5g ultra-high capacity network design with rates 10x lte-a

72
1 IEEE ComSoc Austin/Texas Chapter DLT © 2012 Mischa Dohler Mischa Dohler CTTC, Spain IEEE ComSoc Distinguished Lectureship Tour Texas/Arizona USA November 2012 Slide template is copyright of BeFEMTO. All rights reserved. 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

Upload: trinhdien

Post on 03-Jan-2017

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

1 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Mischa DohlerCTTC, Spain

IEEE ComSoc Distinguished Lectureship TourTexas/Arizona USANovember 2012

Slide template is copyright of  BeFEMTO. All rights reserved.

5G Ultra-High CapacityNetwork Design With

Rates 10x LTE-A

Page 2: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

2 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Drivers & Vision

Page 3: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

3 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Smartphones Cause Capacity Crunch

© Thierry Lestable, Sagemcom

home homeoffice

80% Indoors20% Outdoors

Page 4: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

4 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

The Resulting Capacity Demand Prediction

© Thierry Lestable, Sagemcom

Total worldwide mobile traffic by 2020:more than 127 exa‐bytes (10^18)more than 30 times increase compared to today

Total mobile traffic (EB per year)

-

20.00

40.00

60.00

80.00

100.00

120.00

140.00

2010 2015 2020

Year

ly tr

affic

in E

B EuropeAmericasAsiaRest of the worldWorld

Source: IDATE

Page 5: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

5 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

IMT‐A 4G capacity targets [ITU‐R M.2133]: 2.2b/s/Hz for downlink and 1.4b/s/Hz for uplink in urban deployment supported rate is thus maximal 100Mbps/km2 (500m cell size; 40MHz)

Capacity needs (reality check): peak density of 8,000 people/Km2  of which only 10% subscribe to the broadband service of which only 20% require access at the same time each requiring 5Mbps

4G requirements … … were short by a factor of 10 yesterday … are short by a factor of 50 today … will be short by a factor of 100 tomorrow

City Average People/Km2

Athens 5,400

Madrid 5,200

London 5,100

Barcelona 4,850

Warsaw 4,300

Naples 4,100

Berlin 3,750

Paris 3,550

8,000 X 10% X 20% X 5Mbps = 800 Mbps/Km2

Are we prepared to meet this capacity demand?

Page 6: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

6 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Addressing Capacity Needs in the Past

Increase in capacity over past decades:Martin Cooper: doubled every 30 months over past 100 years overall: million‐fold increase in capacity since 1957

Breakdown of these gains: 5 x PHY; 25 x spectrum; 1600 x reduced cells, 5 x rest

Breakdown of (estimated) cost:

Reduced Cells MHz

Reduced Cells MHz PHY

[HOT ‐ TOP 3 IEEE DOWNLOAD IN APRIL 2011] Mischa Dohler, R.W. Heath Jr., A. Lozano, C. Papadias, R.A. Valenzuela, "Is the PHY Layer Dead?," IEEE Communications Magazine, vol 49, issue 4, April 2011, pp 159‐165.

Ratio Gain/CostMost Important!

Page 7: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

7 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Trend confirms: Link‐Layer won’t help

© Avneesh Agrawal, Qualcomm

Page 8: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

8 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Time for Major Design Changes

To facilitate the exponential capacityincrease, dramatic changes to how 

we design cellular systems are needed!

… oh, and, yes, spectrum is not a problemand power efficiency neither …

Page 9: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

9 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Going 5G: Change in Design Paradigms

1. Differentiate clearly between outdoors and indoors design

20% of time 80% of time

Similar data experience outdoors & indoors important!

Page 10: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

10 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Going 5G: Change in Design Paradigms

2. Put most efforts on architecture and management thereof

ABS

ABSABS

HBS

Polarization 1

Polarization 2

Page 11: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

11 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Going 5G: Change in Design Paradigms

3. Acknowledge heterogeneous nature of wireless arena

Page 12: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

12 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Going 5G: Change in Design Paradigms

4. Use absolute area capacity rather than spectral efficiencies

spectrum is heterogeneous users care about rates

Page 13: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

13 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Going 5G: Change in Design Paradigms

5. Cost considerations must be taken into account at design phase

Page 14: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

14 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Outline of Talk (all very high‐level!)

A. Outdoors 5G Design B. Indoors Femtocell Design

C. Management Through SON

Page 15: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

15 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

A. Outdoors 5G Design

Page 16: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

16/18© 2011 Mischa Dohler

1. Water-filing applied to equipment placement and its choice.

2. Aggressive spatial re-use due to ultra-narrow beams at BS

3. Aggressive joint design of wireless access and backhaul

4. Aggressive use of licensed and license-exempt technologies

5G Architecture Design Principles

Page 17: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

17/18© 2011 Mischa Dohler

Above-rooftop HBS serving many below-rooftop ABSs:

1Gbps/km2 Architecture [1/2]

ABS

ABSABS

HBS

Polarization 1

Polarization 2

Page 18: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

18/18© 2011 Mischa Dohler

Cost-efficient mixture of L/LE/60GHz wireless technologies:

1Gbps/km2 Architecture [2/2]

Page 19: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

19/18© 2011 Mischa Dohler

Various planning and deployment possibilities:

Deployment Possibilities

b

b

b

a aaa

ABSa

aa

a

aa

aABS

b

b

ABS

b

b

b

ABS ABS ABS

ABS

ABS

b1b1 b1 b1 b1b1 b

ABS

baa

ABS

bbABS

bab

a a

ABS

ABS

aa

a aaa

a aaa

a

b

HBS-LRoof-top

HBS-LE street

ABS

Page 20: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

20/18© 2011 Mischa Dohler

Grid Architecture: mimic Barcelona layout per sector 4 ABSs, 1 user each simulating 1 sector only

Aggressive Frequency Reuse: access link and self-backhaul communicate

simultaneously access link and self-backhaul use the same

band

Self-Organizing Network: adaptive and distributed power and

interference control at the ABS

1Gbps/km2 Simulation Scenario

Page 21: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

21/18© 2011 Mischa Dohler

1Gbps/km2 Simulation Results

40 MHz bandwidth & 4 beams achieve 1Gbps/km2 capacity density:

7

6

8

5

4

Page 22: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

22/18© 2011 Mischa Dohler

ETSI TC BRAN, TR 101 534: Alvarion, CTTC, Polska Telefonia Cyfrowa, Siklu, Thales "Very high capacity density BWA networks; System architecture, economic

model and technical requirements“

From Theory to Standards

Page 23: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

23/18© 2011 Mischa Dohler

COBHAM’s high-capacity multi-beam Hub BS:

From Standards to Prototyping [1/3]

Page 24: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

24/18© 2011 Mischa Dohler

ALVARION’s SISO & CTTC’s MIMO Access BSs:

From Standards to Prototyping [2/3]

Page 25: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

25/18© 2011 Mischa Dohler

SIKLU’s cost-efficient 60GHz backhaul technology:

From Standards to Prototyping [3/3]

Page 26: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

26/18© 2011 Mischa Dohler

From Prototyping to Practice [1/5]

Tel Aviv 1Gbps/km2 live test trial, April 2012:

Page 27: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

27/18© 2011 Mischa Dohler

From Prototyping to Practice [2/5]

Page 28: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

28/18© 2011 Mischa Dohler

From Prototyping to Practice [3/5]

Page 29: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

29/18© 2011 Mischa Dohler

From Prototyping to Practice [4/5]

Page 30: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

30/18© 2011 Mischa Dohler

From Prototyping to Practice [5/5]

Page 31: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

31 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

B. Indoors Femtocell Design

Page 32: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

32 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

The Small‐Cell Solution Space

Only viable solution is via change in architecture & smaller cells: Remote Radio Head: “dumb” radio extension of BS; often RF/IF/BB‐over‐fiber Relay: wireless radio extension of BS; often limited intelligence Pico Cell: intelligent BS; owned, planned and placed by operator Femto Cell: intelligent BS; mostly owned and placed by consumer; no planning!

© Josep Vidal, UPC

Page 33: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

33 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Definition & Differentiation Of Femtocell

Femtocell Picocell Wifi

Site Rental customer operator customer

Installation customer operator customer

Electricity Bill customer operator customer

Radio Planning no (local) yes (prior & global) no

Backhaul Connection via customer dedicated via customer

Macrocell Interaction not (yet) yes not applicable

Transmission Power  < 23dBm 23‐30dBm 20dBm

Access Rights mainly closed public closed

Handover possible yes vertical

Photo

©Sagem, TID © bandaancha.eu© 3g.co.uk

Page 34: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

34 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

The Femtocell Opportunity

1. Smart Digital Home:

2. Reduces Customer Churn:

3. Allows Traffic Offload:

4. Energy Saver For All:

© Thierry Lestable, Sagemcom

© Femto Forum, Thierry Lestable, Sagemcom

© Femto Forum, Thierry Lestable, Sagemcom

© Mobile VCE, D. Laurenson

Page 35: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

35 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Finding Femtocells Very Appealing

© Femto Forum

Page 36: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

36 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Femtocell Technology Providers

The ecosystem is now mature enough© Thierry Lestable, Sagemcom

Page 37: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

37 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Femtocell Rollouts & Deployments To‐Date

36 commercial deployments in 23 countries15 roll‐out commitments in 2012

Page 38: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

38 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Femtocells Business Model

In BeFEMTO, four business cases are investigated:

‐ One off fee: the user pays 50€ once, and the monthly payment does not change (35€/month)

‐ No fee: the user does not pay for the femtocell, and the monthly payment does not change (35€/month)

‐ Decrease: the user does not pay for the femtocell, and the monthly payment decreases by 5€ to 30€/month

‐ Increase: the user does not pay for the femtocell, and the monthly payment increases by 5€ to 40€/month

32$/month

159$ one off

250$ one off

5$/month

255$ one off+42$/month

This image cannot currently be displayed.

free of charge

This image cannot currently be displayed.

10$/month

This image cannot currently be displayed.

180$ one off+1.5$/month

This image cannot currently be displayed.

199€ one off10€/month15€/month

100€ one off+8€ /month

50£ one off+5£/month

© BeFEMTO

Page 39: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

39 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Femtocell Market Growth Forecast 

© Informa Telecoms & Media© Thierry Lestable, Sagemcom

Page 40: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

40 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Related Fora & Standards Bodies

Small Cell Forum (before Femto Forum) not‐for‐profit, founded 2007, rebranded 2012 manufacturer‐driven main driver behind femtocell uptake

3GPP IWLAN & EPC standards (for Non‐3GPP Access & Mobility) H(e)NB standards (for Basic FemtoCells) LIPA & SIPTO standards (for Local Access & Offloading) ANDSF Standards (for Discovery, Selection & Policy) LIMONET (for LIPA Mobility), SaMOG(for Trusted WiFi), BBAI (for Broadband Network interworking)

IEEE/WFA/WBA Hot Spot 2.0 (Discovery & Seamless Access Control)

GSMA WLAN Task Force (2003?) WiFi Offload White Paper, April 2010 GSMA‐WBA Joint Task Force –WiFi Roaming White Paper, Jan 2012

© Prabhakar Chitrapu, InterDigital

Page 41: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

41 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Femtocell Design Challenges

1. Low Device Cost: efficient, low‐cost power amplifiers, highly sensitive receivers, flexible channel bandwidth, reliable RF 

filters; low cost and low power implementation; etc.

2. System Interference Management: minimize interference to macro (and vice versa); minimize interference to adjacent femtos; coping with 

unplanned rollouts; coverage estimation, interference cancellation; etc.

3. Femtocell Capacity Maximization: link and access management (handover, admission control, resource management, load balancing and 

flow control); dynamic bandwidth allocation and sharing; etc.

4. Backhaul Issues: wired or wireless backhaul, reducing signaling load, QoS provisioning and traffic priorization, joint access 

and backhaul design; etc.

5. Viable System Architecture: control & data planes, access control, authentication, local breakout, efficient forwarding, seamless 

mobility, zero‐config, etc.

© BeFEMTO

Page 42: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

42 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Problem Of Interference With Femtos

Source: Zubin Bharucha, DOCOMO Euro‐Labs

Page 43: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

43 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Rel‐10 ICIC In Heterogeneous Networks

To support femtocell deployment effectively, inter‐cell interference coordination (ICIC) is necessary

Different from homogeneous network (macrocell deployments), o Low power nodes (femto eNBs) must mute (or reduce transmission 

power)  Named as “Protected resources” hereo High power nodes (macro eNBs) need not muteo Named as “Non‐protected resources” here

Protected/Non‐protected resources are multiplexed in frequency or time‐domain  Both ICIC techniques are effectively supported in Rel‐10

Cell layer

Time

Frequency

Femto layerMacro layer

Frequency-domain ICIC

Car

rier

#1C

arrie

r#2

Frequency

Time

Cell layer

Time-domain ICIC

Car

rier #

1

Source: Zubin Bharucha, DOCOMO Euro‐Labs

Page 44: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

44 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

LTE‐A Control & Data Frame Structure 

• data region interference mitigation (a lot of work with viable solutions)• control region interference mitigation (surprisingly little work given it is 

the actual problem since no control means no data)Source: Zubin Bharucha, DOCOMO Euro‐Labs

Page 45: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

45 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

LTE‐A Detailed Control Frame Structure

• The control region contains 3 control channels:– PCFICH: control frame indicator; occurs only on first OFDM symbol; 

scattered in frequency domain; indicates size of control region– PDCCH: downlink control channel; spread in time and frequency; 

carries scheduling information– PHICH: HARQ indicator channel; spread in time and frequency; 

contains HARQ information• Focus on the performance of the first two because of differences in their 

distribution patterns – the PCFICH has restricted positions in the time domain, whereas the PDCCH is dispersed in the time and frequency domains

Source: Zubin Bharucha, DOCOMO Euro‐Labs

Page 46: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

46 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

LTE‐A Control Interference ‐ Current Approaches

(a)•No coordinationHeavy

interference on 2OFDM symbols

(b)• Femto controlchannel sparsenessInterference to

first OFDM symbolis lowered

(c)•Almost blank subframeOnly interference from

reference symbolFemto data transmission

is not allowedSource: Zubin Bharucha, DOCOMO Euro‐Labs

Page 47: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

47 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Novel Femto‐Macro ICIC Approach [1/4]

The proposal from DoCoMo Euro‐Labs advocates carefully selecting the PhysicalCell Identifier (PCI) of HeNBs at start‐up, such that any interference caused by theircontrol channels to the PCFICH of any trapped macro UEs is avoided.o In order for this to be possible, the HeNB needs to identify the eNB that it is

closest to. Identifying the eNB means that the HeNB must be aware of the PCI of the eNB

(decoded using synchronization procedure).

Illustration onlySource: Zubin Bharucha, DOCOMO Euro‐Labs

Page 48: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

48 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Qualcomm Proposition in BeFEMTO for Resource Partitioning in Space for Femto‐Macro Interference Mitigation:

Problem Statement: proper resource partitioning is a must to handle femto‐macro interference beam selection in MIMO‐enabled femto BS equipment could be made use of

Innovative Proposition: design of suitable coordinated beam selection algorithm following LTE codebook designs comparative study between different restriction and codebook policies study outcomes: codebook restrictions yields gains to macro users at low femto capacity loss

Novel Femto‐Macro ICIC Approach [4/4]

50% improvement @ macro

5% deterioration@ femtoSource: Qualcomm, BeFEMTO

Page 49: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

49 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

C. Self‐Organizing Networking

Page 50: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

50© 2012 Mischa Dohler IEEE ComSoc Austin/Texas Chapter DLT

Capacity‐Optimal Schedule?

With femtocells, the degrees‐of‐freedom (DOF) increase significantly – and with it complexity! [presented by Interdigital: Globecom’11 – IWM2M, Houston]

Page 51: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

51© 2012 Mischa Dohler IEEE ComSoc Austin/Texas Chapter DLT

System Degrees of Freedom

High number of femtos/users/resources/etc + interference constraints ‐> Problem of DOF

Degrees of Freedom (DOF) / Area: new system DOF = old system DOF                x 20‐30 new system density = old system density     x 4 new DOF/km2 = old DOF/km2                       x 100

Page 52: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

52© 2012 Mischa Dohler IEEE ComSoc Austin/Texas Chapter DLT

SON Is The Only Solution

SON Helps For Previously Manual Processes: reduce manual intervention for deployment savings automate repetitive processes examples: automatic planning & self‐configuration

SON Helps For Too Fast/Complex Processes: improve run‐time operation based on real‐time data automate optimization of critical network elements example: self‐optimization & self‐healing

Among the many possible approaches, we deal with cognitive/docitive RRM to facilitate SON.

Page 53: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

53© 2012 Mischa Dohler IEEE ComSoc Austin/Texas Chapter DLT

SON In Cellular Networks

Page 54: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

54© 2012 Mischa Dohler IEEE ComSoc Austin/Texas Chapter DLT

Important SON Tradeoffs

Page 55: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

55© 2012 Mischa Dohler IEEE ComSoc Austin/Texas Chapter DLT

From cognitive to docitive networking paradigms: cognition: “system which is working under conditions it was not designed for” docition: “teaching” between expert nodes to accelerate learning/cognition result: truly autonomous SON with quick convergence

SON Through Cognition/Docition

Page 56: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

56© 2012 Mischa Dohler IEEE ComSoc Austin/Texas Chapter DLT

Cognitive Approach – Q‐Learning

...

1s

2s

ks

11 pa ll pa

),( 11 asQ ),( 1 lasQ

),( 12 asQ ),( 2 lasQ

),( 1asQ k ),( lk asQ

v ),( 1avQ ),( lavQ

),( *2 asQ

),( *avQ

... ...

... ...

FOR each (s, a) DO

Initialize table entry:

Observe current state s

WHILE (true) DO

Select action a and execute it

Receive immediate cost c

Observe new state v

Update table entry for Q(s,a) as 

follows

State transition from s to v

0),( asQ

)],(),(max[),(),( asQavQcasQasQa

Page 57: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

57© 2012 Mischa Dohler IEEE ComSoc Austin/Texas Chapter DLT

Nodes operate in a distributed and autonomous fashion but exchange suitable parts of their Q‐Table:

Docition Approach – Exchange of Q‐Entries

Input State

Output Action

pxy

Startup Docition. Docitive femto BSs teach their policies to newcomers joining the network. 

IQ‐Driven Docition. Docitive radios periodically share part of their policies with less expert nodes with similar gradient.

Page 58: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

58© 2012 Mischa Dohler IEEE ComSoc Austin/Texas Chapter DLT

Macrocell capacity as function of femtocell density:

Performance – Superior Capacity

Page 59: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

59© 2012 Mischa Dohler IEEE ComSoc Austin/Texas Chapter DLT

CCDF of average SINR at macrouser for a 50 % occupation ratio:

Performance – Superior Convergence Precision

Page 60: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

60© 2012 Mischa Dohler IEEE ComSoc Austin/Texas Chapter DLT

Convergence speed improves by order of magnitude from 20,000 (cognitive) to 4,000 (docitive) iterations:

Performance – Superior Convergence Speed

Page 61: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

61 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

D. Future Challenges

Page 62: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

62 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Operator’s capacity challenge today and for next years: capacity requirements are far off realityexcept for order‐of‐magnitude PHY, rather work on architectureinfrastructure cost is major driver since ROI margins tightenmanagement becomes major problem, SON is a must

1Gbps/Km2 architecture with the following properties...… LTE(‐A) & WiMAX‐agnostic architecture... anytime and everywhere in urban environments… cost‐efficient to operators, service providers, users… spectrally efficient using both licensed and exempt bands... autonomous operation facilitating deploy & forget experience

Conclusions on Outdoors 5G

Page 63: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

63 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Conclusions on Femto Cells

Heterogeneity Is Quickly Increasing:femtos, networked femtos, wifi, m2m, etc, etcfuture use outdoors, mobile, in relay formallow for viable QoS/QoE delivery

Self‐Organizing Networking Will Be Key:distributed  localized SON (important for signaling)standards compliant SON approaches for industry uptaketake energy constraints into account

Business Models subscriber models  FON‐like approaches

Page 64: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

64 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Conclusions on Femto Cells

Data Traffic: 40% @Home 35% On the Move 25% Work

© BeFEMTO & Thierry Lestable, Sagemcom

Femtocell rollouts of the future: 

Page 65: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

65 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Heterogeneous Access Technology Landscape

Range

Rate

low

high

low high

ZigBee & LP Wifi(IEEE, IETF)

WiFi & Femto(IEEE, IETF, 3GPP)

M2M(ETSI, 3GPP)

Cellular xG(ITU, 3GPP, ETSI)

Page 66: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

66 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

ANNEX

Subsequent slides are not part f endorsed by the IEEE nor ComSoc, and a private slide of M Dohler.

Page 67: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

67 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Disclaimer

Besides my own, many third party copyrighted material – mainly from the BeFEMTO Femtocell Winterschool 2012 & BuNGee project – is reused within this tutorial under the 'fair use' approach, for sake of educational purpose only, and very limited edition.

As a consequence, the current slide set presentation usage is restricted, and is falling under usual copyrights usage.

Thank you for your understanding!

Page 68: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

68 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

CTTC [www.cttc.es]

Research, prototypes, commercialization:

> 200 papers per year!

6 cutting‐edge R&D areas:

Major branch in Hong Kong!!!

Page 69: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

69 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

LENA NS3 Open‐Source Simulators (femtos too)

CTTC working with Ubiquisys, the leading femtocell manufacturer: develop a common platform for LTE femto/macro cell vendors to evaluate their different solutions open source to foster adoption/contributions; based on NS‐3; http://iptechwiki.cttc.es/LTE‐EPC_Network_Simulator_(LENA) use case: LTE‐based Self Organized Networks need to test SONs algorithms before deployment Ubiquisys made extensive use of  simulation to design its first generation of WCDMA intelligent femtocells

Product–oriented:Real‐world interfaces for SON algorithmsFemtoForum MAC Scheduler API specification

Page 70: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

70 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

BeFEMTO Project [www.ict‐befemto.eu]

> 30 Deliverables!

Page 71: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

71 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Femtocell Special Issues

Page 72: 5G Ultra-High Capacity Network Design With Rates 10x LTE-A

72 IEEE ComSoc Austin/Texas Chapter DLT© 2012 Mischa Dohler

Transactions on Emerging Technologies

Year of submission  

Average Days to first decision 

Average Days to final decision 

2009  158  243 

2010  207  245 

2011  61  83