecasesofmeaslesandatypicalvaccineresponsesshouldbethoroughlyscrutinized.Fullepidemiologicalinformationwillberequired,andadditionalsequencedatafrombothclinicalsamplesandcorrespondingviralisolateswillbe

necessarytoruleoutthepossibilityoftransmission.

Page 4: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page4

TableofContentsError!Bookmarknotdefined.

Page 5: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page5

Introduction.Wedonotyethaveanagreed,definitivedefinitionformeasleseradication,butareasonabledefinitionmaybe:

“Interruptionofmeaslesvirustransmissiongloballyforaperiodgreaterthanorequalto36

months,inthepresenceofhigh‐qualitysurveillance”(modifiedfromcurrentGlobalandRegionaldefinitionsofRegionalelimination).

Accordingtothisdefinition,measlesviruswillcontinuetoexist,asvirusstocksandinfectiousmaterialsheldinlaboratories.Livevirusmayalsocontinuetoexistinpersistentlyandchronically

infectedindividuals.Whatriskdothesevirusesandmaterialsposeinapost‐eradicationworld?

Forthepurposesofthisanalysispotentialriskshavebeendividedintotwocategories:

• ‘natural’–associatedwithcirculationofwild‐typevirus,viruspersistence,andimmunizationactivities;and

• ‘laboratory’–associatedwithlaboratorywork,storageandintentionalrelease.

Thesetwocategoriesarenotmutuallyexclusive,butdopermitamoresystematic,structured

assessment.

‘Natural’risksconsideredinclude:

a) continuingwild‐typemeaslestransmissioninundetectedhumanreservoirs;b) transmissionofvaccine‐derivedvirus;c) persistentandchronicinfections;

d) non‐humanprimatereservoirs.

‘Laboratory’risksconsideredinclude:

a) laboratory‐acquiredinfections;b) storedinfectiousmaterials;c) virusescapeintothecommunity;

d) intentionalrelease.

Ifuniversalornear‐universalcoveragewithmeaslesvaccineiscontinuedafterglobaleradication,particularlyifamoreeffective,non‐replicatingvaccineisused,theriskofmeaslesreintroductionwillbeminimal.Itislikelythatanumberofnationalauthoritieswill,forpoliticalaswellaspublichealth

reasons,choosetocontinueroutineimmunizationposteradication.Someauthoritiesmayadoptamodifiedimmunizationschedule,suchasasingle‐dosepolicy,orsomeformofcampaignstrategy.Itisalsolikelythatanumberofnationalauthorities,eitherthroughdecisionordefault,willcease

routinemeaslesimmunization.Forthepurposesofthisanalysisithasbeenassumedthatuniversalimmunizationagainstmeasleswillnotbecontinuedposteradication,andthatanincreasingglobal

populationwillbesusceptibletomeaslesinfectionintheyearsfollowingcertification.

Page 6: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page6

Theanalysisconcludeswithabriefdiscussionofactionsrequiredtoreducetheriskofaccidentalordeliberatereleaseofmeaslesinapost‐eradicationworldandareasthatcouldbenefitfromfurther

research.

Riskofcontinuing,undetectedwild‐typemeaslestransmissioninhumansThereare,asyet,nodefinitivecriteriaforcertificationofglobalmeasleseradicationoragreedrequirementsforvalidationofthesecriteria.Withoutthesecriteria,andthedetailedrequirements

fordemonstratingtheyhavebeenmet,itisnotpossibletoaccuratelyestimatetheriskpresentedbyundetectedcontinuingtransmission.However,basedoncurrentRegionalandGlobalrecommendationsoncertificationofRegionalmeasleselimination,itislikelythateradicationcriteria

willinclude:

1. Absenceofcirculatingmeaslesvirusforatleastoneyear;2. Adequatesurveillanceincludinggenotypedata.Adequatesurveillancemaybedefinedby:

• Numberofreportedsuspectedmeaslescasesthatarediscardedasnon‐measles

(targets:≥2/100,000populationnationally,≥1/100,000inatleast80%ofdistricts)• Percentageofreportedsuspectedcasesthathaveadequateinvestigationwithin48

hoursofreport(target:≥80%ofreportedsuspectedcases)

• Percentageofreportedsuspectedcasesthathaveadequatespecimenscollected(target:≥80%ofreportedsuspectedcases)

• PercentageofdistrictswithaccesstoaWHO‐accreditedmeaslesdiagnostic

laboratory(target:100%)• PercentageofspecimenswithIgMresultswithin7daysofreceiptinlaboratory

(target:≥90%)

• PercentageofchainsoftransmissionwithRNAsequenceanalysis(target:≥95%)• Someuseofmeaslesavidityassaystodistinguishrecentfromlong‐standing

immunologicalresponses

• Somedemonstrationofalternativesurveillancemechanisms,routineorsupplementary,basedoncasedetection,investigationandreporting;

3. Achievementofhighpopulationimmunity.Populationimmunitymaybedemonstratedby:• ≥95%coveragewithroutineMCV2inalldistricts,or• ≥80%coveragewithroutineMCV1plus≥95%coveragewithSIAfollow‐upinall

districts,or• Someuseofextensiveserosurveydata.

FromexperiencegainedthroughRegionalpolioeliminationandcertification,specificcriteriamaybeusedtofulfilthethreegeneralcriteriaabove,butitisunlikelythatanysinglespecificindicatorwillberequiredtopassorfailvalidation.Thestrictnessandextentofrequirementsforproviding

evidencethatcertificationcriteriahavebeenmetwilllargelydeterminethemagnitudeofriskposedbyundetectedcontinuingmeaslestransmission.Butevenwithrelativelylaxcriteriaandvalidation

requirements,howlikelyisitthatongoingmeaslestransmissionwillbeundetectedforaminimumofoneyearbeforecertification?

Page 7: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page7

Whatisthesmallestpopulationrequiredtomaintainmeaslestransmission?Measlesepidemicshavegenerallybeencharacterisedbyexplosivecycleswithhighlycomplex

pathogen‐andpopulation‐levelinteractionsthatinfluencetransmissiondynamics(1).Accuratelypredictingthecriticalcommunitysize(CCS)requiredformaintainingmeaslesviruscirculationisdifficultduetothelargenumberofvariablesinvolved.Directobservationandarangeofboth

deterministicandstochasticmodelssuggestthatapopulationof250,000to400,000with5,000to10,000birthsperyearisrequiredtomaintaintransmission(2,3).Highlevelsofimmunization,lowpopulationdensity,alowbirth‐rateandgoodpublichealthcarefacilitiesincreasetheCCS.Low

vaccineuptake,highpopulationdensity,highbirth‐rates,highlevelsofimmunodeficiencyandpoorpublichealthcarefacilitiesdecreasetheCCS(1,4,5).

AlthoughitmaybedifficulttoaccuratelyestimatetheCCSinlow‐income,lowvaccinecoverage

populations,itiseasytoidentifythesepopulations.Ifdiseasesurveillanceandimmunizationactivitiesaretargetedonthem,andonanynew,at‐riskpopulationsthatmayemergefollowingdisplacementcausedbyconflictorclimatechange(6),thepotentialtooverlookcirculationofvirus

intheyearleadinguptoglobalcertificationwillbegreatlyreduced.

Whatroledoasymptomaticinfectionsplayinvirustransmission?Measlescontrolstrategiesassumethatvirustransmissionoccursthroughchainsofclinicallyrecognizablemeaslescases,andthesurveillancesystemlargelyreliesontheidentificationofthese

casesfordetectingandrespondingtooutbreaks.Butasymptomaticinfectionscertainlyoccurandmayplayanimportantroleinmeaslestransmission.Serologicalevidenceforacutemeaslesinfectionamongpeopleexposedtomeaslesvirusbutfailingtodevelopclassicalsymptomshasbeenwell

documented(7,8,9,10,11,12,13,14,15)andithaslongbeenrecognizedthatmeaslesviruscaninfectpreviouslyimmunepersons,producingclassicsymptomsofmeaslesinsome,butmildornosymptomsinmost(16,17,18,19,20).Theestimatedratesofmildorasymptomaticmeaslesinfections

afterexposuretomeaslescasesarevaried,however,inpartbecauseofdifferentdiagnostictechniquesanddifferentcasedefinitionsused,orbecauseofthedifferenttypesofexposure.Inseveralstudiestheratesofmildorasymptomaticinfectionweredeterminedduringoutbreaksin

whichpersonswerelikelytohavehadmultipleexposurestomeaslescases(16,21,12,8).Astudyofmildorasymptomaticmeaslesinfectionsamong44personslikelytohavebeenexposedtoclassicmeaslesduringa3‐daybustripconcludedthatinpopulationswithhighlevelsofimmunityto

measles,non‐classicmeaslesinfectionscanoccurinatleast20%ofpreviouslyimmunepersonswithcloseexposuretoapersonwithclassicmeasles(10).Itispossiblethatmildorasymptomaticmeaslesinfectionsarecommonamongmeasles‐immunepersonsexposedtomeaslescasesandmay

bethemostcommonmanifestationofmeaslesduringoutbreaksinhighlyimmunepopulations(10).Althoughclinicallyunimportant,asymptomaticmeaslesvirusinfectionscouldbeepidemiologicallyimportantifinfectedpersonsarecapableoftransmittingvirus.Althoughatleastonestudyhas

reportedisolationofmeaslesvirusfromanasymptomaticindividualinclosecontactwithanacutecase(11),anotherstudyfailedtofindevidenceofvirussheddingfrom11seropositiveacutecasecontacts(14).Iftransmissionfromasymptomaticcasesdoesoccur,itislikelytobeveryrare,andis

unlikelytobeefficientenoughtosustaintransmission(11,15),especiallyinthehighlyvaccinatedpopulationsexpectedintheyearsimmediatelyfollowingglobalcertificationoferadication.

Page 8: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page8

ConclusionIfthecertificationcriteriaarefirmenough,andrequirerigorousvalidation,thentheriskof

undetectedmeaslestransmissionafterGlobalCertificationisverylow.Ifthecertificationcriteriaarelax,orvalidationrequirementsareinadequate,theriskwillhigher.

Riskassessment:Theriskisintuitivelylow,butuntilthecriteriaforglobalcertificationof

measleseradicationandtherequirementsforvalidationareestablisheditisnotpossibletoestimatetheriskposedbycontinuingwild‐typemeaslestransmissioninundetectedreservoirs.

Riskoftransmissionofvaccine‐derivedvirusThedevelopmentofliveattenuatedmeaslesvirusvaccinesbegansoonafterisolationofthevirusbyEndersandPeeblesin1954(22).ThefirstlicensedattenuatedmeaslesvaccinewasEdmonstonB,usedbetween1963and1975butfrequentlyassociatedwithfeverandrash(23).Thefurther

attenuatedSchwarzandMoratenstrainswerederivedfromtheoriginalEdmonstonstrainthroughadditionalpassagesinchickembryofibroblasts(Figure1).Despitedifferencesintheirpassagehistory,thesetwovaccinestrainshaveidenticalgenomicsequences(24).TheMoratenvaccineis

widelyusedintheUnitedStatesofAmerica;theSchwarzvaccineisusedinmanycountriesthroughouttheworld,andtheEdmonston‐Zagrebvaccine,similarlyderivedfromtheEdmonstonBstrain,isthemostwidelyusedstrainindevelopingcountries.Otherattenuatedmeaslesvaccines

havebeenproducedfromlocallyderivedwild‐typestrains,particularlyintheRussianFederation(Leningrad‐16),thePeople’sRepublicofChina(Shanghai‐191)andJapan(CAM‐70,AIK‐C)(23).Allofthecurrentvaccinevirusesarewelldocumentedandwellcharacterisedwithregardtoprovenance,

immunogenicity,thermalstabilityandgenomicstructure(25,26,27,28,29,30,31,32,33).Althoughcurrentvaccinevirusesandtheirwild‐typeprogenitorssharemorethan95%sequencehomology,theycaneasilybedistinguishedgeneticallyfromcurrentlycirculatingwild‐typeviruses.

Page 9: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page9

Figure1.Relationshipsofmajorcurrentmeaslesvaccineviruses(fromMoss&Scott,2009(23)).

Measlesvirusisconsideredtobeoneofthemostcontagiousofhumanpathogens,withaveryhighleveloftransmissibility.Likewild‐typevirus,measlesvaccinevirusreplicateseffectivelywithinvaccinerecipients,inducingbothhumoralandcellularimmuneresponsessimilartonaturalmeasles

virusinfection,althoughtheseresponsesareoflowermagnitudeandshorterduration.Approximately5%ofchildrendevelopfeverandrashafterreceivingmeaslesvaccine,andviralRNAcanbedetectedintheurineandrespiratorysecretionsforsomedayspost‐immunization(34).

Vaccineviruscanbeisolatedfromthebloodofrecentvaccinerecipients,andhasbeendetectedinsamplesoflung,liver,bonemarroworbraintissuesintheveryrarecasesofsevereacutediseasefollowingmeaslesvaccination(35).VirusRNAandantigencanbedetectedintheurineofvaccine

recipientsforupto14‐16dayspost‐immunization(36,37),butthereisnopublishedevidenceforthetransmissionofvaccinevirus.Obviouslythechangescausedbytheattenuationprocesseffectivelyblocktransmissibility.Isitpossibleforvaccinevirustoregainthetransmissibilitycharacteristicsof

wild‐typevirus?

Thereasonsfornon‐transmissionofvaccinevirusesarenotfullyunderstood,andarelikelytobecomplex.Ithasbeenproposedthatlossofabilitytointeractwithepithelialcellreceptorsisakeyfactor(38,39,40).Itisalsopossiblethatmodificationofthevirusmatrix(M)protein,knowntobe

importantinvirusbuddingfrominfectedcells(41),contributestolossoftransmissibility.Theabilityofvaccinevirusestointerferewiththeinnateimmuneresponsemayalsobeakeyfactor.Whateverthereason,itappearsthattheblockontransmissionofvaccinevirusesishighlyeffective.

Measlesvirusisserologicallymonotypicandisgeneticallycharacterizedintoeightclades(A–H),

dividedinto23recognizedgenotypes(42,43,44).Allofthecurrentvaccines,whetherderivedfromEdmonstonornot,sharearemarkablenucleotidesequencesimilarityandallaremembersofgenotypeA(45,24).Duringthe1950sand1960s,onlymeaslesvirusesbelongingtogenotypeAwere

Page 10: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page10

isolatedandmayhavehadaworld‐widedistributionbeforevaccinationstarted(46,47,48).Thisisnotthesituationtoday,whentheidentificationofnon‐vaccinerelatedgenotypeAvirusesisvery

unusual.Overthepastfifteenyearsamassiveamountofworkhasbeenputintocharacterizingmeaslesvirusesassociatedwithoutbreaks.Althoughtherearestillgaps,virusesfrommostmajoroutbreaksandfromimportationsinareasthathaveeliminatedindigenousmeasles,arecurrently

beingsequencedandgeneticallycharacterizedthroughtheWHOLaboratoryNetwork’sactivities.Wenowhaveareasonablycomprehensiveunderstandingofwhichvirusesarecirculatingwhere(42,43,44,49,50,51,52,53).

Againstabackgroundofseveralthousandisolatescharacterized,veryfewgenotypeAviruseshave

beenidentifiedduringthepast20years.WiththepossibleexceptionofvirusesisolatedintheUKin1993(54),nonehasbeenassociatedwithoutbreaks.Whendetectedtheyhavebeensporadiccaseswithuncertainepidemiology,closelyassociatedwithveryrecentreceiptofvaccine,orqueriedas

laboratorycontaminants(43,55,56,57,58,59,60,61,62).

Table1summarizesthepublisheddocumentationonthedetectionofgenotypeAmeaslesvirusessince1990.

Yearofdetection Country State/Province/Region Numberofisolates Reference

1990 Japan Handai? 1 (62)1991 Argentina BuenosAires 1 (63)

1993 UK Coventry,England 5 (54)

1995 SouthAfrica Johannesburg 1 (64)

1996 RussianFederation Novosibirsk,Siberia 3 (56)

1996 USA Delaware 1 (60)

1996 China Hunan 1 (55)

1996 UK ? 2 (58)

1996 SouthAfrica Johannesburg 1 (57)

1998 UK ImportationfromRussia 1 (58)

1999 Argentina BuenosAires 2 (63)

1999 China Henan 1 (55)

2000 UK ? 1 (58)

2001 Spain Ibiza 1 (59)

2002 Spain Madrid/Badajos 2 (59)

2003 Spain Almeria 3 (59)

2003 China Xinjiang 1 (55)

2005 Taiwan Taichung/Taipei 2 (61)

2007 Taiwan Tainan/Taipei 2 (61)

Table1.PublisheddocumentationonisolationandcharacterizationofgenotypeAmeaslesvirusesfrom1990

toMay2010.

Table1includesisolatesthatmayrepresentwild‐typelineagesthathavesurvivedsincethepre‐vaccinationera.Italsoincludesvirusesisolatedfromveryrecentvaccinerecipientspresentingwith

classicmeaslessymptoms.Butitmayalsoincludevaccine‐derivedisolatesthathavebeentransmittedfromvaccinerecipientstounvaccinatedcontacts.AlthoughsomeofthesegenotypeAviruseshavenucleotidesubstitutionsthatdistinguishthemfromvaccineviruses,thereisno

publisheddocumentationidentifyingadistinctsetofgeneticmarkersthatconsistentlydifferentiateswild‐typevirusesfromattenuatedviruses(46).Measlesvaccinevirusesre‐isolatedfrom

Page 11: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page11

immunosuppressedpatientswithgiantcellpneumoniahavenucleotidesequencesalmostidenticaltothoseofthevaccinevirus,suggestingthatvaccinevirusesareverystableevenafterprolonged

replicationinahumanhost(46).

Numerouspublishedstudiesofseveralthousandsofisolatesfromacutemeaslescasesinvestigatedoverthepast20yearshavefailedtodetectgenotypeAviruses(52,53,65,66,67,68,51,50,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83).Becauseoftheincreasingintensityofmeasles

immunizationprogrammes,genotypeAviruses,intheformofvaccineviruses,shouldbethemostabundantmeaslesgenotypeonEarth.Giventhattheyaresoinfrequentlyisolatedfrommeaslescases,themolecularepidemiologicaldataappearstosupportthecontentionthatvaccinevirusesdo

notreadilyreverttowild‐typetransmissibility.

Whatistheriskofmeaslesvaccine‐escapemutants?Thereisnoconclusivepublishedevidencefortheemergenceofmeaslesvaccineescapemutants(84).MeaslesisatypicalRNAvirusinthatintrinsicerrorsoftheRNApolymeraseandlackof

proofreadingmechanismsresultsinamutationrateof9x10‐5perbaseperreplicationandagenomicmutationrateof1.4perreplication(85).Thisiswellwithinthetypicalrangeof10‐3to10‐6mutationspersiteperreplication(86).Asaconsequenceofthishighmutationrate,RNAviruspopulations,

eventhoseinitiatedbyasingleinfectiousunit,arenotclonalbutconsistofalargenumberofgeneticmicrovariantsreferredtoasquasispecies.Despitethehighmutationrate,andunlikeotherRNAvirusessuchasinfluenzaandHIV,measlesvirusremainsremarkablystable.Howcanlive

attenuatedvaccinesdevelopedfromwildtypemeaslesvirusesmorethanhalfacenturyagostillbeeffectiveagainstcirculatingviruses?

Theanswerisprobablyassociatedwithuseofthesignallinglymphocyticactivationmolecule(SLAM;alsoknownasCD150)receptorbythemeasleshaemagglutinin(H)protein,whichisresponsiblefor

cellattachmentandisamajortargetforneutralizingantibodies(87).Theenvelopeofmeaslesvirushastwotypesofglycoproteinspikes,designatedhaemagglutinin(H)andfusion(F)proteins.TheHproteinbindstospecificmolecules(receptors)ontargetcells,whiletheFproteinmediates

membranefusionbetweenthevirusenvelopeandthehostcellplasmamembranethroughcooperationwiththeHprotein.In2000,SLAMwasidentifiedasacellreceptorformeaslesvirus(88).SLAMisexpressedoncellsoftheimmunesystem,suchasactivatedlymphocytesanddendritic

cells(89).StudiesonthecrystallinestructureoftheHproteinhaveshownthatalthoughmostofthisglycoproteiniscoveredbysugarchains,thelargesurfaceareathathoststheSLAMbindingsiteisfreefromsugarchains(90).Mutationsinthisregionarenotpermittedbecausetheyinterferewith

receptorbinding.Thisextremesequencerestrictionallowsforveryefficientproductionofneutralizingantibodiesthatblockbindingofthevirustoitsreceptor.Sotheoriginalvaccinestrains,developedinthe1960s,arestilleffectiveagainstcurrentwild‐typeviruses(91).Analysisofavailable

sequencedatafromapproximately500isolatessuggeststhatdespitetheerror‐proneviralpolymerase,theaminoacidsequenceofHisstronglyconserved,with60%oftheresiduesbeingidenticalorverysimilar(92).Itappearsthatanymutationthatchangesthenatureofthese

conservedresiduesresultsinnon‐viablevirus.

ConclusionThereisnocurrentpublisheddatatosupportevidenceforcurrentlylicensedliveattenuatedvaccine

virusesrevertingtowild‐typetransmissibility.Onthecontrary,thevastmajorityofevidencepoints

Page 12: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page12

toanimpressivelevelofgeneticstability.However,sincetheyarelivevirusesthatreplicatewithinvaccinerecipients,thepossibilitymustexistthattheycouldreverttowild‐typetransmissibility.

ThereisstrongexperimentalevidenceforthemonotypicnatureandgeneticstabilityofmeaslesvirusbeingbasedonuseoftheSLAMreceptor.Thereisalsonoevidencefortheestablishmentofvaccine‐escapemutants.Evenifvaccinevirusesweretoreverttowild‐typetransmissibility,thereis

noreasontosuspectthattransmissioncouldnotbecontrolledusingcurrentvaccines.

Riskassessment:Availableinformationsuggeststhattheriskofcurrentlive‐attenuatedvaccinevirusesrevertingtowild‐typetransmissibilityisverylow,butitremainsapossibility.

Riskfrompersistentinfections

Howlongdoesmeaslesinfectionusuallypersist?Inclassicmeaslescasesthereisa10–14dayincubationperiodbetweeninfectionandtheonsetofclinicalsignsandsymptoms,andinfectedpersonsareusuallycontagiousfrom2–3daysbeforeand

uptofourdaysafteronsetoftherash.Hostimmuneresponsestomeaslesvirusareessentialforviralclearance,clinicalrecoveryandtheestablishmentoflong‐termimmunity.Earlyinnateimmune

responsesoccurduringtheprodromalphaseandincludeactivationofnaturalkiller(NK)cellsandincreasedproductionofinterferons(IFN)‐αandβ(23,93,94).However,themechanismsandtimingofnormalmeaslesvirusclearancearepoorlyunderstood.Measlesvirushasbeenisolatedfrom

peripheralbloodmononuclearcells(PBMC)uptoaweek,andfromurineupto10days,afterappearanceoftherash(95,96).Delayedvirusclearancehasbeendocumentedincasesofmalnutrition(97,98,99)andpatientswithcellularimmunitydeficiencies(100,101,102).Detectionof

measlesvirusRNAhasbeenreportedforupto4monthsinacaseofcongenitalmeasles(103),for1to4monthsafteruncomplicatedinfectionin90%ofHIV‐1‐infectedchildrenandmorethan50%ofHIVnon‐infectedchildren(104,105,106,107).Thesedataareconsistentwithstudiesofrhesus

macaquesshowingthatvirusclearanceoccursover120–150days(108),suggestingthatnormalclearanceisaprolongedprocess.DespitethereportedpersistenceofviralRNA,therehavebeennoreportsofinfectiousvirussheddingmorethan3to4weeksafterappearanceofsymptoms(98,99).

Persistentinfectionwithmeaslesvirushasdefinitivelybeenassociatedwithsubacutesclerosing

panencephalitis(SSPE),aprogressivefatalneurologicaldiseasewithhighlevelsofneuronalinfectionbymeaslesvirusinthecentralnervoussystem(94).Inimmunocompromisedpatients,persistentmeaslesvirushasbeenlinkedtoanotherneurologicalinfection,measlesinclusionbodyencephalitis

(MIBE)(109).Multiplesclerosis,chronicallyactiveautoimmunehepatitis,Paget’sdisease,otosclerosis,Crohn’sdiseaseandautism,amongmanyotherdiseases,havealsobeensuggestedatvarioustimesaslong‐termsequelaeofmeaslesvirusinfection.Noconfirmedevidencehasbeen

presented,however,tosubstantiatetheseassociations,letaloneproveacausativerelationship.

WhatistheriskfromSSPEcases?SSPEisaslow,progressivediseasethatisinvariablyfatal.TheaverageperiodfrominitialmeaslesinfectiontoSSPEsymptomonset(latency)usuallyrangesbetween4and10years,buthasbeen

reportedfrom2monthsto23years(110).Childrenarefarmorelikelytodevelopthiscomplicationthanadults.ReportedSSPEincidencevariesfromapproximately0.2to40casespermillionpopulationperyear.Directcomparisonofdatafromdifferentcountriesisproblematicbecause

Page 13: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page13

methodsandqualityofdiagnosishavebeeninconsistent.AnalysesofdatafromtheUKandUSAhavecalculatedthetrueincidenceofSSPEtobeapproximately4–11casesofSSPEper100000cases

ofmeasles.Ahigherriskisassociatedwithearlierinfection:theriskfollowingmeaslesinfectionunder1yearofageis18/100000comparedwith1.1/100000after5yearsofageintheUK(110).Obviously,asthenumberofmeaslesinfectionsdeclines,sowillthenumberofpotentialSSPEcases.

Thediseaseinitiallymanifestsassubtlecognitivelosses,progressingtomoreovertcognitivedysfunction,followedbymotorloss,seizuresandeventualorganfailureinvirtuallyallaffected

individuals.Neuronsinboththegrayandwhitematterareinfected,andthediseaseishistologicallycharacterizedbythepresenceofcellularinclusionbodies(111).AserologichallmarkofSSPE,ascomparedtotheothercentralnervoussystemcomplications,istheelevationofmeaslesspecific

antibodiesinthebloodandcerebrospinalfluid(94).Mostimportantly,evidencefrombrainbiopsiesofSSPEpatientsindicatesthatinfectedneuronsdonotreleasebuddingvirus(112).Basedonsequencingstudiesofvirusfromthesespecimensandfromcellspersistentlyinfectedwithmeasles

virusisolatesfromSSPEpatients,ithasbeenproposedthatthefailureofinfectedneuronstoproducecompleteextracellularvirusmaybeduetodefectsinproteinexpressioncausedbyextensivepointmutationsintheH,fusion(F)andmatrix(M)genes(113,94,114,115,116).Thereis

noevidencefortransmissionofmeaslesvirusfromSSPEcases.

WhatistheriskfromMIBEcases?Measlesinclusionbodyencephalitis(MIBE)isararecentralnervoussystemcomplicationfollowingacuteMVinfection,hasbeendescribedinchildrenandadultsreceivingimmunosuppressivedrugs

andthereforeisthoughttochieflyaffectimmunocompromisedhosts.MIBEhasalsobeenreportedtoresultfromreceiptofmeaslesvaccine(117).Theneurologicdiseaseusuallyappears3to6monthsaftertheacutemeaslesrash(111),withamediantimeof4months(118).Measlesantigenis

presentinthebrain,andvirushasbeenisolateddirectlyfromthebrainsofaffectedindividuals(111,119).MIBEdiffersfromSSPEintheabsenceofelevatedserumandcerebrospinalfluidneutralizingantibodies(94).Thediseasecourseisrelativelyshort,lastingfromdaystoweeks,

causingseizures,motordeficits,andstupor,oftenleadingtocomaanddeath.Althoughonlyaverysmallpercentageofacutemeaslesinfectionswillgoontodeveloppersistent

complications,afewstudieshavedetectedmeaslesvirusRNAinvariousorgans,onautopsy,ofelderlyindividualswhodiedofnon‐viralcauses(120,121).Thesefindingssuggestthatmeaslesviruspersistsinthebrains(andotherorgans)ofhealthyindividuals,andmaymanifestitselfincentral

nervoussystemdiseaseunderconditionsofimmunocompromiseorimmunosuppression.Thishasbeenunderlinedbythecaseofa13year‐oldboythatdevelopedMIBEafterreceivingastemcelltransplant(119).Neitherthepatientnorthestemcelldonorhadapparentrecentmeaslesexposure

orvaccination,andneitherhadrecenttraveltomeasles‐endemicregions.ThepatientwasborninChicagoduringthemeaslesepidemicof1989‐1991(birthyear1989).Anundiagnosedcaseofmeaslesintheperiod1989‐1991wouldsuggestalatencyperiodtoMIBEof12years,whichisnot

typical.CasesofMIBEwithoutclearmeaslesexposureorinfectionhavebeenreported.InareviewofMIBE,18%ofpatientshadnodocumentedmeaslesexposureorinfection(118);however,many

ofthesecasesoccurredinyearswhenmeasleswasmoreprevalent.TherearenopublishedreportsofinfectiousmeaslesvirussheddingfromMIBEcases.

Page 14: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page14

DoesHIVco‐infectionpresentariskforpersistentmeaslesinfectionandtransmission?Asdiscussedabove,measlesvirusRNAcouldbedetectedinsamplesfrom90%ofHIV‐infected

childrenonemonthafterrecoveryfromacutemeasles(104),butinthisstudynoattemptwasmadetoculturevirusfromanysamples.InregionsofhighHIV‐1prevalence,co‐infectionwithHIV‐1morethandoublestheoddsofdeathinhospitalizedchildrenwithmeasles(122)andmayslowtherateof

virusclearanceslightly,butthereisnoevidencethatHIV‐infectionleadstoanincreasedriskforpersistentmeaslesvirusinfection.NordoesHIVinfectionappeartopresentariskforpersistentinfectionwiththemeaslesvaccinevirus.Asearchforpersistentmeaslesmumpsandrubellavaccine

virusesinchildrenwithHIV‐1infectionfailedtodetectvirusinperipheralbloodmononuclearcells,polymorphonuclearleukocytes,orplasma(123).

ConclusionThereisnopublishedevidencethatcasesofpersistentmeaslesinfectionareassociatedwiththe

sheddingofinfectiousvirusorplayanypartinmeaslestransmission.Asthenumberofacutemeaslesviruscasesdeclinesintheyearsleadingtoglobaleradication,wecanexpectadeclineinthenumberofpotentialSSPEandMIBEcases.

AcutemeaslesinfectioninHIV‐infectedindividualstendstobemoresevere,lastlongerandresultinashorterlivedimmunitytore‐infection,butthereisnopublishedevidencetosuggestthatco‐

infectionincreasesthepotentialforestablishmentofpersistentmeaslesinfections,eitherwithwild‐typevirusorwithvaccine‐derivedvirus.

Riskassessment:Availableinformationsuggeststhattherelativelysmallnumberofpersistentmeaslesviruscases,includingthosethatmayresultfromco‐infectionwithHIV,poseaverylowriskforreintroductionofmeasles.

Riskfromnon‐humanprimatesAlargeproportionofourcurrentknowledgeofmeaslesandmeaslesinfectionmechanismshave

comefromexperimentalinfectionofnon‐humanprimates.In1911,GoldbergerandAndersondemonstratedthatmacaquesinoculatedwithfilteredsecretionsfrommeaslespatientsdevelopedmeasles,provingthecausativeagentwasavirus(124).Awiderangeofnon‐humanprimatespecies

aresusceptibletoexperimentalinfectionwithmeaslesvirus.TheseincludeMacacamulatta,M.fascicularis,M.radiata,M.cyclopis,Papiocristatus,Cercopithecusaethiops,Saimirisciureus,Colobusquereza,Pantroglodytes,Callithrixjacchus,Saguinusoedipus,S.fuscicollis,andAotustrivirgatus

andAtelesspecies(125,126,127).Aswouldbeexpectedfromaneffectiveanimalmodel,manyspeciesrespondtoinfectioninamannerverysimilartohumans(128,129,130).Inadvertent

transmissionofeithermeasles(fromhumans)orthecloselyrelatedcaninedistempervirus(fromdogs)tocaptivenon‐humanprimateshascausednumerousoutbreakswithsignificantmorbidityandmortality(131,127,132,133,134).Non‐humanprimatesinthewildappeartobefreefrommeasles,

onlycontractinginfectionwhentheycomeintocontactwithinfectedhumans(125).Human‐to‐primatediseasetransmissioncanpotentiallycausesignificantmorbidityandmortalityamongwildprimatepopulations.Serologicalevidenceofmeaslesinfectioninfree‐rangingpopulationsofnon‐

humanprimateshasbeenwelldocumented(135,136,137).Evidenceexistsofmeaslesinfectioninnon‐humanprimatepopulationswithfrequentcontactwithhumanpopulations,aswellasinwild

Page 15: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page15

populationswithminimalhumancontact(127).Across‐sectionalstudyofwildmacaques(Macacatonkeana)inSulawesi,Indonesia,foundserologicalevidenceofmeaslesevidencein5of15animals

surveyed(136).Becausehumanpopulationsrepresentthelargestreservoirofthemeaslesvirus,itismostlikelythat

measlesepizooticsinnon‐humanprimatepopulationsareinitiatedbyhumantonon‐humanprimatetransmissionandsubsequentlyspreadbyanimaltoanimaltransmission.Duetotheirrelativelysmallnumbers,itisunlikelythatnaturalpopulationsofnon‐humanprimatesaresignificantorsustainable

reservoirsofmeaslesvirus(127).

ConclusionAlthoughnon‐humanprimatescanbeexperimentallyandnaturallyinfectedwithmeaslesvirus,andanimaltoanimaltransmissionoccurs,populationsizesaretoosmalltomaintainepizootic

transmission.

Riskassessment:Availableinformationsuggeststhatinfectionsinnon‐humanprimatespose

averylowriskforreintroductionofmeasles.

Riskoflaboratory‐associatedmeaslesinfectionRisksposedbylaboratory‐maintainedmeaslesviruses,throughaccidentalorintentionalrelease,arelargelydependentonwhetheruniversalimmunizationagainstmeaslesiscontinuedorifitisstopped

on,orsoonafter,globalcertification.Ifthedecisionismadetocontinueuniversalimmunization,possiblywithnon‐replicatingvaccines,theriskposedbylaboratory‐maintainedviruswillbeverylow,sincetherewillbealmostuniversalimmunity.If,however,universalimmunizationstopsafter

globalcertification,therisksposedbylaboratory‐maintainedmeasles‐infectiousmaterialswillprogressivelyincrease,asthenumberofmeasles‐susceptiblesinthepopulationincreases.Therisksincludenotonlyaccidentalreleaseoflivemeaslesvirusfromlaboratoriesandattenuatedvirus

vaccineproductionfacilities,butthreatofdeliberaterelease.

Whatistheevidenceforlaboratory‐acquiredmeaslesinfection?Aseriesofsurveysforlaboratory‐acquiredinfectionsconductedintheUK(138,139,140,141,142,143,144),theUSA(145,146,147,148,149)andJapan(150)failedtoinclude

measlesamongthelistedinfections.Arecentreviewofprinciplesforpreventionoflaboratory‐associatedinfectionsalsofailedtomakementionofmeasles(151).Anextensiveliteraturesearchfailedtofinddocumentedevidenceoflaboratory‐acquiredmeaslesinfection.Thisleavesthree

possibilities:laboratory‐acquiredmeaslesinfectionshavenotoccurred;theinfectionsthathaveoccurredhavebeenbelowthethresholdofsensitivityofthesurveillancesystems;or,measleshasbeenconsideredatrivialdiseaseandinfectionshavenotbeenreported(152,153).

Priortothe1970sitistobeexpectedthatalmostallstaffworkinginclinicalmicrobiologyandresearchlaboratorieswouldhavebeenexposedtomeaslesinfectionduringchildhood.Fromthe

1970sonwardsitistobeexpectedthatallnewstaffcomingtoworkintheselaboratorieswouldhavereceivedatleastonedoseofmeaslesvaccine.Itisunlikelytherefore,thatexposedlaboratorystaffwoulddevelopacutemeaslessymptomsfromlaboratory‐acquiredinfections.Butgiventhe

veryhightransmissibilityofmeaslesvirus,itispossiblethatexposuretoinfectiousvirus,and

Page 16: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page16

resultingasymptomaticinfections,orverymild,atypicalinfectionshaveoccurred.Iftheyhaveoccurred,itisprobablethattheseinfectionshavegoneundetected,orsimplyoverlookedas

unimportant.

Howstableismeaslesvirusintheenvironmentandinlaboratorymaterials?Measlesisnotaphysicallyrobustvirus.Itisviableforlessthan2hoursatambienttemperaturesonsurfacesandobjects,whiletheaerosolizedvirustypicallyremainsinfectiveforonly30minutesto2

hours,dependingonenvironmentalconditions(154,155).Itisverysensitivetoheatandisinactivatedafterlessthan40minutesat56°C,eveninmediumcontainingaproteinstabilizersuchas5%calfserum(156).Virusinmaintenancemediumlosesatleast2logsoftitrewhenstoredat+6oC

for14‐20weeksandlosesallinfectivityafter1yearatthistemperature.Additionofaproteinstabilizerimprovesviruslongevity,withalossofapproximately2logsoftitreafter1yearat+6oC.Interestingly,storageat‐30oCofferslittleadvantageoverstorageat+6oC,witha1‐2loglossoftitre

over1year.Storageat‐72oCorbelowresultsinverylittlelossofvirusinfectivity,andinfectiousmaterialsmaintainedatthistemperatureshouldretaininfectivityformanyyears(156).Thevirussurvivesfreeze‐dryingrelativelywelland,whenfreeze‐driedwithaproteinstabilizer,cansurvive

storagefordecadesat‐70oC(156,155).Incommonwithmanyotherenvelopedvirusesitisinactivatedbysolvents,suchasetherandchloroform,byacids(pH<5),alkalis(pH>10),andbyUVandvisiblelight.Itisalsosusceptibletomanydisinfectants,including1%sodiumhypochlorite,70%

alcoholandformalin.

Whichlaboratorymaterialspresentarisk?Measlesvirusinfectiousmaterialsincludeautopsyorclinicalsamples(e.g.pharyngealsecretions,urine,blood)frommeasles‐infectedpersonsorrecentlive‐attenuatedvaccinerecipients,and

laboratoryderivedmaterials(e.g.virusisolatesandreferencestocks,materialsderivedfrominoculatedcellcultures,laboratoryanimals).Measlesviruspotentialinfectiousmaterials,thosethataresuspectedtocontaininfectiousmeaslesviruses,includepharyngealsecretionsandblood

samplescollectedforanypurposeatatimeandinaplacewheremeaslesviruseswerecirculating,andstoredunderconditionsthatwouldpreservevirusinfectivity.Theyalsoincludeproductsofthesematerialsinmeaslesviruspermissivecellsoranimals(157).

Whattypesofriskdolaboratoriespresent?Riskspostmeasleseradicationwillexistattwolevels:

• occupationalriskofexposureamonglaboratorystaff,• communityriskoflaboratory‐associatedmeaslesexposure.

Thethreemostcommonroutesofexposuretoinfectiousagentsinthelaboratoryareingestion,inhalation,andinjection(153).Measlesviruscanremaininfectiousonsurfaces,suchasworkbenchesanddoorhandles,foruptotwohours.Iftransferredfromthehandtothemouth,noseor

conjunctiva,theycaninitiateinfectionofepithelialcells(158).Althoughtherearenorecordedincidentsoflaboratory‐acquiredmeaslesvirusinfections,severalsurveysdocumentthefrequent

occurrenceofingestingmorereadilyrecognizedpathogens,suchasShigellaandSalmonella(139,140,141,142,143,147,153).Themostcommonroutefornaturaltransmissionofmeaslesisbelievedtobebyinhalationofaerosolizedvirus;infectiousdropletsbeingproducedbytalking,

coughingandsneezingbyinfectedindividuals(158).Smallparticles(<5‐μdropletnuclei)ofsuspendedevaporatedresiduescanmoveaboutroomsandbuildingsonaircurrentsandwhen

Page 17: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page17

inhaleddepositprimarilyinthelowerrespiratorytract(159).Laboratoryactivitiesthatexposestafftoaerosolsgeneratedfrominfectiousmaterial(e.g.centrifugation,blending,vigorouspipetting,

etc.),andexposuretoinfectedlaboratoryanimals,presentariskforinfection.Themostcommonroutefordeliveryofcurrentmeaslesvaccinesisbyinjection.So,injectionandneedle‐stickinjuriesinvolvingmeaslesvirusinfectiousmaterialsobviouslypresentariskforinfection.

Communitymembersmaybeexposedtoinfectiousmeaslesvirusfrom:

• contaminatedlaboratoryworkers,

• infectedlaboratoryworkers,• contaminatedaireffluents,• transportofinfectiousmaterial,

• escapedinfectiousanimals.Again,nopublishedevidenceexistsfortheescapeofinfectiousmeaslesvirusfromthelaboratory

intothecommunity.Giventherapidinactivationofmeaslesvirusundernormalenvironmentalconditions,thelengthoftimeavailableforinfectiousvirustobecarriedoutofthelaboratoryandintothecommunity,eitheronthebodyorclothesofacontaminatedworker,orincontaminatedair

effluents,isprobablylimitedto2hours.Thisreducestherisktoaverylowlevel.Asdiscussedabove,availableevidencesuggeststhatimmunizedindividuals,whodevelopasymptomaticormildinfections,areunlikelytotransmitthevirus(10),reducingthecommunityrisk.Wecanassumethat

laboratoriesimplementinggoodlaboratorypractices(GLP)orgoodmanagementpractices(GMP)willminimizetherisksofreleasetotheenvironmentbyproperlypackagingandtransporting

infectiousmaterialsinaccordancewithcurrentinternationallawsandregulations.Giventhesecurityconcernsthatsurroundlaboratoryanimalhousesandresearchfacilities,thelikelihoodthatmeasles‐infectedanimalswouldescapeintothecommunitymustbeextremelysmall.

ConclusionAlthoughthereisnodirectevidenceforlaboratory‐acquiredmeaslesinfectionsitispossiblethattheyhaveoccurredamongimmunelaboratorystaffandresultedinasymptomaticorverymildinfections.Thereisnopublishedevidencetosuggestthatthesepossibleasymptomaticormild

infectionsresultinfurthertransmissionofvirus.Measlesviruslosesinfectivitywithinacoupleofhoursatambienttemperaturesintheenvironment,andinfectiousmaterialsstoredattemperaturesabove‐30oCcanbeexpectedtoloseallinfectivityoverthecourseofonetotwoyears.

Despitethelackofevidenceforlaboratory‐acquiredmeaslesinfectionsorescapeofvirusintothecommunity,inapost‐eradicationworldthesemustbeconsideredpossibilitiesduetothehighlyinfectiousnatureofmeasles.

Riskassessment:Inameaslespost‐eradicationworldwithoutroutineuniversalimmunization,measleslaboratories(andmeasleslivevaccineproductionfacilities)willpose

averylowbutincreasingriskforreintroductionofmeasles.

RiskofintentionalreleaseofmeaslesvirusBioterroristthreatsdonotworkagainstpopulationsthathavebeenfullyimmunized.However,inapost‐eradicationworldinwhichuniversalroutineimmunizationhasceased,agrowingpopulation

Page 18: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page18

willbesusceptibletomeasles,andmeasleswill,eventually,becomeacredibleagentforbioterrorism.Thedevastatingeffectofmeaslesonsusceptiblepopulationsinthepre‐vaccination

erahasbeenwelldocumented(158).ThisisparticularlytruefortheislandsofthePacific.In1848inHawaii,10,000natives,about10percentofthepopulation,diedduringanepidemic(160,161,162).In1861onAneityumintheNewHebrides,thepopulationwasreducedbyabout60percentina

measlesepidemic(163).In1875inFiji,20,000natives,20to25percentofthepopulation,diedofmeasles(164).In1907,againinFiji,6percentof30,000casesdied,andin1911onRotuma16percentofthepopulationdiedofmeasles(165).In1936measlescaused100deathsand14,282casesin

theGilbertIslands(166),andin1937inHawaii,therewere205deathsfor13,680casesofmeasles(167).In1946intheBritishIslandsoftheSouthPacific,therewere1,000deathsfor15,000to20,000casesofmeasles(168).Therearemanyotheraccountsofsimilardevastatingmeasles

epidemicsinisolatedcommunitiesaroundtheworld.

Withadvancesinmodernmedicaltreatmentitisunlikelythatsimilarmortalityrateswouldbeinflictedoneortwogenerationspostmeasleseradication,butdeliberatereleasewouldcauseextensivedisruptiontomedical,publichealthandsocialservices,andprobablyincurenormous

containmentcosts.Thethreatofrelease,withtheknowledgeofthepotentialdisruptionandfinancialexpenseitcouldcause,wouldmakemeaslesaneffectiveagentforbioterroristsoncealargeenoughpopulationofmeasles‐susceptibleshadaccumulated.Measlesisnotcurrentlyincluded

intheCDCBioterrorismAgentCategories(169,170),butthissituationwillneedtobereviewedintheyearsfollowingeradication.

ConclusionMeaslesisahighlyinfectiousvirusthathashaddevastatingeffectsonsusceptiblepopulationsinthe

past.Althoughitisunlikelythatthehighmortalitiesseenintheseisolatedcommunitieswouldberepeated,thethreatofintentionalreleasewouldprobablybeveryeffectiveonceasizablepopulationofsusceptibleindividualshadaccumulated.

Riskassessment:Theriskofdeliberatereleaseofmeasleswillbeverylowatthetimeofglobaleradication,butwillriserapidlywithaccumulationofunvaccinatedmeasles

susceptibles.

ActionsrequiredtoreducetheriskofaccidentalordeliberatereleaseofmeaslesOneapproachtoreducingtheriskofmeaslesre‐introductionwouldbeadoptionofastrategytominimizeavailabilityofmeaslesvirus,throughremovaloflivevirusesfromlaboratoriesandsecurely

containingallinfectiousmaterialthatremains,andestablishinganinsurancepolicyintheformofavaccinestockpile.

Reducingtheriskofaccidentalrelease:alaboratorycontainmentstrategyAsystematiclaboratorycontainmentstrategyformeasles,learningfromtheexamplesetbythePolioEradicationInitiative(171),startingnowandcontinuingintothepost‐eradicationera,would

minimisetheriskofaccidentalre‐introductionofmeaslesvirus.Thestrategyestablishedforpoliooutlinesthreedistinctphases.Phase1wouldlastfromthepresent,whenmeaslescontinuestocirculate,tothetimewhenmeaslestransmissionceases.Phase2wouldcoverthecertification

Page 19: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page19

period,andPhase3wouldtakeplaceintheposteradication,postglobalcertificationperiod.ThesethreePhasesforpoliohavebeenclearlydescribedinaseriesofpublishedGlobalActionPlans

(172,173,157).

Thelaboratory‐associatedrisksposedbymeaslesareconsiderablylowerthanthoseposedbypolio,andstrategiesforreducingtheriskevenfurthershouldnotsimplyduplicatetheactivitiesdevelopedforpolio,butbeproportionateandappropriateformeasles.Thegeneralapproachtakenbythe

PolioEradicationInitiative,andlessonslearnedfromimplementingthepoliocontainmentstrategy,shouldprovideasoundstartingpointformeasles.Strategiesforreducingtheriskinthepre‐eradicationphaseshouldbebasedonthefollowingprinciples:

• minimizingthenumberoflaboratoriesretainingmeaslesvirusinfectiousandpotential

infectiousmaterials;• minimizingtherisksofoperationsinlaboratoryandmeasleslivevaccineproduction

facilities;

• minimizingthesusceptibilityofworkerstomeaslesvirusinfectionandshedding;• minimizingsusceptibilityofcommunitytomeaslesvirusspread.

Thehighestrisksarepresentedbythoselaboratoryoperationsinvolvingmeaslesvirusreplication,

includingthegrowthofvaccinestrainsforlivevaccineproduction.Thelowestrisksarenon‐replicative,biosafety‐appropriateoperationsperformedwithpotentiallyinfectiousclinicalmaterials.Intheyearsleadinguptoglobaleradicationallworkwithwildmeaslesvirusesshouldrequire

biosafetylevel‐2(174),withadditionalrequirementsforrestrictinglaboratoryaccess,andmaintenanceofaccuraterecordsofmeaslesvirusmaterials.Establishingnationalmeasles

inventories,andcallstosafelydisposeofallunwantedmeaslesinfectiousandpotentialinfectiousmaterials,ashasbeenaccomplishedforpolio,wouldalsoberequired.

Thesecondphaseofriskreductionwouldconsistessentiallyofvalidatingthecontainmentactivitiesatnational,regionalandgloballevelsasarequirementforGlobalCertification.Stoppinguniversal

measlesimmunizationpostcertification(thirdphase)willaltertherelativeweightsoftheprinciplesonwhichminimizingtheriskfromthelaboratoryisbased(157):

• minimizingsusceptibilityofcommunitiestomeaslesvirusspreadwillnolongerapplyinthosecountriesthatelecttostopmeaslesimmunization;

• minimizingthesusceptibilityofworkerstomeaslesvirusinfectionandshedding,intheabsenceofanon‐infectiousvaccine,willrelysolelyonpreventionofinfection;

• minimizingthenumberoflaboratoriesretainingmeaslesvirusmaterialsandminimizingthe

risksofoperationsinthoselaboratoriesbecomesmuchmoreimportant.Wearecurrentlyconsideringtheprospectofglobalcessationofmeaslestransmissionapproximately

adecadefromnow,allowingreasonabletimetodevelopanappropriatemeasleslaboratorycontainmentstrategyandforlaboratoryresearchonmeaslesvirusestocontinueundercurrent,biosafetylevel‐2,conditions.Italsoallowstimeforcontinueddevelopmentofalternativemeasles

vaccinesandspecificantivirals.

Page 20: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page20

DevelopingavaccinestockpileLiveattenuatedmeaslesvaccineshavebeenhighlysuccessfulinprotectingpopulationsagainst

measlesandstoppingmeaslestransmission.Asdiscussedabove,thesevaccinesareverysafe,andposeonlyasmallpotentialriskforestablishingtransmissionofvaccine‐derivedvirusesinaposteradicationworld.Toremovethisriskanewvaccinethathasnocapacityforreplicationor

transmissionisrequired(175).Theidealmeaslesvaccinewouldbeinexpensive,safe,heat‐stable,immunogenicinneonatesorveryyounginfants,andadministeredasasingledosewithouttheneedtouseaneedleorsyringe(93),be100%effectiveand100%incapableoftransmission.Whilesucha

vaccinewouldhaveclearbenefitsfortheeradicationofmeasles,itwouldbeasavaccineforstockpilingposteradicationthatitwouldcomeintoitsown.Severalvaccinecandidateswithsomeofthesecharacteristicsareundergoingdevelopmentandtesting.Featuresofthesenew,potential

measlesvaccineshavebeenextensivelyreviewed(175,176).

Howlargeameaslesvaccinestockpilewouldberequiredisverydifficulttopredictwithoutmodelling.Requirementswouldobviouslybedynamic,dependingonsomefairlycomplexvariables,includingthenumberofsusceptiblesaccumulatinginthecommunity,theeffectivenessofthe

vaccine,transmissiondynamicsofthevirusandtheeffectivenesswithwhichanyeventrequiringanimmunizationresponsewasdetected,reportedandrespondedto.Decisionsonsuchbig,expensiveitemsasestablishingameaslesvaccinestockpileshouldnotbetakeninisolation,butconsidered

systematicallyandincludedinaconsensusriskmanagementstrategy,ashasbeenachievedforpolio(177,178,179,180,181,182).Developmentofapostmeasleseradicationriskmanagementstrategyshouldbeginassoonaspossible.

AreasrequiringfurtherresearchTherisksofre‐introductionofmeaslespostglobaleradicationmaybereducedbyapplyingknowledgeacquiredthroughkeyareasofresearchconductedintheyearsleadinguptoeradication.Thesekeyareasincludethefollowing:

GreaterunderstandingofthetransmissiondynamicsofmeaslesIndrawingupthecertificationcriteriaandvalidationrequirementsitwillbenecessarytoengage

expertsfamiliarwiththedevelopmentofdynamicandstochasticmodelsofmeaslestransmission,persistenceandelimination.Thiswillbeparticularlyimportantfordeterminingthecertificationandvalidationrequirementsforlow‐income,highdensitypopulations.Basedontheexperiencegained

inpolioeradication,thiswillbemostrelevantforselectedpopulationsinAfrica,theIndiansub‐continentandlargerefugee/migrantpopulationcamps.

Importantinformationcanalsoprobablybegainedfromdetailedepidemiologicalandmolecular

analysisofoutbreaks,particularlythoseoccurringinhighlyimmunizedpopulations,high‐densitypopulations,andingenerallyhighly‐immunizedpopulationswithinadequatelyimmunizedsub‐

populations.

Withtherapidincreaseinthenumberofhighlyimmunizedpopulations,opportunitiesforstudyingasymptomaticandatypicalinfectionsandtheirpotentialroleintransmissionshouldbetaken.

Greaterunderstandingofthechangesbroughtaboutbytheattenuationprocess

Page 21: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page21

Ifcurrentlylicensedattenuatedmeaslesvaccinesaretobeusedinapost‐eradicationworld,moreinformationonthenatureofthechangescausedbyattenuationandthepotentialforreversionto

wild‐typecharacteristicswillberequired.Analternativewouldbetospeedupdevelopment,testingandintroductionofnewmeaslesvaccinesthatarenotdependentonliveattenuatedvirus.

Moreunderstandingofthenatureofthecomplexinteractionbetweenmeaslesvirusandthehostimmunesystem,includingbothhumoralandcell‐mediatedresponses,wouldprobablybenefit

continueduseofexistingvaccinesanddevelopmentofnewvaccines.

Intheyearsleadinguptoglobaleradication,allgenotypeAvirusesdetectedinassociationwithacutecasesofmeaslesshouldbethoroughlyscrutinized.Fullepidemiologicalinformationwillberequired,andadditionalsequencedatafrombothclinicalsamplesandcorrespondingviralisolates

willbenecessarytoruleoutthepossibilityoftransmissionofvaccine‐derivedvirus.Thoroughgeneticanalyses,includingfullgenomicsequencing,shouldbeperformedonselectedvaccinevirusesthatareassociatedwithcommonvaccinereactionsaswellasthosedetectedintheveryrare

severreactionstovaccination.

Page 22: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page22

Bibliography1. AndersonRM.Biologicalchallengestoposteradication.Herdimmunityandthedesignofvaccinationprograms.InKnoblerS,

LederbergJ,PrayLA.ConsiderationsforviralDiseaseeradication.Lessonslearnedandfuturestrategies.Workshopsummary.Washington:NationalAcademicPress;2002.p.65‐77.

2. BlackFL.Measlesendemicityininsularpopulations:criticalcommunitysizeanditsevolutionaryimplication.JournalofTheoreticalBiology.1966;11(2):p.207‐211.

3. KeelingMJ,GrenfellBT.Diseaseextinctionandcommunitysize:modellingthepersistenceofmeasles.Science.1997;275:p.65‐67.

4. KouadioIK,KamigakiT,OshitaniH.Measlesoutbreaksindisplacedpopulations:areviewoftransmission,morbidityandmortalityassociatedfactors.BMCInternationalHealthandHumanRights.2010;10:5.

5. SzuszEK,GarrisonLP,BauchCT.Areviewofdataneededtoparameterizeadynamicmodelofmeaslesindevelopingcountries.BMCResearchNotes.2010;3:75.

6. TooleMJ,SteketeeRW,WaldmanRJ,NieburgP.Measlespreventionandcontrolinemergencysettings.BulletinoftheWorldHealthOrganization.1989;67:p.381‐388.

7. EdmostonMB,AddissDG,McPhersonJT,BergJL,CircoSR,DavisJP.Mildmeaslesandsecondaryvaccinefailureduringasustainedoutbreakinahighlyvaccinatedpopulation.JAMA.1990;263:p.2467‐2471.

8. HuissS,DamienB,SchneiderF,MullerCP.Characteristicsofasymptomaticsecondaryimmuneresponsestomeaslesvirusinlateconvalescentdonors.ClinicalandExperimentalImmunology.1997;109(3):p.416‐420.

9. OzanneG,D’HalewynMA.Secondaryimmuneresponseinavaccinatedpopulationduringalargemeaslesepidemic.JournalofClinicalMicrobiology.1992;30:p.1778‐1782.

10. HelfandRF,KimDK,GaryHEJ,EdwardsGL,BissonGP,PapaniaMJ,etal.Nonclassicmeaslesinfectionsinanimmunepopulationexposedtomeaslesduringacollegebustrip.JournalofMedicalVirology.1998;56(4):p.337‐341.

11. VardasE,KreisS.Isolationofmeaslesvirusfromanaturally‐immune,asymptomaticallyre‐infectedindividual.JournalofClinicalVirology.1999;13(3):p.173‐179.

12. ChenRT,MarkowitzLE,AlbrechtP,StewartJA,MofensonLM,PrebludSR,etal.Measlesantibody:reevaluationofprotectivetiters.JournalofInfectiousDiseases.1990;162(5):p.1036‐1042.

13. WhittleHC,AabyP,SambB,JensenH,BennettJ,SimondonF.EffectofsubclinicalinfectiononmaintainingimmunityagainstmeaslesinvaccinatedchildreninWestAfrica.Lancet.1999;353(9147):p.98‐102.

14. LievanoFA,PapaniaMJ,HelfandRF,HarpazR,WallsL,KatzRS,etal.Lackofevidenceofmeaslesvirussheddinginpeoplewithinapparentmeaslesvirusinfections.Journalofinfectiousdiseases.2004;189Suppl1:p.165‐170.

15. SonodaS,TN.Detectionofmeaslesvirusgenomeinlymphocytesfromasymptomatichealthychildren.JournalofMedicalVirology.2001;65(2):p.381‐387.

16. CherryJD,FeiginRD,LobesLAJ,HinthornDR,ShackelfordPG,ShirleyRH,etal.Urbanmeaslesinthevaccineera:aclinical,epidemiologic,andserologicstudy.JournalofPediatrics.1972;81(2):p.217‐230.

17. CherryJD,FeiginRD,LobesLAJ,ShackelfordPG.Atypicalmeaslesinchildrenpreviouslyimmunizedwithattenuatedmeaslesvirusvaccines.Pediatrics.1972;50(5):p.712‐717.

Page 23: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page23

18. SmithFR,CurranAS,RacitiKA,BlackFL.Reportedmeaslesinpersonsimmunologicallyprimedbypriorvaccination.JournalofPediatrics.1982;101(3):p.391‐393.

19. ReyesMA,deBorreroMF,RoaJ,BergonzoliG,SaraviaNG.Measlesvaccinefailureafterdocumentedseroconversion.PediatricInfectiousDiseaseJournal.1987;6(9):p.848‐851.

20. AabyP,BukhJ,LeerhøyJ,LisseIM,MordhorstCH,PedersenIR.Vaccinatedchildrengetmildermeaslesinfection:acommunitystudyfromGuinea‐Bissau.JournalofInfectiousDiseases.1986;154(5):p.858‐863.

21. LinnemannCCJ,RotteTC,SchiffGM,YoutseyJL.Aseroepidemiologicstudyofameaslesepidemicinahighlyimmunizedpopulation.AmericanJournalofEpidemiology.1972;95(3):p.238‐246.

22. EndersJF,PeeblesTC.Propagationintissueculturesofcytopathicagentsfrompatientswithmeasles.ProceedingsoftheSocietyforExperimentalBioliologyandMedicine.1954;86:p.277‐286.

23. MossWJ,ScottS.WHOImmunologicalBasisforImmunizationSeries.Module7:Measles.Geneva:WorldHealthOrganization;2009.

24. ParksCL,LerchRA,WalpitaP,WangHP,SidhuMS,UdemSA.ComparisonofpredictedaminoacidsequencesofmeaslesvirusstrainsintheEdmonstonvaccinelineage.JournalofVirology.2001;75:p.910‐920.

25. KrugmanS.Further‐attenuatedMeaslesVaccine:CharacteristicsandUse.ReviewsofInfectiousDiseases.1983;5:p.477‐481.

26. HirayamaM.MeaslesVaccinesUsedinJapan.ReviewsofInfectiousDiseases.1983;5:p.495‐503.

27. PeradzeTV,SmorodintsevAA.EpidemiologyandSpecificProphylaxisofMeasles.ReviewsofInfectiousDiseases.1983;5:p.487‐490.

28. XiangJ,ChenZ.MeaslesVaccineinthePeople'sRepublicofChina.ReviewsofInfectiousDiseases.1983;5:p.506‐510.

29. MakinoS.DevelopmentandCharacteristicsofLiveAIK‐CMeaslesVirusVaccine:ABriefReport.ReviewsofInfectiousDiseases.1983;5:p.504‐505.

30. BorgesMB,CarideE,JaborAV,MalachiasJMN,FreireMS,HommaA,etal.StudyofthegeneticstabilityofmeaslesvirusCAM‐70vaccinestrainafterserialpassagesinchickenembryofibroblastsprimarycultures.VirusGenes.2008;36:p.35‐44.

31. BorgesMBJ,MannGF,FreireMdS.BiologicalCharacterizationofClonesDerivedfromtheEdmonstonStrainofMeaslesVirusinComparisonwithSchwarzandCAM‐70VaccineStrains.MemInstOswaldoCruz,RiodeJaneiro.1996;91:p.507‐514.

32. TaminA,RotaPA,WangZD,HeathJL,AndersonLJ,BelliniWJ.Antigenicanalysisofcurrentwildtypeandvaccinestrainsofmeaslesvirus.JournalofInfectiousDiseases.1994;170:p.795‐801.

33. ZhangY,ZhouJ,BelliniWJ,XuW,RotaPA.GeneticcharacterizationofChinesemeaslesvaccinesbyanalysisofcompletegenomicsequencesJ.Journalofmedicalvirology.2009;81:p.1477‐1483.

34. WardB,BoulianneN,RatnamS,GuiotMC,CouilardM,DeSerresG.Cellularimmunityinmeaslesvaccinefailure:demonstrationofmeaslesantigen‐specificlymphoproliferativeresponsesdespitelimitedserumantibodyproductionafterrevaccination.JournalofInfectiousDiseases.1995;172:p.1591‐1955.

35. CohenJI.Vaccine‐associatedcasesduetoimmunizationwithlivevirusvaccines.InKnoblerS,LederbergJ,PrayLA.ConsiderationsforViralDiseaseEradication.LessonslearnedandFuturestrategies.Washington,DC:NationalAcademyPress;2002.p.90‐97.

36. RotaPA,KhanAS,DurigonE,YuranT,VillamarzoYS,BelliniWJ.DetectionofMeaslesVirusRNAinUrineSpecimensfromVaccineRecipients.JournalofClinicalMicrobiology.1995;33:p.2485–2488.

37. Llanes‐RodasR,LiuC.Rapiddiagnosisofmeaslesfromurinarysedimentsstainedwithfluorescentantibody.NewEnglandJournalofMedicine.1966;275:p.516‐523.

Page 24: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page24

38. TakedaM.Measlesvirusbreaksthroughepithelialcellbarrierstoachievetransmission.JournalofClinicalInvestigation.2008;118:p.2386‐2389.

39. LeonardVHJ,SinnPL,HodgeG,MiestT,DevauxP,OezguenN,etal.Measlesvirusblindtoitsepithelialcellreceptorremainsvirulentinrhesusmonkeysbutcannotcrosstheairwayepitheliumandisnotshed.JournalofClinicalInvestigation.2008;118:p.2448‐2458.

40. LudlowM,AllenI,Schneider‐SchauliesJ.Systemicspreadofmeaslesvirus:overcomingtheepithelialandendothelialbarriers.ThrombosisandHaemostasis.2009;102(6):p.1050‐1056.

41. HarrisonMS,SakaguchiT,SchmittAP.Paramyxovirusassemblyandbudding:Buildingparticlesthattransmitinfections.InternationalJournalofBiochemistryandCellBiology.2010;InPress(doi:10.1016/j.biocel.2010.04.005).

42. WorldHealthOrganization.Globaldistributionofmeaslesandrubellagenotypes‐update.WeeklyEpidemiologicalRecord.2006;81:p.474‐479.

43. RiddellMA,RotaJS,RotaPA.Reviewofthetemporalandgeographicaldistributionofmeaslesvirusgenotypesintheprevaccineandpostvaccineeras.VirologyJournal.2005;2:p.87.

44. RotaPA,FeatherstoneDA,BelliniWJ.Molecularepidemiologyofmeaslesvirus.Currenttopicsinmicrobiologyandimmunology.2009;330:p.129‐150.

45. RotaJS,WangZD,RotaPA,BelliniWJ.ComparisonofsequencesoftheH,F,andNcodinggenesofmeaslesvirusvaccinestrains.Virusresearch.1994;31:p.317‐330.

46. BelliniWJ,RotaPA.Geneticdiversityofwild‐typemeaslesviruses:implicationsforglobalmeasleseliminationprograms.EmergingInfectiousDieases.1998;4(1):p.29‐35.

47. ChristensenLS,SchollerS,SchierupMH,VestergaardBF,MordhorstCH.Sequenceanalysisofmeaslesvirusstrainscollectedduringthepre‐andearly‐vaccinationerainDenmarkrevealsaconsiderablediversityofancientstrains.Actapathologica,microbiologica,etimmunologicaScandinavica.2002;110:p.113‐122.

48. RotaPA,BloomAE,VanchiereJA,BelliniWJ.Evolutionofthenucleoproteinandmatrixgenesofwild‐typestrainsofmeaslesvirusisolatedfromrecentepidemics.Virology.1994;198(2):p.724‐730.

49. RotaPA,RotaJS,ReddSB,PapaniaMJ,BelliniWJ.Geneticanalysisofmeaslesvirusesisolatedintheunitedstatesbetween1989and2001:absenceofanendemicgenotypesince1994.Journalofinfectiousdiseases.2004;189Suppl1:p.S160‐164.

50. KremerJR,BrownKE,JinL,ale.Highgeneticdiversityofmeaslesvirus,WorldHealthOrganizationEuropeanRegion,2005‐2006.Emerginginfectiousdiseases.2008;14(1):p.107‐114.

51. ShulgaSV,RotaPA,KremerJR,NaumovaMA,MullerCP,TikhonovaNT,etal.Geneticvariabilityofwild‐typemeaslesviruses,circulatingintheRussianFederationduringtheimplementationoftheNationalMeaslesEliminationProgram,2003‐2007.Clinicalmicrobiologyandinfection.2009;15:p.528‐537.

52. ChiboD,BirchCJ,RotaPA,CattonMG.MolecularcharacterizationofmeaslesvirusesisolatedinVictoria,Australia,between1973and1998.JournalofGeneralVirology.2000;81:p.2511‐2518.

53. TipplesGA,GrayM,GarbuttM,RotaPA,ProgramCMS.GenotypingofmeaslesvirusinCanada:1979‐2002.Journalofinfectiousdiseases.2004;189Suppl1:p.S171‐176.

54. OutlawMC,PringleCR.SequencevariationwithinanoutbreakofmeaslesvirusintheCoventryareaduringspring/summer1993.VirusResearch.1995;39(1):p.3‐11.

55. ZhangY,ZhuZ,RotaPA,JiangX,HuJ,ale.MolecularepidemiologyofmeaslesvirusesinChina,1995–2003.VirologyJournal.2007February;4(14).

Page 25: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page25

56. SantibanezS,HeiderA,GerikeE,AgafonovA,SchreierE.GenotypingofmeaslesvirusisolatesfromcentralEuropeandRussia.JournalofMedicalVirology.1999;58(3):p.313‐320.

57. TruongAT,KreisS,AmmerlaanW,HartterHK,AduF,OmilabuSA,etal.GenotypicandantigeniccharacterizationofhemagglutininproteinsofAfricanmeaslesvirusisolates.VirusResearch.1999;62(1):p.89‐95.

58. RamsayME,JinL,WhiteJ,LittonP,CohenB,BrownD.TheeliminationofindigenousmeaslestransmissioninEnglandandWales.JournalofInfectiousDiseases.2003;187(Suppl1):p.S198‐207.

59. MosqueraMM,OryF,EchevarríaJE.MeaslesvirusgenotypecirculationinSpainafterimplementationofthenationalmeasleseliminationplan2001‐2003.JournalofMedicalVirology.2005;75(1):p.137‐146.

60. RotaJS,RotaPA,ReddSB,ReddSC,PattamadilokS,BelliniWJ.GeneticanalysisofmeaslesvirusesisolatedintheUnitedStates,1995‐1996.JournalofInfectiousDiseases.1998;177:p.204‐208.

61. ChengWY,LeeL,RotaPA,YangDC.MolecularevolutionofmeaslesvirusescirculatedinTaiwan1992‐2008.Virologyjournal.2009;6:p.219.

62. KobuneF,FunatuM,TakahashiH,FukushimaM,KawamotoA,IizukaS,etal.Characterizationofmeaslesvirusesisolatedaftermeaslesvaccination.Vaccine.1995;13(4):p.370‐372.

63. BarreroPR,ZandomeniRO,MistchenkoAS.MeaslesviruscirculationinArgentina:1991–1999.BriefReport.ArchivesofVirology.2001;146:p.815‐823.

64. KreisS,VardasE,WhistlerT.SequenceanalysisofthenucleocapsidgeneofmeaslesvirusisolatesfromSouthAfricaidentifiesanewgenotype.JournalofGeneralVirology.1997;78(7):p.1581‐1587.

65. ZhangY,JiY,JiangX,XuS,ZhuZ,ZhengL,etal.GeneticcharacterizationofmeaslesvirusesinChina,2004.VirologyJournal.2008;5:p.120.

66. ZhangY,DingZ,WangH,LiL,PangY,BrownKE,etal.NewMeaslesVirusGenotypeAssociatedwithOutbreak,China.EmergingInfectiousDiseases.2010;16(6):p.943‐947.

67. VaidyaSR,WairagkarNS,RajaD,KhedekarDD,GunasekaranP,ShankarS,etal.FirstdetectionofmeaslesgenotypeD7fromIndia.VirusGenes.2008;36(1):p.31‐34.

68. JiY,ZhangY,XuS,ZhuZ,ZuoS,JiangX,etal.MeaslesresurgenceassociatedwithcontinuedcirculationofgenotypeH1virusesinChina,2005.VirologyJournal.2009;8(6):p.135.

69. MuwongeA,NanyunjaM,RotaPA,BwogiJ,LoweL,LiffickSL,etal.Newmeaslesgenotype,Uganda.EmergingInfectiousDiseases.2005;11(10):p.1522‐1526.

70. MbuguaFM,OkothFA,GrayM,KamauT,KaluA,EggersR,etal.MolecularepidemiologyofmeaslesvirusinKenya.JournalofMedicalVirology.2003;71(4):p.599‐604.

71. RotaPA,LiffickSL,RotaJS,KatzRS,ReddS,PapaniaM,etal.MolecularepidemiologyofmeaslesvirusesintheUnitedStates,1997‐2001.Emerginginfectiousdiseases.2002;8:p.902‐908.

72. ChenTH,KuttyP,LoweLE,HuntEA,BlosteinJ,EspinozaR,etal.MeaslesOutbreakAssociatedWithanInternationalYouthSportingEventintheUnitedStates,2007.PediatricInfectiousDiseaseJournal.2010April;[Epubaheadofprint].

73. SchmidD,HolzmannH,SchwarzK,KasperS,KuoHW,AberleSW,etal.MeaslesoutbreaklinkedtoaminoritygroupinAustria,2008.EpidemiologyandInfection.2010;138(3):p.415‐425.

74. NaganoH,JinushiM,TanabeH,YamaguchiR,OkanoM.Epidemiologicalandmolecularstudiesofmeaslesatdifferentclustersin

Page 26: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page26

hokkaidodistrict,Japan,2007.JapaneseJournalofInfectiousDiseases.2009;62(3):p.209‐211.

75. GrothC,BottigerB,PlesnerA,ChristiansenA,GlismannS,HoghB.NosocomialmeaslesclusterinDenmarkfollowinganimportedcase,December2008‐January2009.EuroSurveillance.2009;14(8):p.19126.

76. CarrMJ,ConwayA,WatersA,MoranJ,HassanJ,HallWW,etal.MolecularepidemiologyofcirculatingmeaslesvirusinIreland2002‐2007.JournalofMedicalVirology.2009;81(1):p.125‐129.

77. NigatuW,JinL,CohenBJ,NokesDJ,EtanaM,CuttsFT,etal.MeaslesvirusstrainscirculatinginEthiopiain1998‐1999:molecularcharacterisationusingoralfluidsamplesandidentificationofanewgenotype.JournalofMedicalVirology.2001;65(2):p.373‐380.

78. LemmaE,SmitSB,BeyeneB,NigatuW,BabaniyiOA.GeneticcharacterizationandprogressionofB3measlesgenotypeinEthiopia:astudyoffivemeaslesoutbreakcases.EthiopianMedicalJournal.2008;46(1):p.79‐85.

79. KokotasSN,BolanakiE,SgourasD,PogkaV,LogothetiM,KossivakisA,etal.CocirculationofgenotypesD4andD6inGreeceduringthe2005to2006measlesepidemic.DiagnosticMicrobiologyandInfectiousDisease.2008;62(1):p.58‐66.

80. ChironnaM,PratoR,SallustioA,MartinelliD,GerminarioC,LopalcoP,etal.GeneticcharacterizationofmeaslesvirusstrainsisolatedduringanepidemicclusterinPuglia,Italy2006‐2007.VirologyJournal.2007Sept21;4:p.90.

81. WichmannO,HellenbrandW,SagebielD,SantibanezS,AhlemeyerG,VogtG,etal.LargemeaslesoutbreakataGermanpublicschool,2006.PediatricInfectiousDiseaseJournal.2007;26(9):p.782‐786.

82. JiY,XuS,ZhangY,ZhuZ,MaoN,JiangX,etal.Geneticcharacterizationofwild‐typemeaslesvirusesisolatedinChina,2006‐2007.VirologyJournal.2010;7(1):p.105.

83. TruongAT,MuldersMN,GautamDC,AmmerlaanW,deSwartRL,KingCC,etal.GeneticanalysisofAsianmeaslesvirusstrains‐‐newendemicgenotypeinNepal.VirusResearch.2001;76(1):p.71‐78.

84. GriffinDE.Measles.InKnipeDM,HowleyPM,GriffinDE,LambRA,MartinMA,RoizmanB,etal.,editors.FieldsVirology.5thed.Philadelphia:LippincottWilliams&Wilkins;2007.p.1551–1585.

85. SchragSJ,RotaPA,BelliniWJ.SpontaneousMutationRateofMeaslesVirus:DirectEstimationBasedonMutationsConferringMonoclonalAntibodyResistance.JournalofVirology.1999;73(1):p.51‐54.

86. HollandJJ,delaTorreJC,SteinhauerDA.RNAviruspopulationsasquasispecies.CurrentTopicsinMicrobiologyandImmunology.1992;176:p.1‐20.

87. deSwartRL,YükselS,OsterhausAD.Relativecontributionsofmeaslesvirushemagglutinin‐andfusionprotein‐specificserumantibodiestovirusneutralization.JournalofVirology.2005;79(17):p.11547‐11551.

88. TatsuoH,OnoN,TanakaK,YanagiY.SLAM(CDw150)isacellularreceptorformeaslesvirus.Nature.2000;406:p.893‐897.

89. VeilletteA.ImmuneregulationbySLAMfamilyreceptorsandSAP‐relatedadaptors.NatureReviewsImmunology.2006;6:p.56‐66.

90. HashiguchiT,KajikawaM,MaitaN,TakedaM,KurokiK,SasakiK,etal.Crystalstructureofmeaslesvirushemagglutininprovidesinsightintoeffectivevaccines.ProceedingsoftheNationalAcademyofSciences.2007;104(49):p.19535‐19540.

91. SantibanezS,NiewieskS,HeiderA,Schneider‐SchauliesJ,BerbersGA,ZimmermannA,etal.Probingneutralizing‐antibodyresponsesagainstemergingmeaslesviruses(MVs):immuneselectionofMVbyHprotein‐specificantibodies?JournalofGeneralVirology.2005;86(Pt2):p.365‐374.

92. RuigrokRW,GerlierD.StructureofthemeaslesvirusHglycoproteinshedslightonanefficientvaccine.ProceedingsoftheNationalAcademyofSciences.2007;104(52):p.20639‐20640.

Page 27: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page27

93. MossWJ,GriffinDE.Globalmeasleselimination.NatureReviews.Microbiology.2006;4(12):p.900‐908.

94. RimaBK,DuprexWP.Molecularmechanismsofmeaslesviruspersistence.VirusResearch.2005;111(1):p.132‐147.

95. ForthalDN,AarnaesS,BlandingJ,delaMazaL,TillesJG.Degreeandlengthofviremiainadultswithmeasles.JournalofInfectiousDiseases.1992;166(2):p.421‐424.

96. GresserI,KatzSl.Isolationofmeaslesvirusfromurine.NewEnglandJournalofMedicine.1960;263:p.452‐454.

97. DossetorJ,WhittleHC,GeenwoodBM.Persistentmeaslesinfectioninmalnourishedchildren.BritishMedicalJournal.1977;1:p.1633‐1635.

98. ScheifeleDW,ForbesCE.ProlongedgiantcellexcretioninsevereAfricanmeasles.Pediatrics.1972;50(6):p.867‐873.

99. MitusAEJF,MCJ,HollowayA.Persistenceofmeaslesvirusanddepressionofantibodyformationinpatientswithgiant‐cellpneumoniaaftermeasles.NewEnglandJournalofMedicine.1959;261:p.882‐889.

100. BudkaH,UrbanitsS,LiberskiPP,EichingerS,Popow‐KrauppT.Subacutemeaslesvirusencephalitis:anewandfatalopportunisticinfectioninapatientwithAIDS.Neurology.1996;46(2):p.586‐587.

101. EndersJF,McCarthyK,MitusA,JCW.Isolationofmeaslesvirusatautopsyincasesofgiant‐cellpneumoniawithoutrash.NewEnglandJournalofMedicine.1959;261:p.875‐881.

102. MarkowitzLE,ChandlerFW,RoldanEO,SaldanaMJ,RoachKC,HutchinsSS,etal.FatalmeaslespneumoniawithoutrashinachildwithAIDS.JournalofInfectiousDiseases.1988;158(2):p.480‐483.

103. NakataY,NakayamaT,IdeY,KizuR,KoinumaG,BambaM.Measlesvirusgenomedetecteduptofourmonthsinacaseofcongenitalmeasles.ActaPaediatrica.2002;91(11):p.1263‐1265.

104. PermarS,MossWJ,RyonJJ,MonzeM,CuttsF,QuinnTC,etal.Prolongedmeaslesvirussheddinginhumanimmunodeficiencyvirus‐infectedchildren,detectedbyreversetranscriptase‐polymerasechainreaction.JournalofInfectiousDiseases.2001;183(4):p.532‐538.

105. RiddellMA,ChiboD,KellyHA,CattonMG,BirchCJ.InvestigationofoptimalspecimentypeandsamplingtimefordetectionofmeaslesvirusRNAduringameaslesepidemic.JournalofClinicalMicrobiology.2001;39(1):p.375‐376.

106. vanBinnendijkRS,vandenHofS,vandenKerkhofH,KohlRH,WooninkF,BerbersGA,etal.EvaluationofserologicalandvirologicaltestsinthediagnosisofclinicalandsubclinicalmeaslesvirusinfectionsduringanoutbreakofmeaslesinTheNetherlands.JournalofInfectiousDiseases.2003;188(6):p.898‐903.

107. RiddellMA,MossWJ,HauerD,MonzeM,GriffinDE.SlowclearanceofmeaslesvirusRNAafteracuteinfection.JournalofClinicalVirology.2007;39(4):p.312‐317.

108. PanCH,ValsamakisA,ColellaT,NairN,AdamsRJ,PolackFP,etal.Modulationofdisease,Tcellresponses,andmeaslesvirusclearanceinmonkeysvaccinatedwithH‐encodingalphavirusrepliconparticles.ProceedingsoftheNationalAcademyofSciences.2005;102(33):p.11581‐11588.

109. terMeulenV,StephensonJR,KrethHW.Subacutesclerosingpanencephalitis.InFraenkel‐ConratH,WagnerRR,editors.ComprehensiveVirology,vol.18.NewYork:PlenumPress;1983.p.105‐159.

110. CampbellH,AndrewsN,BrownKE,MillerE.ReviewoftheeffectofmeaslesvaccinationontheepidemiologyofSSPE.InternationalJournalofEpidemiology.2007;36:p.1334‐1348.

111. YoungVA,RallGF.Makingittothesynapse:Measlesvirusspreadinandamongneurons.CurrentTopicsinMicrobiologyandImmunology.2009;330:p.3‐30.

Page 28: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page28

112. Paula‐BarbosaMM,CruzC.Nervecellfusioninacaseofsubacutesclerosingpanencephalitis.AnnalsofNeurobiology.1981;9:p.400‐403.

113. CattaneoR,SchmidA,BilleterMA,SheppardRD,UdemSA.Multipleviralmutationsratherthanhostfactorscausedefectivemeaslesvirusgeneexpressioninasubacutesclerosingpanencephalitiscellline.JournalofVirology.1988;62(4):p.1388‐1397.

114. AyataM,KomaseK,ShingaiM,MatsunagaI,KatayamaY,OguraH.Mutationsaffectingtranscriptionalterminationinthepgeneendofsubacutesclerosingpanencephalitisviruses.JournalofVirology.2002;76(2):p.13062‐13068.

115. HottaH,NiheiK,AbeY,KatoS,JiangDP,Nagano‐FujiiM,etal.Full‐lengthsequenceanalysisofsubacutesclerosingpanencephalitis(SSPE)virus,amutantofmeaslesvirus,isolatedfrombraintissuesofapatientshortlyafteronsetofSSPE.MicrobiologyandImmunology.2006;50(7):p.525‐534.

116. JiangDP,IdeYH,Nagano‐FujiiM,ShojiI,HottaH.Single‐pointmutationsoftheMproteinofameaslesvirusvariantobtainedfromapatientwithsubacutesclerosingpanencephalitiscriticallyaffectsolubilityandsubcellularlocalizationoftheMproteinandcell‐freevirusproduction.MicrobesandInfection.2009;11(4):p.467‐475.

117. BitnunA,ShannonP,DurwardA,RotaPA,BelliniWJ,GrahamC,etal.Measlesinclusion‐bodyencephalitiscausedbythevaccinestrainofmeaslesvirus.Clinicalinfectiousdiseases.1999;29:p.855‐861.

118. MustafaMMWSWNBWTCSJ.Subacutemeaslesencephalitisintheyoungimmunocompromisedhost:reportoftwocasesdiagnosedbypolymerasechainreactionandtreatedwithribavirinandreviewoftheliterature.ClinicalInfectiousDiseases.1993;16(5):p.654‐660.

119. FreemanAF,JacobsohnDA,ShulmanST,BelliniWJ,JaggiP,deLeonG,etal.Anewcomplicationofstemcelltransplantation:measlesinclusionbodyencephalitis.Pediatrics.2004;114(5):p.e657‐660.

120. KatayamaYKKNATYHMHH.DetectionofmeaslesvirusmRNAfromautopsiedhumantissues.JournalofClinicalMicrobiology.1998;36(1):p.299‐301.

121. KatayamaY,HottaH,NishimuraA,TatsunoY,HommaM.DetectionofmeaslesvirusnucleoproteinmRNAinautopsiedbraintissues.JournalofGeneralVirology.1995;76(12):p.3201‐3204.

122. MossWJ,FisherC,ScottS,MonzeM,RyonJJ,QuinnTC,etal.HIVtype1infectionisariskfactorformortalityinhospitalizedZambianchildrenwithmeasles.ClinicalInfectiousDiseases.2008;46(4):p.523‐527.

123. FrenkelLMNKGACJ.Asearchforpersistentmeasles,mumps,andrubellavaccinevirusinchildrenwithhumanimmunodeficiencyvirustype1infection.ArchivesofPediatricsandAdolescentMedicine.1994;148(1):p.57‐60.

124. GardnerMB,LuciwPA.Macaquemodelsofhumaninfectiousdisease.ILARJournal.2008;49(2):p.220‐255.

125. MacArthurJA,MannPG,OreffoV,ScottGB.Measlesinmonkeys:anepidemiologicalstudy.JournalofHygiene.1979;83(2):p.207‐212.

126. ElMubarakH,YükselS,vanAmerongenG,MulderPG,MukhtarMM,OsterhausAD,etal.Infectionofcynomolgusmacaques(Macacafascicularis)andrhesusmacaques(Macacamulatta)withdifferentwild‐typemeaslesviruses.JournalofGeneralVirology.2007;88:p.2028‐2034.

127. Jones‐EngelL,EngelGA,SchillaciMA,LeeB,HeidrichJ,ChaliseM,etal.Consideringhuman‐primatetransmissionofmeaslesvirusthroughtheprismofriskanalysis.AmericalJournalofPrimatology.2006;68(9):p.868‐879.

128. ZhuYD,HeathJ,CollinsJ,GreeneT,AntipaL,RotaP,etal.Experimentalmeasles.II.Infectionandimmunityintherhesusmacaque.Virology.1997;233(1):p.85‐92.

129. vanBinnendijkRS,vanderHeijdenRW,vanAmerongenG,UytdeHaagFG,OsterhausAD.Viralreplicationanddevelopmentofspecificimmunityinmacaquesafterinfectionwithdifferentmeaslesvirusstrains.JournalofInfectiousDiseases.1994;170(2):p.

Page 29: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page29

443‐448.

130. deSwartRL.Measlesstudiesinthemacaquemodel.Currenttopicsinmiocrobiologyandimmunology.2009;330:p.55‐72.

131. ChoiYK,SimonMA,KimDY,YoonBI,KwonSW,WLK,etal.FatalmeaslesvirusinfectioninJapanesemacaques(Macacafuscata).VeterinaryPathology.1999;36(6):p.594‐600.

132. WillyME,WoodwardRA,ThorntonVB,WolffAV,FlynnBM,HeathJL,etal.ManagementofameaslesoutbreakamongOldWorldnonhumanprimates.LaboratoryAnimalScience.1999;49:p.42‐48.

133. YoshikawaY,OchikuboF,MatsubaraY,TsuruokaH,IshiiM,ShirotaK,etal.NaturalinfectionwithcaninedistempervirusinaJapanesemonkey(Macacafuscata).VeterinaryMicrobiology.1989;20(3):p.193‐205.

134. SunZ,LiA,YeH,ShiY,HuZ,ZengL.Naturalinfectionwithcaninedistempervirusinhand‐feedingRhesusmonkeysinChina.VeterinaryMicrobiology.2010;141(3‐4):p.374‐378.

135. BhattPN,BrandtCD,WeissR,FoxJP,ShafferMF.ViralinfectionsofmonkeysintheirnaturalhabitatinsouthernIndia.II.Serologicalevidenceofviralinfection.AmericanJournalofTropicalMedicineandHygiene.1966;15(4):p.561‐566.

136. Jones‐EngelL,EngelGA,SchillaciMA,BaboR,FroehlichJ.Detectionofantibodiestoselectedhumanpathogensamongwildandpetmacaques(Macacatonkeana)inSulawesi,Indonesia.AmericalJournalofPrimatology.2001;54(3):p.171‐178.

137. ShahKV,SouthwickCH.Prevalenceofantibodiestocertainvirusesinseraoffree‐livingrhesusandofcaptivemonkeys.IndianJournalofMedicalResearch.1965;53:p.488‐500.

138. GristNR.Hepatitisandotherinfectionsinclinicallaboratorystaff,1979.JournalofClinicalPathology.1981;34(6):p.655‐658.

139. GristNR.InfectionsinBritishclinicallaboratories1980‐81.JournalofClinicalPathology.1983;36(2):p.121‐126.

140. GristNR,EmslieJ.InfectionsinBritishclinicallaboratories,1982‐3.JournalofClinicalPathology.1985;38(7):p.721‐725.

141. GristNR,EmslieJA.InfectionsinBritishclinicallaboratories,1984‐5.JournalofClinicalPathology.1987;40(8):p.826‐829.

142. GristNR,EmslieJA.InfectionsinBritishclinicallaboratories,1986‐87.JournalofClinicalPathology.1989;42(7):p.677‐681.

143. GristNR,EmslieJA.InfectionsinBritishclinicallaboratories,1988‐1989.JournalofClinicalPathology.1991;44(8):p.667‐669.

144. WalkerD,CampbellD.AsurveyofinfectionsinUnitedKingdomlaboratories,1994‐1995.JournalofClinicalPathology.1999;52(6):p.415‐418.

145. SulkinSE,PikeRM.Surveyoflaboratory‐acquiredinfections.AmericanJournalofPublicHealthandtheNation'sHealth.1951;41(7):p.769‐781.

146. PikeRM,SulkinSE,SchulzeML.Continuingimportanceoflaboratory‐acquiredinfections.AmericanJournalofPublicHealthandtheNation'sHealth.1965;55:p.190‐199.

147. PikeRM.Laboratory‐associatedinfections:summaryandanalysisof3921cases.HealthLaboratoryScience.1976;13(2):p.105‐114.

148. PikeRM.Laboratory‐associatedinfections:incidence,fatalities,causes,andprevention.AnnualReviewofMicrobiology.1979;33:p.41‐66.

149. VesleyD,HartmannHM.Laboratory‐acquiredinfectionsandinjuriesinclinicallaboratories:a1986survey.AmericanJournalofPublicHealth.1988;78(9):p.1213‐1215.

Page 30: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page30

150. ShimojoH.VirusinfectionsinlaboratoriesinJapan.BibliothecaHaematologica.1975;(40):p.771‐773.

151. KimmanTG,SmitE,KleinMR.Evidence‐basedbiosafety:areviewoftheprinciplesandeffectivenessofmicrobiologicalcontainmentmeasures.ClinicalMicrobiologyReviews.2008;21(3):p.403‐425.

152. CollinsCH.Laboratory‐acquiredinfections:history,incidence,causes,andprevention.3rded.Oxford:Butterworth‐HeinemannLtd;1993.

153. SewellDL.Laboratory‐AssociatedInfectionsandBiosafety.ClinicalMicrobiologyReviews.1995;8(3):p.398‐405.

154. GershonAA.MeaslesVirus(Rubeola).InMandellG,DouglasR,BennettJ,editors.PrinciplesandPracticeofInfectiousDiseases.3rded.NewYork:ChurchillLivingstone;1990.p.1279.

155. ReddS,MarkowitzE,KatzS.Measlesvaccine.InPlotkinSA,OrensteinWA,editors.Vaccines.3rded.Philadelphia:Saunders;1999.p.222‐266.

156. MusserSJ,UnderwoodGE,WeedSD,OssewaardeJL.StudiesonMeaslesVirus.II.PhysicalPropertiesandInactivationStudiesofMeaslesVirus.JournalofImmunology.1960;85:p.292‐297.

157. DowdleW,vanderAvoortH,deGourvilleE,DelpeyrouxF,DesphandeJ,HoviT,etal.ContainmentofpoliovirusesaftereradicationandOPVcessation:characterizingriskstoimprovemanagement.RiskAnalysis.2006;26(6):p.1449‐1469.

158. NorrbyE,OxmanMN.MeaslesVirus.InFieldsBN,KnipeDM,ChanockR,HirschMS,LMJ,PMT,etal.,editors.Virology.2nded.NewYork:RavenPressLtd;1990.p.1013‐1044.

159. HatchTF.Distributionanddepositionofinhaledparticlesintherespiratorytract.BacteriologicalReviews.1961;25:p.237‐240.

160. DamonSC.DecreaseofPolynesianRaces.TheFriend.1849;7(3):p.20.

161. LeeWS.TheIslandNewYork:Holt,RinehartandWinston;1966.

162. ThrumTG.HawaiianEpidemics.InThrumTG,editor.HawaiianAlmanacandAnnual.Honolulu:PressPublishingCompany;1897.p.97.

163. MumfordEP,MohrJL.ManualontheDistributionofCommunicableDiseasesandTheirVectorsintheTropics,PacificIslandsSection,PartI.SupplementtoAmericanJournalofTropicalMedicine.1944;24:p.1‐26.

164. HirschA.Handbookofgeographicalandhistoricalpathology.In.London:NewSydenhamSociety;1983.p.154‐170.

165. CorneyBG.ANoteonanEpidemicofMeaslesatRotuma,1911.ProceedingsoftheRoyalSocietyforMedicine.1913;6:p.138‐142.

166. SimmonsJS,WhayneTF,AndersonGW,HorackHM.PartTwo,ThePacificArea.InGlobalEpidemiology.Philadelphia:JBLippincottCo.;1944.p.264and437.

167. EnrightJR.SeasonalIncidenceofCommunicableDiseasesinHawaii.TheHawaiiHealthMessenger.1949.

168. BabbotFL,GordonJE.ModemMeasles.AmericanJournalofMedicalSciences.1954;228:p.334‐361.

169. CentersforDiseaseControlandPrevention.EmergencyPreparednessandResponse.[Online].;2007[cited2010June10.Availablefrom:HYPERLINK"http://www.bt.cdc.gov/bioterrorism/overview.asp"http://www.bt.cdc.gov/bioterrorism/overview.asp.

170. RotzLD,KhanAS,LillibridgeSR,OstroffSM,HughesJM.Publichealthassessmentofpotentialbiologicalterrorismagents.EmergingInfectiousDiseases.2002;8(2):p.225‐230.

Page 31: 6. Measles post eradication risk analysis...Although there is no direct evidence for laboratory‐acquired measles infections it is possible that they have occurred among immune laboratory

DrRaySanders.Measlesre‐introductionriskanalysis

Page31

171. DowdleWR,WolffC,SandersR,LambertS,BestM.Willcontainmentofwildpoliovirusinlaboratoriesandinactivatedpoliovirusvaccineproductionsitesbeeffectiveforglobalcertification?BulletinoftheWorldHealthOrganization.2004;82(1):p.59‐62.

172. WorldHealthOrganization.WHOglobalactionplanforlaboratorycontainmentofwildpolioviruses.Geneva:WorldHealthOrganization,VaccinesandBiologicals;1999.ReportNo.:WHO/V&B/99.32.

173. WorldHealthOrganization.WHOglobalactionplanforlaboratorycontainmentofwildpolioviruses.Secondedition.Geneva:WorldHealthOrganization,VaccinesandBiologicals;2004.ReportNo.:WHO/V&B/03.11.

174. WorldHealthOrganization.Laboratorybiosafetymanual.3rded.Geneva:WorldHealthOrganization;2004.

175. PützMM,BoucheFB,deSwartRL,MullerCP.Experimentalvaccinesagainstmeaslesinaworldofchangingepidemiology.InternationalJournalforParasitology.2003;33(5‐6):p.525‐545.

176. GriffinDE,PanCH.Measles:oldvaccines,newvaccines.CurrentTopicsinMicrobiologyandImmunology.2009;330:p.191‐212.

177. AylwardRB,SutterRW,CochiSL,ThompsonKM,JafariH,HeymannD.Riskmanagementinapolio‐freeworld.RiskAnalysis.2006;26(6):p.1441‐1448.

178. FinePE,RitchieS.Perspective:determinantsoftheseverityofpoliovirusoutbreaksintheposteradicationera.RiskAnalysis.2006;26(6):p.1533‐1540.

179. SangrujeeN,DuintjerTebbensRJ,CáceresVM,ThompsonKM.Policydecisionoptionsduringthefirst5yearsfollowingcertificationofpolioeradication.MedscapeGeneralMedicine.2003;5(4):p.35.

180. ThompsonKM,TebbensRJ,PallanschMA,KewOM,SutterRW,AylwardRB,etal.Therisks,costs,andbenefitsofpossiblefutureglobalpoliciesformanagingpolioviruses.AmericanJournalofPublicHealth.2008;98(7):p.1322‐1330.

181. TebbensRJD,PallanschMA,AlexanderJP,ThompsonKM.Optimalvaccinestockpiledesignforaneradicateddisease:Applicationtopolio.Vaccine.2010;28:p.4312‐4327.

182. TebbensRJD,PallanschMA,KewOM,CaceresVM,JafariH,CochiSL,etal.RisksofParalyticDiseaseDuetoWildorVaccine‐DerivedPoliovirusAfterEradication.RiskAnalysis.2006;26(6):p.1471‐1505.