6 amplification circuits

70
6 Amplification Circuits 6.1 Requirements for Amplification 6.2 Structure of Amplifiers 6.3 Real Behaviour of Amplifiers 6.4.2 Zero Point Errors 6.4.3 Noise Input Resistances, Output Resistance, Offset-Voltage, Offset-Current, Bias-Current Drift, Transfer Behaviour, Output Voltage Swing, Gain-Bandwidth-Product, Slew Rate , Common Mode Rejection Difference Amplifier, Operation Amplifier 6.4 Correction of the Real Behavior 6.4.1 Frequency Behavior P. 6-1 Prof. Dr.-Ing. O. Kanoun Chair for Measurement and Sensor Technology 6.5 Instrumentation Amplifier 6.6 Applications of Inverting Amplifiers Multiplication, Division, Charge Amplifier, Schmitt-Trigger, Control Circuits 6.7 Active Filters

Upload: hafiz-muhammad-luqman

Post on 07-Sep-2015

33 views

Category:

Documents


1 download

DESCRIPTION

The slides about amplifiers.

TRANSCRIPT

  • 6 Amplification Circuits

    6.1 Requirements for Amplification

    6.2 Structure of Amplifiers

    6.3 Real Behaviour of Amplifiers

    6.4.2 Zero Point Errors

    6.4.3 Noise

    Input Resistances, Output Resistance, Offset-Voltage,

    Offset-Current, Bias-Current Drift, Transfer Behaviour, Output Voltage Swing,

    Gain-Bandwidth-Product, Slew Rate , Common Mode Rejection

    Difference Amplifier, Operation Amplifier

    6.4 Correction of the Real Behavior

    6.4.1 Frequency Behavior

    P. 6-1

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.5 Instrumentation Amplifier

    6.6 Applications of Inverting AmplifiersMultiplication, Division, Charge Amplifier,

    Schmitt-Trigger, Control Circuits

    6.7 Active Filters

  • defined transfer behaviour:

    Linearity

    Amplification independent on aging, fluctuations, environment influence and voltage supply

    high input sensitivity

    no influence on the measurand: High input resistance

    for voltage amplifier very high

    for current amplifier very low

    stable output: Low output resistance

    long life time

    low noise

    low energy consumption

    6.1 Requirements to Amplification

    P. 6-2

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

  • 36.2 Structure of Amplifiers

    Important:

    Ouput circuit is galvanically independent

    on the input circuit

    positiver Eingangsruhestrom

    Eingangswiderstand

    negativer Eingangsruhestrom

    Ue

    Ua

    Positive Input Bias Current

    Output Resistance

    Input ResistanceNegative Input Bias Current

    Un

    Ua

    Ua

    + Uv

    - Uv

    Ud

    Ua

    + Uv

    - Uv

    Saturation

    Saturation

    Equivalent Circuit and Transfer Characteristic

  • npd UUU

    0V open loop voltage gain

    Amplification

    da UVU 0

    CMCMda UVUVU 0

    Total Amplification

    with 740 1010 CMV

    V

    Real 104 < V0 < 107

    Ideal

    CMV common mode amplification

    npCM UUU VUd 0

    CMCMa UVU

    Ideal 0

    2

    np

    CM

    UUUwith

    (Differenzverstrkung)

    (Gleichtaktverstrkung)

    P. 6-4

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.2 Structure of Amplifiers

  • Principle of the Difference Amplifier

    Ube1= Ube2 Ic1= Ic2 UA1= UA2

    Ube1> Ube2 Ic1>> Ic2 UA1>> UA2

    P. 6-5

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.2 Structure of Amplifiers

  • Simple Amplifier

    Difference Amplifier Output stage

    P. 6-6

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.2 Structure of Amplifiers

  • Integrated Standard Operation Amplifier xx741 (Principle)

    Current Mirror

    Difference Amplifier

    Second Amplification Stage Output Stage

    P. 6-7

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.2 Structure of Amplifiers

  • P. 6-8

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.2 Structure of Amplifiers

    Integrated Standard Operation Amplifier xx741 (Principle)

  • Small Signal Equivalent Circuit of an Op-Amps(1)

    Difference Input Resistance

    Common Mode Input ResistancesInput Bias Currents

    Offset Voltage

    Output Resistances

    P. 6-9

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.2 Structure of Amplifiers

    uCM VCM

    rCMrCM

  • P. 6-10

    6.3 Real Behaviour of Amplifiers

    Data Sheets

  • 6.3 Real Behaviour of Amplifiers

    Data Sheet OPA 365 [Texas Instruments]

    Rail-To-Rail-inputs

    Input voltages are amplified until the level of the supply voltage distortion-free

    2.2V, 50MHz, Low-Noise, Single-Supply Rail-to-Rail

    P. 6-11

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

  • uCM VCM

    rCMrCM

    )i(i

    ur

    NP

    DE

    2

    1 ) (ideal 100T ... 1G ErDifferential Input Resistance

    (Differenzeingangswiderstand)

    ) (ideal 1T ... 1M CMr)i(i

    ur

    NP

    CMCM

    2

    1Common Mode Input Resistance

    (Gleichtakteingangswiderstand)

    const.uA

    AA

    D

    i

    ur

    0) (ideal 100 ... 2Ar

    Output Resistance

    (Ausgangswiderstand )

    6.3 Real Behaviour of Amplifiers

    P. 6-12

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    uCM VCM

  • P. 6-13

    Input Bias Current (Eingangsruhestrme):

    (typ. 1 nA...500 nA)

    IP = Ib+IO mit Ib Bias Current

    IN = Ib- IO IO Offset Current (typ. 20 fA...20 nA) RCMP

    +

    -

    Ri

    kue

    =

    UO

    =

    In

    Ip

    ue

    ua

    RCMN

    ud

    (Bipolar)A 1 (FET);fA 50 bb II

    6.3 Real Behaviour of Amplifiers

    Common Mode Input Resistances RGlP RGlN(Gleichtakteingangswiderstnde)

  • Differential Input Voltage (Differenz-Eingangsspannung):

    Ud (typ. 3V.... 30 V)

    6.3 Real Behaviour of Amplifiers

    Common Mode Input Voltage

    (Gleichtakteingangsspannung):

    UCM (typ. 13V... 16V )

    Input voltage relative to ground

    Output Voltage Swing (Ausgangsspannungshub):

    UAmax (typ. 27 V.... 32 V)

    Maximal value of the output voltage without

    amplitude limitation

    P. 6-14

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    Rail-to-Rail

    output voltage swing next the voltage supply VCC

    +VCC

    -VCC

  • maximal output voltage

    6.3 Real Behaviour of Amplifiers

    Input-Offset Voltage U0 (Offset-Spannung):

    (typ. 0,5 V... 5 mV)

    Voltage between difference inputs, so that

    the output voltage 0V is reached

    VUUU da 0)( 0 RCMP

    +

    -

    Ri

    kue

    =

    UO

    =

    In

    Ip

    ue

    ua

    RCMN

    ud

    P. 6-15

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

  • Offset Voltage Drift (Offsetspannungsdrift):

    (typ. 0,01 V/C ... 15 V/C)

    tt

    UU

    U VV

    OOO0

    UUU

    Input Current Drift (Eingangsstromdrift):

    (typ. 10 fA/C ... 1 A/C)

    ..,

    p,i

    constUconstU

    n

    pN

    i

    6.3 Real Behaviour of Amplifiers

    [OPA 365, TI]

    Different behaviour compared to A 741 (see Page 13)

    P. 6-16

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

  • 6.3 Real Behaviour of Amplifiers

    Transfer Function

    Corresponds to the complex amplification

    Hzf 101

    MHzf 52 DecadedB /20

    21

    0

    11)(

    )()(

    jj

    V

    U

    UG

    D

    A

    P. 6-17

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

  • agegea xkxkxxkx ''

    '

    '

    '

    '

    1

    1

    1

    1

    kfrxk

    x

    kk

    xkk

    kx

    e

    g

    e

    g

    e

    g

    a

    Smaller amplification, but just dependent on kg if k is sufficently high

    Selection of stabile circuit elements

    independence on changes of amplifier properties

    Band width (Frequenzbereich) becomes higher.

    Input resistance of voltage Amplifiers and by Current Amplifiers

    Output resistance by voltage output and and by current output

    Advantages:

    kxe xa

    kgxg

    -

    6.3 Real Behaviour of Amplifiers

    Feedback (Closed Loop)

    P. 6-18

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

  • gkk

    k'

    '

    1

    gkk'1

    'k

    gg kkf '' 1

    Prof. Dr.-Ing. O. Kanoun

    Professur fr Mess- und Sensortechnik P. 6-19

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.3 Real Behaviour of Amplifiers

    Feedback (Closed Loop)

    Amplification

    Amplification of the

    system with feed

    back

    Amplification

  • Gain-Bandwidth-Product (Verstrkungs-Bandbreite-Produkt ): GBW

    (typ. 0.8 MHz..3 MHz)

    In the sector in which the amplification is sinking with 20 dB/Dekade, the product of

    frequency and corresponding amplification is constant.

    00GBW gfV

    P. 6-20

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.3 Real Behaviour of Amplifiers

  • Slew Rate (Maximale Anstiegssteilheit):

    SWR (typ. 0.5 V/s...50 V/s)

    SWR is the maximum possible change of

    the output voltage pro Time Unit

    max

    SWR

    t

    uA

    P. 6-21

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.3 Real Behaviour of Amplifiers

  • dBV

    VCMR

    CM

    12080lg20

    Common Mode Rejection Ratio

    (Gleichtaktunterdrckung ): CMRR

    (typ. 80dB...120dB)

    Proportion of the open voltage gain to

    the common mode gain

    Supply Voltage Rejection (Betriebsspannungsunterdrckung ): SVR

    (typ. -60dB..-100dB)

    Proportion of the offset voltage change related to the changes of the voltage supply

    Signal-Noise-Ratio: SNR

    P. 6-22

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.3 Real Behaviour of Amplifiers

  • Families of Op-Amps

    P. 6-23

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.3 Real Behaviour of Amplifiers

  • Ideal Amplifier

    is a useful Model for amplification circuits

    any Ia, Ua are possible

    very high difference amplification

    Common mode amplification

    low output resistance

    no cut-off frequency

    V

    0aR

    0GlV

    Ie 0

    High input resistance

    eR

    0eU

    +

    -

    eU

    aU

    eI

    P. 6-24

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.3 Real Behaviour of Amplifiers

  • Frequency Behaviour

    Open Loop Amplification

    e

    a

    U

    Ulg20

    gf

    Tf

    DecadedB /20

    gf

    fj

    kk

    1

    '0'

    6.4 Correction of the Real Behavior

    P. 6-25

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    cut-off frequency

    ideal behaviour

    real behaviour

  • Smaller gain band width product Slew-Rate reduction

    Frequency Behaviour

    Correction

    P. 6-26

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    Frequency Behaviour

    6.4 Correction of the Real Behavior

  • P. 6-27

    f1

    |j| > 180 Oscillation

    321

    '0'

    111f

    fj

    f

    fj

    f

    fj

    kk

    Real amplifier

    Many amplification stagesFrequency Behaviour

    6.4 Correction of the Real Behavior

  • Closed loop

    lower amplification more band width

    Tg

    gg

    ffv

    fvfv

    100100

    101011

    For every amplification level, a different compensation is necessary

    A transimpedance amplifier is a special amplifier with very high band width and

    a variable amplification

    P. 6-28

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    Frequency Behaviour

    6.4 Correction of the Real Behavior

  • ReP

    +

    -

    Ri

    kue

    =

    UO

    =

    In

    Ip

    ue

    ua

    ReN

    ud

    How can we treat offset voltages and input bias currents?

    Application of the superposition principle

    Example: u/u amplifier

    Zero Point Error

    P. 6-29

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.4 Correction of the Real Behavior

  • Superposition Principle

    The reaction on every source of errror is considererd alone:...... additionally available voltage sources are short-circuited

    ...... additionally available current sources are broken

    The results are added to each other

    +

    -

    Ri

    kue

    =

    UO

    =

    In

    Ip

    ue

    =Uq

    Rq

    R1

    R2

    IR

    ug

    ua

    P. 6-30

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    Zero Point Error

    6.4 Correction of the Real Behavior

  • +-

    Ri

    kue

    =

    UO

    =

    In

    Ip

    ue

    =Uq

    Rq

    R1

    R2

    IR

    ug

    ua

    Influence of Off-Set Voltage

    OOa UR

    RRUU

    2

    21)(0 gO UU

    0,0 npq IIU

    Input Mesh:

    uk

    P. 6-31

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    Zero Point Error

    6.4 Correction of the Real Behavior

  • P. 6-32

    Influence of Ip

    pqpa IRR

    RRIU

    2

    21)(

    0,0,0 nOq IUU

    Input Mesh: Ip flows over Rq

    Influence of In

    nna IRIU 1)(

    0,0,0 pOq IUU

    In flows to the node between R1 und R2 2RIIU Rng

    Input Mesh: 0gU Rn II

    +

    -

    Ri

    kue

    =

    UO

    =

    In

    Ip

    ue

    =Uq

    Rq

    R1

    R2

    IR

    ug

    ua

    +

    -

    Ri

    kue

    =

    UO

    ==

    InIn

    IpIp

    ue

    ==Uq

    Rq

    R1

    R2

    IR

    ug

    ua

    Influence of Input Bias Current

    Zero Point Error

    6.4 Correction of the Real Behavior

  • P. 6-33

    npqOqnpOqa I

    RR

    RRIRUU

    R

    RRIIUUU

    21

    21

    2

    21),,,(

    Superposition principle

    +

    -

    Ri

    kue

    =

    UO

    =

    In

    Ip

    ue

    =Uq

    Rq

    R1

    R2

    IR

    ug

    ua

    +

    -

    Ri

    kue

    =

    UO

    ==

    InIn

    IpIp

    ue

    ==Uq

    Rq

    R1

    R2

    IR

    ug

    ua

    Compensation for Rq=R1R2

    OqOqnpqOqa IRUUR

    RRIIRUU

    R

    RRU

    2

    21

    2

    21

    Zero Point Error

    6.4 Correction of the Real Behavior

  • Noninverting Amplifier

    qDn RR

    eG

    GTa U

    R

    RRU

    P. 6-34

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    Zero Point Error

    6.4 Correction of the Real Behavior

    Input bias currents flowing through the resistances at the input are acting like an off-set voltage

    If the resistances are equal to each other, no difference voltage is amplified

    Rq

    UE

  • Inverting Amplifier

    Gq

    qG

    DpRR

    RRR

    ngpDp

    q

    Gnpa IRIR

    R

    RIIU

    1),(

    O

    E

    GOa U

    R

    RUU

    1)(

    The Offset voltage is not amplified!

    nGna IRIU )(

    DpR

    Iq Rq

    Ie

    Ip over RDp has a similar influence to UO

    Ognpa IRIIU ),(

    P. 6-35

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    Zero Point Error

    6.4 Correction of the Real Behavior

  • Reduction of the Signal-to-

    Noise- Ratio

    P. 6-36

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    Noise

    6.4 Correction of the Real Behavior

  • ... Is a precision amplifier

    with difference input and

    an output related to the ground

    But a high input impedance is not easy to realise!

    3

    4

    R

    RV

    3

    43

    21

    2

    R

    RR

    RR

    RV

    4

    3

    2

    1

    R

    R

    R

    R

    3

    4

    R

    RV

    ua

    -

    +

    R3

    R1

    i1

    u1

    R4

    R2u2

    Subtraction

    6.5 Instrumentation Amplifier (1)

    P. 6-37

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

  • Impedance converter for amplification of difference voltages

    121

    2 UUR

    RUa

    Amplification changes only by changing two resistances!

    For example for Bridges

    6.5 Instrumentation Amplifier (2)

    P. 6-38

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

  • Impedance Converter

    121

    221 UUR

    RUa

    2211'

    1 URRIV R

    1

    211

    R

    UUIR

    212

    '

    2 RIUV R

    '

    1

    '

    2 VVUa

    211 2RRIU Ra

    6.5 Instrumentation Amplifier (3)

    P. 6-39

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

  • Multiplication

    221221214

    1uuuuuu

    e. g. Thermal Transducer

    u1u2

    uaX k

    21 uukua

    6.6 Applications of Inverting Amplifier

    P. 6-40

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

  • Division

    -

    +

    Rg

    R1

    ig

    i1

    uau1

    ug

    X ku2

    2uuku ag

    2

    1

    12 u

    u

    Rk

    R

    uk

    uu

    gg

    a

    1

    11

    2

    R

    ui

    R

    uku

    R

    ui

    g

    a

    g

    g

    g 11

    uR

    Ru

    g

    g

    6.6 Applications of Inverting Amplifier

    P. 6-41

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

  • Realisation of arithmetic operations by closed loop

    (Generalization)

    ea iku'

    -

    +

    ei

    gi

    au

    Gk

    aGg uki

    I U

    'k

    eg ii

    aGg uki

    e

    G

    ea ik

    iku1'

    Gkk

    1'

    The amplification in the forward direction should be always the

    inverse operation to the element in the feedback

    Forward Amplification Feedback Amplification

    divide Multiply

    square root square

    integrate differenciate

    logarithmize exponentiate

    6.6 Applications of Inverting Amplifier

    P. 6-42

  • 43

    Charge Amplifier for Piezoelectric Sensors

    6.6 Applications of Inverting Amplifier

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    Electric polarized Crystals,

    e.g. SiO2 (Quarz

    F Force

    Q Charge

    k Transfer Faktor

    ++++- - - -

    FkQ

    ApF

    [N]

    [As]

    F

    F0

    t

    Uq

    Uq0

    ttq = RqCq

    ~1 sOutput voltage should be integrated!

  • Charge Amplifier

    dt

    tduC

    dt

    tdQti A

    )()()(

    Problem: Input bias currents will be also integrated!

    )(1

    )( tQC

    tu A

    d ttitQ )()(Charge

    P. 6-44

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.6 Applications of Inverting Amplifier

  • Regulator Circuits (1)

    P-Regulator Simple Amplifier

    I-Regulator Integration

    PI-Regulator

    -

    +

    Reie

    uaue

    Rg Cg

    dtuCR

    uR

    Ru e

    ge

    e

    e

    g

    a 1

    P. 6-45

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.6 Applications of Inverting Amplifier

  • Regulator Circuits (2)

    PID- Regulator

    -

    +

    Reie

    uaue

    Rg

    Ce

    dtuCRdt

    duCRu

    C

    C

    R

    Ru e

    ge

    eege

    g

    e

    e

    g

    a

    1

    Cg

    P. 6-46

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.6 Applications of Inverting Amplifier

  • 47

    0

    0

    )(

    )(

    ))((

    ))((

    )(

    )())(()(

    dtetx

    dtetx

    tX

    tX

    pX

    pXtgpG

    pt

    e

    pt

    a

    e

    a

    e

    a

    )()()( pXpGpX ea

    )()()( tgtXtX ea

    Transfer Function

    )(tg : pulse response

    )(th : Step response )()( tht

    tg

    Time Domain

    Frequency Domain

    Frequency Response (Fourier-Transformed)

    ))(()()( tgFourierdtetgjF tj

    dtep

    pG

    jp

    pGth

    j

    j

    tp

    )(

    2

    1)()( 1

    6.6 Applications of Inverting Amplifier

  • 48

    F(P) 1/F(P)xe(t) xa(t) xe(t)= xa(t) * g(t)

    sensor dynamic

    correction

    )(*)()()(0

    tgtxdtxtx a

    t

    ae tt

    )(/1)( 1 PFLtg

    aaae xxx

    ktx

    2

    00

    121)(

    Transfer Function:

    : Attenuation ratio

    0: Angular frequency

    of non attenuated oszillation

    System of Second Order

    System of First Order

    aae xxk

    tx t1

    )(

    t: Time constant

    Realisation of Defined Transfer Functions (1)

    6.6 Applications of Inverting Amplifier

    Example: Dynamic Correction of Linear Systems

  • 49

    Realisation of Defined Transfer Functions (1)

    -

    +

    ie

    ue ua

    Ze

    Zgvirtual ground

    Short Circuit Kernel Impedance Short Circuit Kernel Impedance

    Zk

    I2

    U1

    Short Circuit Kernel Impedance

    e

    e

    g

    a uZ

    Zu

    6.6 Applications of Inverting Amplifier

  • 50

    Realisation of Defined Transfer Functions (2)

    Short Circuit Kernel ImpedanceCircuit

    s=p

    6.6 Applications of Inverting Amplifier

  • 51

  • 52

    Realisation of Defined Transfer Functions (3)

    PID-Regulator

    Low pass filter

    CRp

    CR

    2

    1 1

    11

    tCR

    eR

    RU 2

    1

    1

    2 1

    p

    CRp

    CRp

    CR

    112222

    11

    t

    CRCRt

    CRCRCRU

    22112211

    12

    1)(

    11

    Transfer Function

    Transfer Function

    Transfer Function

    Transfer Function

    6.6 Applications of Inverting Amplifier

  • 53

    Realisation of Defined Transfer Functions (3)

    6.6 Applications of Inverting Amplifier

  • 54

    Low pass

    High pass

    Band pass

    Notch

    6.7 Active Filters

    Pass Band

    Attenuation Band

    Filter: Circuit with a frequency dependent frequency response

    Passive Filter: R, L, C - Filter

    Active Filter: Op-Amps, No Inductivities

    sperr

  • 55

    Ripple in the pass band

    Ripple in the attenuation band

    Properties of real filters

    Cut-off frequency: decay of the modulus by )3(2

    1dB

    6.7 Active Filters

  • n

    i

    i

    i pc

    ApG

    1

    0

    1

    )(

    Transfer Function of a Filter of order n

    ic real Filter-Coefficientsn Order of the filter

    R

    CUe Ua RCp

    pG

    1

    1)(

    One negative Pol

    n negative pols

    Low pass- Filter 1st order

    P. 6-56

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.7 Active Filters

  • 57

    Low pass filter High pass filter

    Active filter

    6.7 Active Filters

  • 58

    Gau (1): flat amplitude characteristic

    Bessel (2): Optimal Transfer of square pulses for f < fggroup delay time indipendent on , low ripple.

    Butterworth (3): Amplitude characteristic optimized for f < fg, constant.

    Tschebyscheff (4): Filter with riple e = 0,5 dB

    gr

    g

    gr tT

    2

    ttgr

    Group delay time

    Normed group delay time

    Properties of different filter types

    6.7 Active Filters

  • 59

    Amplitude characteristic of active Filter of 4th Order

    6.7 Active Filters

  • 1 RC with critical damping

    2 Bessel

    3 Butterworth

    4 Tschebyscheff with 3 dB ripples

    4. Ordnung

    10. Ordnung

    Butterworth

    maximal constant frequency response

    P. 6-60

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.7 Active Filters

  • Bessel

    Group delay time independent on frequency

    in the pass Band

    P. 6-61

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.7 Active Filters

    1 RC with critical damping

    2 Bessel

    3 Butterworth

    4 Tschebyscheff with 3 dB ripples

  • 62

    Active Filter 2nd Order

    2

    21

    0

    1)(

    SaSa

    ASG

    gg

    jpS

    Multiple feedback

    2

    3221

    2

    1

    32321

    12

    1

    )(

    SRRCCSR

    RRRRC

    RRSG

    gg

    1

    20

    R

    RA Comparison of Coefficients

    1

    323211

    R

    RRRRCa g

    3221

    2

    2 RRCCa g

    6.7 Active Filters

  • 63

    1

    20

    R

    RA

    1

    323211

    R

    RRRRCa g

    3221

    2

    2 RRCCa g

    0

    21

    A

    RR

    21

    0221

    2

    2

    2

    121

    24

    14

    CCf

    AaCCCaCaR

    g

    221

    22

    23

    4 RCCf

    aR

    g

    2

    1

    02

    1

    2 14

    a

    Aa

    C

    C

    Capacitance values are given

    2

    21

    0

    1)(

    SaSa

    ASG

    6.7 Active Filters

    Active Filter 2nd Order

  • 64

    Low pass

    Z1 = R1Z2 = open

    Z3 = 1/s C1Z4 = R2Z5 = 1/s C2

    High pass

    Z1 = 1/s C1Z2 = open

    Z3 = R1Z4 = 1/s C2Z5 = R2

    Band pass

    Z1 = R1Z2 = open

    Z3 = 1/s C1Z4 = 1/s C2Z5 = R3 // C3

    6.7 Active Filters

    Sallen-Key-Filter

    - For analoge filters 2nd Order

    - Low pass filter, high pass filter and band pass filter are possible with the same

    structure

    - Notch und Cauer-Filter are not possible

  • Low pass High pass Band pass

    General

    6.7 Active Filters

  • Amplification is hold on a

    specific value2

    21

    0

    1)(

    SaSa

    ASG

    0A

    212111 1 CRRRCA g

    3221

    2

    2 RRCCa g

    Positive Feed Back Low Pass Amplifier 2nd Order

    Transfer function

    P. 6-66

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.7 Active Filters

  • 67

    0A

    11 RCa g

    22 RCa g

    Fr R1=R2=R3=R und C1=C2=C

    Critic

    Damping

    Bessel-

    Filter

    Butterworth-

    Filter

    Tschebyscheff-Filter

    with 1 dB ripple

    1,0 1,268 1,856 1,955

    Special case:

    defines the filter typ

    )1(3 R

    6.7 Active Filters

    Positive Feed Back Low Pass Amplifier 2nd Order

  • Positive Feedback High Pass Filter

    P. 6-68

    Prof. Dr.-Ing. O. Kanoun

    Chair for Measurement and Sensor Technology

    6.7 Active Filters

  • 69

    Band Pass Filter with a Simple Positive Feed Back

    Resonance frequency

    (Extreme low damping)

    Performance of rejection

    RCfr

    2

    1

    kf

    fQ r

    3

    1

    Amplification at frk

    kAr

    3

    6.7 Active Filters

  • 70

    Aktives Doppel-T-Sperrfilter, Notch-Filter

    Resonance frequency

    (unfinite barrier effect)

    Performance of rejection

    RCfr

    2

    1

    )2(2

    1

    kf

    fQ r

    Amplification kA 0

    6.7 Active Filters