流體力學講義_王曉剛_義守大學

Upload: terry-choi

Post on 13-Oct-2015

930 views

Category:

Documents


169 download

TRANSCRIPT

  • 5/22/2018 _ _

    1/169

    1

  • 5/22/2018 _ _

    2/169

    2

    0. 4

    1. ..7-dimensionsunits.7-viscosity.8-CouettePoiseuille..15

    -..18-stress field..19- ..23

    2. Fluid Statics.24- ..24-..32- .38-..47- buoyancy..50

    3. - Bernoulli equation..51

    - streamline.51

  • 5/22/2018 _ _

    3/169

    3

    - .59-.67-.71

    4. Fluid Kinematics.80-velocity field..80-acceleration field..84- control volume

    system..87

    -Reynolds transport theorem905.finite control volume.98

    -.98- 105-116

    6. differential..124- kinematics124-130-..140- inviscid flow.144-viscous flow..154

  • 5/22/2018 _ _

    4/169

    4

    0

    meteorology

    oceanographyhydrology

    aerodynamics

    ArchimedesHero of

    Alexandria

    ~400

    Da Vinci 15

    jethydraulic jump

    Mariotte 16

    Newton 17

    viscosity of linear fluid-

    newtonian fluidperfect

    or frictionless fluid

    bernoulliEulerLagrange

  • 5/22/2018 _ _

    5/169

    5

    Laplace

    Eulerdifferential

    integral

    hydraulics

    PittoWeberHagen

    PoiseuilleDarcy

    19 experimental

    hydraulics theoretical

    hydrodynamics

    Froude

    Rayleighdimensional analysis

    Reynolds

    Reynolds number

    NavierStokes

    Navier-Stokes

    20

  • 5/22/2018 _ _

    6/169

    6

    Prantdlboundary layer

    theory-

    20 von Karman

    Taylor

    ~1990

    computational fluid dynamics, CFD CFD

    PHOENIX, FLUENT, CFD2000

  • 5/22/2018 _ _

    7/169

    7

    1.1 dimensionsunits

    principle dimensions

    SI units

    Mass {M}/ Force {F}

    (F = MLT-2)

    kilogram (kg)/(N)

    Length {L} meter (m)

    Time {T} (s)

    Temperature {} (K)

    force of 1 newton (N) = 1 (kg.m/s2)

    energy of 1 joule (J) = 1 (N.m)

    power of 1 watt (W) = 1 (J/s)

    pressure of 1 pascal (Pa) = 1 (N/m2)

    viscosity = kg/m.s

    specific heat = J/kg.K = m2/s2.K

    Bernoullis equation

  • 5/22/2018 _ _

    8/169

    8

    ghuppo ++=2

    2

    1

    {N/m2

    } = {N/m2

    } + {kg/m3

    . m2

    /s2

    } + {kg/m3

    . m/s2

    . m}

    (kg/m3. m2/s2= kg/m.s2= kg . m/s2. 1/m2= N/m2)

    density (kg/m3) = mass/unit volume

    specific volume v(m3/kg) = 1/

    specific weight = g =

    specific gravity s.g. = /H2O

    s.g.Hg= 13.6

    Hg= (13.6)(1000 kg/m3) = 13.6 X 103kg/m3

    1.2 viscosity

    :?

    shear stress

    (deformation angle force)

  • 5/22/2018 _ _

    9/169

    9

    (fluid deforms continuously)

    hookes law

    deformation rate

  • 5/22/2018 _ _

    10/169

    10

    P

    U

    U 0no-slip condition u = u(y) u(y) = Uy/b

    velocity gradientdu/dy = U/b

    t AB

    b

    a =tan

    a = Ut

    b

    tU=

    deformation rate

    tt

    0lim

    =&

    dy

    du

    b

    U==&

    = P/A

  • 5/22/2018 _ _

    11/169

    11

    & dydu

    dy

    du= (1.1)

    muviscosity

    dynamic viscositykg/m.s

    nu= /= kinematic

    viscosity(m2/s)

  • 5/22/2018 _ _

    12/169

    12

    (1.1)newtonian fluid

    non-newtonian fluid

    momentum exchange

    long change

    cohesion force

  • 5/22/2018 _ _

    13/169

    13

  • 5/22/2018 _ _

    14/169

    14

  • 5/22/2018 _ _

    15/169

    15

    1.3 CouettePoiseuille

    1.Couette

    2.pressure dropPoiseuille

    du/dyvelocity profile or velocitydistribution

    frictional force

    V

  • 5/22/2018 _ _

    16/169

    16

    control volumea

    = 0 x

    p = const. In x-direction (Why?)

    1= 2= y

    .constdy

    du==

    byayu +=)(

    1. u = 0 at y = 0 (no-slip condition)2. u = V at y = h (no-slip condition)

    (,)

    yh

    Vyu )()( =

    .consth

    V==

  • 5/22/2018 _ _

    17/169

    17

    dp/dx 0+x p1> p2,

    dp/dx < 0

    lrrpp 2)(2

    21 =

    dr

    durpp =

    =

    2)( 21

    l

    )4

    (1

    )()(2

    21 rcpp

    yu

    =l

    u = 0 at y = R,4

    2R

    c=

    ))((4

    1)(

    2221 rRpp

    yu

    =l

    = -dp/dx, (dp/dx = pressure gradient)

    @r=0221

    max )(41)0( Rppuu

    l==

  • 5/22/2018 _ _

    18/169

    18

    max22120

    2

    1)(

    8

    12)(uR

    pp

    R

    rdrruu

    R

    =

    ==

    l

    HW

    1.4

    viscometer

    torque meter

    y

    yU /

    =

    =rU )2(/

    rhr

    T

    A

    rT

    A

    F

    ===

  • 5/22/2018 _ _

    19/169

    19

    hr

    Ty32

    =

    1.5 stress field

    forces

    1.body forces- gravitational force,dVgr

    EM force

    2. surface forces- stress forcepressure force

    An Ft

    Fnt n

    shear stressA

    FtA

    t

    0lim

    =

    normal stressA

    FnA

    n

    0lim

    =

  • 5/22/2018 _ _

    20/169

    20

    A

    FxA

    xx

    0lim

    =

    A

    FyA

    xy

    0lim

    =

    A

    FzA

    xz

    0lim

    =

    xyx: x

    y: y

    18

  • 5/22/2018 _ _

    21/169

    21

    )( xxxx = )( yyyy = )( zzzz =

    )( xyyx = )( yxxy =

    xyyx = )()( yxxy =

    6

    x 0, y 0 z 0

    6

    zzzyzx

    yzyyyx

    xzxyxx

    6

    tensor

    non-viscous flow or inviscid

    flowfrictionless

    0.....==== yzyxxy

    pzzyyxx === hydrostatic

    pressure

    dy

    duyx =

  • 5/22/2018 _ _

    22/169

    22

    1.6

    1.system2.control volume

    finiteintegral

    infinitesimal

    differential

    sysEWQ =

  • 5/22/2018 _ _

    23/169

    23

    1. lagrangian

    2.eulerian

  • 5/22/2018 _ _

    24/169

    24

    fluid statics

    shear stress

    hydrostatic

    pressure

    2.1 pressure distribution

    V

    sin0 sxpzxpF syy ==

    2cos0

    zyxgsxpyxpF szz

    ==

    cossy= sinsz=

  • 5/22/2018 _ _

    25/169

    25

    sy pp = zgpp sz 2

    1+=

    0x 0y 0z

    pppp zyx ===

    scalarvector- Pascals law

    )(3

    1zzyyxxp ++=

    pressure field

  • 5/22/2018 _ _

    26/169

    26

    y

    zyxy

    pzx

    y

    y

    ppzx

    y

    y

    ppFy

    =

    +

    = )

    2()

    2(

    zyxx

    pFx

    = zyx

    z

    pFz

    =

    zyxkz

    pj

    y

    pi

    x

    pkFjFiFF

    zyxpress

    )(rrrrrrr

    +

    +

    =++=

    gradient

    kz

    jy

    ix

    gradrrr

    +

    +

    ==

    kz

    fscalarj

    y

    fscalari

    x

    fscalarfscalerfscalargrad

    rrr

    +

    +

    ==)()()(

    )()(

  • 5/22/2018 _ _

    27/169

    27

    :

    zyxpFpress =r

    directional derivative

    f Pbr 1=b

    r

    f PbrDbf df/ds

    sPfQf

    dsdffD

    sb )()(lim

    0==

    Qbr C C

    bsPkszjsyisxsrrrrrr

    +=++= )()()()( 0s

    chain rule

    dsdz

    zf

    dsdy

    yf

    dsdx

    xf

    dsdffDb

    ++

    ==

    bkds

    sdzj

    ds

    sdyi

    ds

    sdx

    ds

    srd rrrrr

    =++=)()()()(

    )(fbds

    dffDb ==

    r

    ar

  • 5/22/2018 _ _

    28/169

    28

    )(fa

    a

    ds

    dffDa == r

    r

    222

    32),,( zyxzyxf ++= P(2,1,3) kiarvr

    2=

    kzjyixfrrr

    264)( ++= P kjifrrr

    668)( ++=

    789.15

    4)668(

    5

    )2()( =++

    === kji

    kif

    a

    a

    ds

    dffDa

    rrrrr

    r

    r

    f Par

    1. f P f P

    cos)(cos)( ffbfDb == r

    br(f) Dbf (f)

    2. f x,y,z)=C=const. P f P normal vector

  • 5/22/2018 _ _

    29/169

    29

    HW: 22 531500),,( yxzyxp =

    P(-0.2,0.1,1)

    xyz

    zyxpzyxkz

    pj

    y

    pi

    x

    pFpress =

    ++

    = )(

    rrrr

    pzyx

    F

    volumed

    Fd

    f

    presspress

    press ===

    rr

    r

    )(

    driving action p

  • 5/22/2018 _ _

    30/169

    30

    -T heat flux

    gfgravrr

    =

    )(2

    2

    2

    2

    2

    2

    z

    V

    y

    V

    x

    Vfviscous

    +

    +

    =

    rrrr

    conservation of momentum

    ...... 2 +++=+++== Vgpffffa viscousgravpressi

    i

    rr

    rrrrr

    hydrostatic pressure

    0=ar 02 = Vr Why?

    gp r+=0

    {} +

    {} = 0

    p surface of constantpressure

    0)()( =+++

    +

    +

    kgjgigkz

    pj

    y

    pi

    x

    pzyx

    rrrrrr

    0== yx gg ggz =

    0=xp 0=y

    p gzp =

  • 5/22/2018 _ _

    31/169

    31

    x y z

    p = p(x,y,z) = p(z)

    =2

    112 gdzpp

    incompressible = const

    )( 1212 zzgpp =

    compressible

    gRT

    pg

    z

    p==

    ==2

    11

    22

    1ln

    Tdz

    Rg

    pp

    pdp

    =

    RT

    zzgpp

    )12

    12

    (exp

    HW:

    T(K) = (288 0.006507 z(m))

  • 5/22/2018 _ _

    32/169

    32

    2.2

    absolute pressure

    gage pressure

    p = 29.92 in Hg = 760 mm Hg = 101.325 kPa

    1 Pa = 1 N/m

    barometer

    atmvapor pghpgh =+

    mercury Hg

    mmmg

    ph atm 76076.08.910006.13

    1001.15

    ==

    ==

    1 bar

    / equal level/equal pressure

    principle -

  • 5/22/2018 _ _

    33/169

    33

    p1= p2= p3

    hydraulic jackhydraulic brake

    B,C Cp

  • 5/22/2018 _ _

    34/169

    34

    C

    B

    C

    B

    C

    B

    A

    A

    pA

    pA

    F

    F=

    =

    AB>> AC

    piezometer

    A

    atmA pghp += 11 absolute

    11ghpA = gage

    U-U-tube manometer

    U/

    A

    2211 ghghpA =+ gage

    1

    22 ghpA

    U

  • 5/22/2018 _ _

    35/169

    35

    A,B

  • 5/22/2018 _ _

    36/169

    36

    ghgphgp BA 211 )( ++=++ ll

    ghppBA )( 12 =

    2 < 1

    flow nozzle U

    Q

    BA ppKQ = K

    212 )( ghpp BA =

    inclined-tube manometer

  • 5/22/2018 _ _

    37/169

    37

    sin22 lgpp BA = sin2

    2g

    ppBA

    =l

    )(21 hHgpp ++=

    hdHD 224

    1

    4

    1 =

    ])(1[ 221D

    dghpp +=

    h = 1 cm

    Papp 1.90])3010(1[01.08.91000827.0 221 =+=

    1 Pa

  • 5/22/2018 _ _

    38/169

    38

    l224

    1

    4

    1dHD = 2)(

    D

    dH l=

    ])(sin[ 2

    D

    dgpp aA ll += ])([sin 2

    D

    dg

    ppaA +=

    l

    cm1=l pa= 0 pA

    ])10

    8.0([sin8.910008.0

    101

    /1 2232

    2

    +=

    s

    m

    m

    kg

    m

    mN

    118.0sin = o78.6=

    2.3

    1. resultant force

    2.

  • 5/22/2018 _ _

    39/169

    39

    FR

    ===AAA

    R ydAgdAgyghdAF sinsin

    AyydA

    c

    A

    =

    x the first moment of the

    area w.r.t. x-axis yc

    centroid x y

  • 5/22/2018 _ _

    40/169

    40

    ApAghgAyF cccR === )(sin

    hc

    (xR, yR)

    FR x moment

    x

    ====

    Ac

    R

    AAA

    RR dAy

    Ay

    FdAygdAygydFyF 222 sinsin

    Ay

    dAy

    yc

    AR

    =

    2

    xA

    IdAy = 2 Ix x the second

    moment of area or moment of inertia Ixc x

    2cxcx AyII += c

    c

    xccR y

    Ay

    Iyy +=

    0>Ay

    I

    c

    xc center of pressure, yR

    y xR

  • 5/22/2018 _ _

    41/169

    41

    Ay

    I

    Ay

    xydA

    xc

    xy

    c

    AR ==

    xy

    A

    IxydA=

    Ixy y Ixyc

    y

    ccxycxy yAxII += AyI

    xxc

    xyc

    cR +=

    y Ixyc=

    0 Why?

    0)( =+=+== +++ xforxforxforxforA

    xyc xydAxydAxydAxydAxydAI

    1.FR= ghcA = pcA = ()x()

    2.xR, yRxc, yc

  • 5/22/2018 _ _

    42/169

    42

  • 5/22/2018 _ _

    43/169

    43

    12

    stop

  • 5/22/2018 _ _

    44/169

    44

    547.1160sin

    10==

    ocy

    kNAghF cR 1230)4(4

    1108.91000 2 ===

    0=R

    x 633.11)4(

    4

    155.11

    )2(4

    1

    547.112

    4

    =

    +=+=

    Ay

    Iyy

    c

    xc

    cR

    0866.0= cR yy

    c

    0)( = cRR

    yyFM mkNmkNM == 107)0866.0)(1230(

    pressure prism-

    )])([(2

    1

    2bhghA

    hgApF aveR === = ()

    pa= ps= gage pressure

    pa

  • 5/22/2018 _ _

    45/169

    45

    ghAApFFF sR 2

    121 +=+=

    3

    2

    2212211

    hF

    hFyFyFyF RR +=+=

    yR

    0.9

  • 5/22/2018 _ _

    46/169

    46

    NAghpF s 24400)6.0)(28.910009.050000()( 211 =+=+=

    NAhh

    gF 954)6.0)(2

    6.0(8.910009.0

    2

    2122 ==

    =

    kNFFFR 4.2521 =+=

    yo

    )2.0()3.0( 21 FFyF oR += myo 296.0=

    )3

    1)()(

    2

    1()

    2

    1)(()

    3

    1)(()

    2

    1)(( 21 LLbgLLLbpLLbFLLbFLF st +=+=

    N

    LbgLLbpF st

    2620

    6

    6.09.09.08.91600

    2

    9.06.05000)

    3

    1)()(

    2

    1()

    2

    1)((

    =

    +

    =+=

    Is Ft= F1+ F2? Why?

  • 5/22/2018 _ _

    47/169

    47

    2.4

    dA

    ApdFdrr

    =

    kFjFiFAdpF zRyRxRA

    R

    rrrrr

    ,,, ++==

    inner product or dot product

    =====A A

    xx

    AA

    rxR dFpdAiAdpiFdiFF

    rrrrrr

    ,

    =====A A

    yy

    AA

    ryR dFpdAjAdpjFdjFFrrrrrr

    ,

    =====A A

    zz

    AA

    rzR dFpdAkAdpkFdkFFrrrrrr

    ,

    1. FR,x FR,y)

  • 5/22/2018 _ _

    48/169

    48

    x y2. FR,z FV)

    zVgVgdghdApdAFF

    VA

    z

    A

    zVzR =====,

    center of gravity

    2FFH = WFFV += 1

    BC ABC FH

  • 5/22/2018 _ _

    49/169

    49

    Fv 22 )()( VHR FFF +=

    BC

    O

    HFCACAgCAghF =+= )1)()((21)1)()((2

    BAabovefluidofweightBAghF ....)1)()((1 ==

    ))(1()(4

    1.. 2 gBAABCofweightW ==

    CBabovefluidofweightWFFV ....1 =+=

    22 )()( VHR FFF +=

    Ox1,x2 211 xFWx =

    3

    )(4

    221

    BABAxx =+

    O

  • 5/22/2018 _ _

    50/169

    50

    2.5 buoyancy

    buoyancy or buoyant force

    Archimedes principle:

    1. 2.

    volumebodytoequivalentfluidofweight

    surfaceaboveweightfluid

    surfaceaboveweightfluidFFF VVB

    =

    ==

    )1(

    )2()1()2(

    )()()( 1212 volumebodygdAzzgdAppFbody

    H

    body

    HB ===

  • 5/22/2018 _ _

    51/169

    51

    -

    Bernoulli equation

    inviscid or non-viscous

    3.1 streamline

    = Famrr

    )()(

    )()(

    particleonforcegravitynetparticleonforcepressurenet

    onacceleratiparticlemassparticle

    +=

    steadyfluidparticlestreamline

    tangent

  • 5/22/2018 _ _

    52/169

    52

    s = s(t)

    radius of curvature R = R(s)

    dtsdV /rr

    = dtVda /rr

    =

    nasadt

    Vda ns

    rrr

    r+==

    Vs

    V

    dt

    ds

    s

    V

    dt

    dVas

    =

    == )( V = V(s) = V(s(t))

    R

    Van

    2

    =

  • 5/22/2018 _ _

    53/169

    53

    s

    VVVamF ss

    == )()( ynsV =

    VgW =

    sinsin VgWWs ==

    (Why -?)

  • 5/22/2018 _ _

    54/169

    54

    p,

    p + ps p - ps

    infinitesimally small Taylor

    expansion )2

    ( s

    s

    pps

    Vs

    pyns

    s

    p

    ynpynppynppF sssps

    =

    =

    =+= 2)()(

    Vs

    pgFWF psss )sin(

    =+=

    s

    VV

    s

    pg

    =

    sin

    potential flow AB

    )1(3

    3

    x

    aVV o +=

  • 5/22/2018 _ _

    55/169

    55

    AB = 0

    s

    VV

    s

    p

    =

    4

    3

    3

    32

    4

    3

    3

    3

    )1(3

    )3

    )(1(

    x

    a

    x

    a

    V

    x

    aV

    x

    aV

    x

    VV

    s

    VV

    o

    oo

    +=

    +=

    =

    AB 4

    3323 )/1(3

    x

    xaVa

    x

    p o +=

    AB

    ]2

    )/()[()(6

    32

    )(0

    xaxaVdpdx

    xpxp o

    pp

    gagep

    xx

    x

    +=== =

    =

    =

    =

  • 5/22/2018 _ _

    56/169

    56

    B 0 0

    stagnation point

    ds

    Vd

    s

    p

    ds

    dzg

    )(

    2

    1 2 =

    dsdz /sin =

    0)(2

    1 2 =++ gdzVddp

    1 2

    0)2

    1()

    2

    1( 1

    2

    2

    2 =++++ gzVpgzVp

    streamlinealongconstagzVp .2

    1 2 =++

    Bernoulli equation

    1.2.3.4.

  • 5/22/2018 _ _

    57/169

    57

    12

    222212112

    1

    2

    1gzVpgzVp ++=++

    oVV =1 12 zz = 0

    2 =V

  • 5/22/2018 _ _

    58/169

    58

    221122

    1

    2

    1oVVpp ==

    ds

    Vd

    s

    p

    ds

    dzg

    )(

    2

    1 2 =

    dx

    Vd

    x

    p )(

    2

    1 2=

    dxdx

    Vddx

    dx

    dp =1

    2

    21

    2

    )(

    2

    1)( 2222112

    2

    1)(

    2

    1oVVVpp ==

    pressure head

    kinetic headpotential

    head

    230

  • 5/22/2018 _ _

    59/169

    59

    V2/2 gz p(gage)

    1 0

    2 0

    3 0 0

    2 12

    23

    3.2

    centrifugal force

    R

    VV

    R

    mVFn

    22 ==

    coscos VgWWn ==

    Vn

    p

    ysnn

    p

    yspysppysppF nnnpn

    =

    =

    =+= 2)()(

  • 5/22/2018 _ _

    60/169

    60

    V

    n

    pgFWF pnnn )cos(

    =+=

    R

    V

    n

    p

    dn

    dzg

    2 =

    dn

    dz=cosQ

    nr 1

    2

    0)()( 1

    2

    2

    2

    =++++ gzdnRV

    pgzdnR

    Vp

    linenormalaalongconstagzdnR

    Vp .

    2

    =++

    (a)forced vortex(b)free

    vortex(a) rCrV 1)( = (b)r

    CrV 2)( =

    oo prp =)(

  • 5/22/2018 _ _

    61/169

    61

    xy dz/dn = 0

    rn = // R = rr

    V

    n

    p

    dn

    dzg

    2 =

    (a) rCr

    V

    r

    p 21

    2

    ==

    oo prrCrp += )(2

    1)( 2221

    (b) 32

    2

    2

    r

    C

    r

    V

    r

    p ==

    oo

    prr

    Crp += )11

    (2

    1)(

    22

    2

    2

    orrrr

    gzdnR

    Vpgzdn

    R

    Vp == ++=++ )()(

    22

    (a) = drrrC

    rpdrr

    rCrp

    o

    o

    o

    22

    1

    22

    1 )()(

    oo prrCrp += )(2

    1)( 2221

    (b) = drrC

    rpdrr

    C

    rpo

    o 3

    2

    1

    3

    2

    1

    )()(

  • 5/22/2018 _ _

    62/169

    62

    oo

    prr

    Crp += )11

    (2

    1)(

    22

    2

    2

    0/ > rp

    12

    AB =R 12

    21. =+ linenormalalongconstagzp

    )(02 gagepp atm == 121221 )( =+= ghzzgpp

    34 )(04 gagepp atm ==

    4

    int

    2

    43

    int

    2

    3

    43

    )()( gzdzR

    Vpgzdz

    R

    Vp

    z

    poany

    z

    poany

    ++=++

  • 5/22/2018 _ _

    63/169

    63

    == 4

    3

    4

    3

    2

    34

    2

    343 )(

    z

    z

    z

    z

    dzR

    Vghdz

    R

    Vzzgp

    3 CD 3

    rigid-body rotation-

    angular

    velocity

    cylindrical coordinates

    zr e

    z

    pe

    p

    r

    e

    r

    pp

    rrrr

    +

    +

    =

    1

  • 5/22/2018 _ _

    64/169

    64

    0,0,22

    ==== zrrr aaerer

    Va

    rrrrr

    )( keegpa zz

    rrrrr==

    gz

    ppr

    r

    p

    =

    =

    =

    ,0,2

    r

    z

    gdzdrrdzz

    pdr

    r

    pdp =

    +

    = 2

    dp = 0

    Crg

    zg

    r

    dr

    dz+== 2

    22

    2,

    = gdzdrrdp 2

    Cgzrzrp += 2

    2

    2),(

    r

    )( 2121 zzgpp =

  • 5/22/2018 _ _

    65/169

    65

    z

    )(2

    1 22

    2

    1

    2

    21 rrpp =

    vortices

    free vortex

    forced vortex

  • 5/22/2018 _ _

    66/169

    66

    1 2

    3 ~

    3

    2

    2

    2

    2

    3

    22

    3

    2

    2

    2

    1

    2

    1)(

    )11

    (2

    1)(

    Vr

    Cprp

    rAs

    prr

    Crp

    o

    o

    ==

    +=

    22

    max22

    1Vpp o =

    2

    2

    2

    22

    22

    2

    1

    2

    1rgzprgzp +=+

  • 5/22/2018 _ _

    67/169

    67

    22

    max

    22

    max2

    2

    1

    2

    1

    2

    1

    VVp

    VVpp

    o

    +=

    +=

    2

    max1 Vpp o =

    3.3

    streamlineaalongconstapgzVp T==++ 2

    2

    1

    1. p

    (thermodynamic pressure

    Why?

    static pressurepiezometer

  • 5/22/2018 _ _

    68/169

    68

    ghgagep =)(1

    2. gz hydrostatic pressure

    3. V2/2 dynamic pressure

    )(2

    112

    2hHgppV == (Why?)

    2 stagnation point

    p2stagnation pressure

    2

    122

    1Vpp +=

  • 5/22/2018 _ _

    69/169

    69

    4. pTtotal

    pressure

    pitot-tube-

  • 5/22/2018 _ _

    70/169

    70

    ps p1

    ghgygxpghgygxp sg ++=++1

    ghpp gs )(1 =

    v21/2

    ghv

    g)(2

    1

    =

    x y

  • 5/22/2018 _ _

    71/169

    71

    3.4

    free jets

    12 22

    221

    2

    112

    1

    2

    1gzVpgzVp ++=++

    )(021 gagepp == hz =1 02=z 01V

    2

    2

    1Vgh = ghV 2=

    25 52

    552

    2

    222

    1

    2

    1gzVpgzVp ++=++

    )(05 gagep = Hz =5

    )(25 HhgV +=

    34 42

    443

    2

    332

    1

    2

    1gzVpgzVp ++=++

    )(04 gagep = 04=z l=3z 03V

    )(3 l= hgp

  • 5/22/2018 _ _

    72/169

    72

    dj

    dh vena contracta

    90o

    confined flows

    conservation of mass

    continuity equation

  • 5/22/2018 _ _

    73/169

    73

    0=+ SIO &&& { } { } { } 0.. =+ VCinmassofratetorageSmassofflowratenImassofflowrateutO &&&

    mass flowratem& kg/s Qm =&

    volume flowrateQm3/s AVQ =

    222111 VAVA =

    incompressible

    2211 VAVA = 21 QQ =

  • 5/22/2018 _ _

    74/169

    74

    2

    333

    2

    222

    2

    1112

    1

    2

    1

    2

    1VpVpVp +=+=+

    01V ).(03 jetfreep =

    3

    13

    2

    pV = 22212

    2

    1Vpp =

    === 321 3

    31

    11 /26.1

    )27315(/29

    /314.8

    )1013(mkg

    Kkmolekg

    KkmolemkPa

    kPa

    RT

    p=

    +

    +==

    === 321

    smV /6926.1

    1000323 =

    =

    smVAVAQ /00542.0)69()01.0(4

    32

    2233 ====

    Pap

    smVVAV

    2963)67.7)(26.1(2

    13000

    /67.7/

    2

    2

    2332

    ==

    ==

    )(321 absoluteppp ===

    321

  • 5/22/2018 _ _

    75/169

    75

    U h

    SG SG < 1

    22

    221

    2

    112

    1

    2

    1gzVpgzVp ++=++

    2211 VAVAQ ==

    ])/(1[2

    1)( 212

    2

    21221 AAVzzgpp +=

    U ghSGgpghgzzgp = ll 2121 )(

    ghSGzzgpp )1()( 1221 +=

    ])(1[2

    1)1()( 2

    1

    22

    2A

    AVghSGghoil ==

    )1(2

    )/(1

    )/(

    2

    122

    2 SGg

    AA

    AQh

    =

  • 5/22/2018 _ _

    76/169

    76

    h 12 z2 z1

    p1 p2

    cavitation

    compressibility

    saturation

    pressure

    condensationpressure

    transient ~ 690 MPa

  • 5/22/2018 _ _

    77/169

    77

    siphoned tube

    32

    3332

    2

    2221

    2

    1112

    1

    2

    1

    2

    1gzVpgzVpgzVp ++=++=++

    mftz 57.4151 == Hz =2 mftz 52.153 ==

    01V 031 == pp 32 VV = (Why?)

  • 5/22/2018 _ _

    78/169

    78

    smzzgVV /94.10)(2 3132 ===

    221222121122

    1)(

    2

    1

    2

    1VHzggzVgzVpp =++=

    kPapCsat

    o 71.115@ = kPap 29.9910171.12 ==

    mH 6.8=

    flowrate measurement

    orifice plate

    nozzle venturi

  • 5/22/2018 _ _

    79/169

    79

    22222

    1112

    1

    2

    1VpVp +=+ 2211 VAVAQ ==

    ])/(1[)(2

    2

    12

    212

    AAppAQ

    =

    Qactual Q

    pQ

  • 5/22/2018 _ _

    80/169

    80

    Fluid Kinematics

    fluid dynamics- F

    =ma

    fluid kinematics-

    4.1 velocity field

    ktzyxwjtzyxvitzyxuVrrr

    ),,,(),,,(),,,( ++=

    zzrr ezrvezrvezrvV rrrr ),,(),,(),,( ++=

    dtrdV AA /rr

    =

    ),,,( tzyxVV

    rr

    = 2/1222

    )( wvuVV ++==

    r

  • 5/22/2018 _ _

    81/169

    81

    EulerianLagrangian

    -

  • 5/22/2018 _ _

    82/169

    82

    streamline

    ktzyxwjtzyxvitzyxuVrrr

    ),,,(),,,(),,,( ++=

    wdz

    v

    dy

    u

    dx

    V

    dr

    ===

  • 5/22/2018 _ _

    83/169

    83

    jyxviyxuVrrr

    ),(),( +=

    u

    v

    dx

    dy=

    ))(/( jyixVV orr

    lr

    =

    x

    y

    xV

    yV

    u

    v

    dx

    dy

    o

    o =

    ==)/(

    )/(

    l

    l

    = xdx

    y

    dy Cxy=

    = constant on a streamline

    = xy

    = (x,y) stream function

  • 5/22/2018 _ _

    84/169

    84

    4.2 acceleration field

    Eulerian

    Lagrangian

    steady-state

    ar

    ),,,( tzyxVVrr

    = )(),(),( tzztyytxx ===

    z

    Vw

    y

    Vv

    x

    Vu

    t

    V

    dt

    dz

    z

    V

    dt

    dy

    y

    V

    dt

    dx

    x

    V

    t

    V

    dt

    Vda

    +

    +

    +

    =

    +

    +

    +

    ==

    rrrrrrrrrr

    t

    V

    r

    local acceleration

    z

    V

    wy

    V

    vx

    V

    u

    +

    +

    rrr

    convective

  • 5/22/2018 _ _

    85/169

    85

    acceleration

    gradient operator r

    kz

    jy

    ix

    rrrr

    +

    +

    =

    VVt

    V

    dt

    Vda

    rrrrr

    r)( +

    ==

    )()( += rrVtDt

    Dordt

    d

    eulerian time-derivative operator

    total differentiation

    ktyjxzitVrrrr

    23 ++=

    kyxyztjtxytzi

    jxtyktzxzjztkyiDt

    VD

    jxz

    Vkty

    y

    Vjz

    x

    V

    kyikt

    wj

    t

    vi

    t

    u

    t

    V

    tywxzvtu

    rrr

    rrrrrr

    rr

    rr

    rr

    rrrrrr

    )2()3(3

    ))(()2)(())(3()3(

    ,2,

    3

    ,,3

    22

    22

    2

    2

    ++++=

    ++++=

    =

    =

    =

    +=

    +

    +

    =

    ===

    kDt

    Dwj

    Dt

    Dvi

    Dt

    Du

    Dt

    VD rrrr

    Q ++=

    zu

    wy

    u

    vx

    u

    ut

    u

    Dt

    Du

    +

    +

    +

    =

  • 5/22/2018 _ _

    86/169

    86

    z

    vw

    y

    vv

    x

    vu

    t

    v

    Dt

    Dv

    +

    +

    +

    =

    z

    ww

    y

    wv

    x

    wu

    t

    w

    Dt

    Dw

    +

    +

    +

    =

    )2

    1()(L

    xVxu o += Vo= 10 m/s L = 1 m

    v = w = 0 u =u(x)

    )2

    1(22

    )]2

    1([2

    L

    x

    L

    V

    L

    V

    L

    xV

    x

    uu

    Dt

    Du ooo +=+=

    =

    22

    /600)21(2

    )( smL

    V

    Dt

    Du oLx =+= =

    60

  • 5/22/2018 _ _

    87/169

    87

    4.3 control volumesystem

    1. conservation of mass

    2. Newtons 2ndlaw

    3. 1stlaw of thermodynamics

    4.

  • 5/22/2018 _ _

    88/169

    88

    constMsys = 0=Dt

    DMsys Why D/Dt ?

    F

    )()( momentumsytemDt

    DVM

    Dt

    D

    Dt

    VDMaMF syssyssys ====

    r

    r

    rr

    Q W

    0=+ sysEQW 0=+Dt

    DE

    Dt

    DQ

    Dt

    DW sys

    ==sysM

    sys VdeedmE

    sys

    gzVue ++=2

    2

    e total energy u

    internal energy

    Q T

    T

    Qds

    ==

    sysM

    sys VdssdmS

    sys

    S entropy

  • 5/22/2018 _ _

    89/169

    89

    1.

    2.

  • 5/22/2018 _ _

    90/169

    90

    4.4 Reynolds transporttheorem

    nformulatio

    VolumeControlTheoremTransportynolds

    nformulatio

    SystemRe

  • 5/22/2018 _ _

    91/169

    91

    extensive propertyB

    intensive propertyb

    B = bm, b = dB/dm

    B(extensive property) b(intensive property)

    B = m b = 1

    B = mv b = v

    B = (1/2)mv2 b = (1/2)v2

    B = E b = e

    B = S b = s

    == sys

    ii

    i

    iV

    sys VbdVbB

    )(lim0

    time rate of change

    Dt

    VbdD

    Dt

    DB syssys)(

    =

    (Why D/Dt ?)

  • 5/22/2018 _ _

    92/169

    92

    t

    Vbd

    t

    Bcvcv

    =

    )( (Why /t ?)

    B = m b = 1

    Dt

    VdD

    Dt

    Dm

    Dt

    DB syssyssys)(

    ==

    t

    Vd

    t

    m

    t

    Bcvcvcv

    =

    =

    )(

  • 5/22/2018 _ _

    93/169

    93

    0)(

    =Dt

    VdDsys

    0

    )(

    = nVV rr

    2

    0

    ==in

    SurfaceControlin

    SurfaceControl

    in dAnVbdAbVB

    rr&

    cos

  • 5/22/2018 _ _

    97/169

    97

    0cos

  • 5/22/2018 _ _

    98/169

    98

    finite control

    volume analysis

    1.integral C.V. analysis

    2. infinitesimaldifferential C.V.

    analysis

    5.1 continuity

    equation

  • 5/22/2018 _ _

    99/169

    99

    t

    +

    =

    +=

    inininoutoutout

    cv

    CSCVsys

    VAVAt

    m

    dAnVVdt

    VdDt

    D

    rr

    +

    =

    ..int.. Vtheo

    massofflow

    ofratenet

    VCcoincident

    theofmasstheof

    changeofratetime

    systemcoincident

    theofmasstheof

    changeratetime

    kg/s

    0=DtDmsys

    0=+

    CSCV

    dAnVVdt

    rr

  • 5/22/2018 _ _

    100/169

    100

    0=

    CV

    Vdt

    0=IO &&

    0==

    =

    inout

    inininoutoutout

    CS

    mm

    VAVAdAnV

    &&

    rr

    QAVm ==& mass

    flowrate A

    VA

    dAnV

    V A =

    =

    rr

    volume flowrate

    0=+

    CSCV

    dAnVVdt

    rr

    0

    12 mm && = 1122 QQ = smAV

    QQ

    /0251.0 322

    21

    ==

    =

  • 5/22/2018 _ _

    101/169

    101

    (1)

    12 mm && = 111222 VAVA =

    2

    1

    21 VV

    =

    RT

    p=

    sftRpsia

    sftRpsia

    Tp

    VTpV

    o

    o

    /219)453)(100(

    )/1000)(540)(4.18(

    21

    2121

    ==

    =

    laminar(2)

  • 5/22/2018 _ _

    102/169

    102

    =

    =

    UAVA

    VAVA

    ininin

    inininoutoutout

    11

    0

    rdruVA

    R

    outoutout 20

    22 = WHY?

    02 110

    22 = UArdruR

    fully developed region

    velocity

    profileWhy?

    ])(1[ 2max2R

    ruu =

    0)42

    (2 202

    42

    max = URR

    rru

    R

    Uu

    VUu ===2

    ,2 max2maxr

    2

    V Vcr

    W

    W:

  • 5/22/2018 _ _

    103/169

    103

    Vcr:

    W:

    0=+

    =

    +

    inininoutoutout

    cv

    CSCV

    WAWAt

    m

    dAnWVdt

    rr

    WAWAm

    WAWAmdAnW

    infuel

    infuel

    CS

    22111

    222111 0

    =

    =+=&

    &rr

  • 5/22/2018 _ _

    104/169

    104

    boundary layer theory

    2)()(2)(

    yy

    U

    yu=

    bc

    0=CS

    dAnV rr

    0=+++ dacdbcab AAAA

    dAnVdAnVdAnVdAnV rrrrrrrr

    ==cdabbc AAA

    bc dAnVdAnVdAnVm rrrrrr

    &

    )1()1(0

    ===

    UUdyUdAdAnV

    abab AA

    rr

    3

    )1(2)1(])()(2[)(

    0

    2 ===

    U

    dyyy

    UdAyudAnV

    cdcd AA

    rr

    0)1(3

    1)1(

    3

    2)1( >== UUUmbc&

  • 5/22/2018 _ _

    105/169

    105

    5.2

    { }

    ++=

    )( viscouspressure

    forccessurfaceforcebody

    systemtheof

    momentumtheof

    changeofratetime

    =sys

    sysFVdVDt

    D rr

    t

    =CVcoincident

    theofcontentssys FFr

    +=

    +

    =

    ininininoutoutoutout

    CV

    CSCVsys

    VAVVAVVdVt

    dAnVVVdVt

    VdVDt

    D

    rrr

    rrrrr)(

  • 5/22/2018 _ _

    106/169

    106

    +

    =

    .... VCtheofout

    momentumofflow

    ofratenet

    VCcoincident

    theofmomentumtheof

    changeofratetime

    systemcoincident

    theofmomentumtheof

    changeratetime

    =+

    =

    +

    CVtheofcontentsininininoutoutoutout

    CV

    CSCV

    FVAVVAVVdVt

    dAnVVVdVt

    rrr

    rrrr)(

    kg.m/s

    =+CV

    theofcontentsFSIO &&&

    =

    +

    ii

    F

    smkg

    CVthein

    momentumof

    ratetorageS

    smkg

    momentumof

    ratenflowI

    smkg

    momentumof

    rateutflowO

    )/()/()/(

    &&&

  • 5/22/2018 _ _

    107/169

    107

    anchoring

    force

    kwiuVrrr

    +=

    = xFVAuVAu 111222

    = zFVAwVAw 111222

    AxFVAVVAV = 111121 cos

    AzFVAVAV = 11121 )0(sin

    )cos1()cos1( 12

    1 == VmAVFAx &

    sinsin 121 VmAVFAz &==

  • 5/22/2018 _ _

    108/169

    108

    +

  • 5/22/2018 _ _

    109/169

    109

    =CV

    theofcontentsininininoutoutoutout FVAVVAV rr

    2211

    2,21,11122

    212,21,1111222

    )()()()(

    )(

    ApApWWFAppAppWWFmVmV

    AApApApWWFVAwVAw

    wnA

    atmabsatmabswnA

    atmabsabswnA

    +=+=

    ++=

    &&

    mmm &&& == 21

    0)1(

    )(

    2211

    1

    21

    221121

    >+++=

    +++=

    ApApWWA

    AVm

    ApApWWVVmF

    wn

    wnA

    &

    &

    p1> p2 Why?

    )(0 21 AApRWF atmznA +=

    2,21,11122 )()( ApApWRmVmV absabswz += &&

  • 5/22/2018 _ _

    110/169

    110

    2,21,121 )( ApApWRVVm absabswz +=&

    Rz

    221121 )( ApApWWVVmF wnA +++= &

    Rz

    U

    +

    kwjviuVrrrr

    ++=

  • 5/22/2018 _ _

    111/169

    111

    2211

    2,21,11122

    212,21,1111222

    111222

    2

    )()()()()(

    0

    ApApFVm

    AppAppFmVmVAApApApFVAvVAv

    F

    FVAuVAu

    Ay

    atmabsatmabsAy

    atmabsabsAy

    Ax

    Ax

    ++=

    ++= +++=

    =

    =

    &

    &&

    FAy Why?

    )(0 21 AApRF atmyAy +=

  • 5/22/2018 _ _

    112/169

    112

    Ry Why?

    2,21,12 ApApRVm absabsy ++= &

    Rz

    22112 ApApVmFAy = &

    yR AyF

    (1)(2)pressure drop

  • 5/22/2018 _ _

    113/169

    113

    2211 ApWRApVAwVAw zinininoutoutout =

    Rz

    22

    111111 )()( RwmwwAwVAw ininin === &

    34

    ])(1[)2(2

    2)(

    22

    1

    222

    0

    1

    0

    2

    2222

    2

    Rw

    rdrR

    rw

    rdrwdAwwVAw

    R

    R

    A

    outoutout

    =

    =

    ==

    2211

    22

    1

    22

    13

    4ApWRApRwRw z =

    11

    2

    121

    3 A

    R

    A

    Wwpp z++=

    1.(1)uniform(2)

    mw&(1)(2)

    Why?

    2.

  • 5/22/2018 _ _

    114/169

    114

    3.(1)(2)fully developed

    region

    viscous shear stress

    lrrpp 2)( 221 =

    r = R ()

    A

    rpp w

    l221 =

    wwall shear stress

    R

    wrR l2=

    l

    12 pp

    dx

    dp

  • 5/22/2018 _ _

    115/169

    115

    pressure gradient

    Why?

    boundary layer theory

    2)()(2)(

    yy

    U

    yu=

    drag force

    DFdAnVVdAnVV xAA

    ==+ 31

    )()( rrrrrr

    ++=

    00

    )1()()1()( dyuudyUU

    h

    oo

    )1()1(0

    22 = dyuhUD o

    h

  • 5/22/2018 _ _

    116/169

    116

    +==h

    o

    CS

    udydyUdAnV0 0

    )1()1()(0)(

    rr

    )1()1(0

    = dyuhUo

    )1()(0

    = dyuUuD o

    momentum-integral

    theory

    )1(15

    2)1()21)(2(

    )1(])()(21)[)()(2()1()(

    22

    1

    0

    22

    22

    0

    2

    0

    =+=

    +=

    oo

    oo

    UdU

    dyyyyy

    UdyuUuD

    5.3

    +

    =

    systemtheo

    transferworkbyaddition

    energyofratetimenet

    systemtheo

    transferheatbyaddition

    energyofratetimenet

    systemtheofenergy

    storedtotaltheof

    increaseofratetime

    intint

  • 5/22/2018 _ _

    117/169

    117

    += sysoutinsysoutsys

    in WWQQVde

    Dt

    D)()( &&&&

    sysinnetinnetsysWQVde

    DtD )( && +=

    e energy/mass

    { } { } { }energypotentialenergykineticenergyernalgzV

    ue ++=++= int2

    2(

    t

    CVcoincident

    innet

    innetsys

    innet

    innet WQWQ )()(

    &&&& +=+

    b = e

    +

    =

    +=

    +

    =

    ininoutout

    CV

    ininininoutoutoutout

    CV

    CSCVsys

    memeVdet

    VAeVAeVdet

    dAnVeVdet

    VdeDt

    D

    &&

    rr

    )(

    CVinnet

    innet

    CSCV

    WQdAnVeVde

    t

    )()( &&rr

    +=+

    W

    usefulnoninnet

    usefulinnet

    innet WWW

    += &&&

    pistonshaft

  • 5/22/2018 _ _

    118/169

    118

    flow work

    flow work

    pAVVFW stressnormalworkflow ==&

    ==CS

    outoutoutininin

    inworkflow

    net dAnVpVApVApW )( rr

    &

    Why -?

    +=+

    CS

    CV

    inusefulnet

    innet

    CSCV

    dAnVpWQdAnVeVdet

    )()()( rr&&

    rr

  • 5/22/2018 _ _

    119/169

    119

    CV

    inusefulnet

    innet

    CSCV

    WQdAnVp

    eVdet

    )())(( &&rr

    +=++

    CV

    inusefulnet

    innet

    CSCV

    WQdAnVgzV

    hVdet

    )())(2

    (2

    &&rr

    +=+++

    CV

    in

    usefulnet

    innet

    ininoutout

    CV

    WQ

    mgzV

    hmgzV

    hVdet

    )(

    )2

    ()2

    (22

    &&

    &&

    +=

    +++++

    puh += ( enthalpy)

    +=+inusefulnet

    innet WQSIO

    &&&&&

    =

    +

    )/(

    int

    inf

    )/()/()/(

    sJ

    CVtheowork

    usefulandheatof

    ratelownettotal

    sJ

    CVthein

    energyof

    ratetorageS

    sJ

    energyof

    ratenflowI

    sJ

    energyof

    rateutflowO&

    &&

  • 5/22/2018 _ _

    120/169

    120

    inusefulnet

    innetinout

    inout

    inout WQzzgVV

    hhm &&& +=+

    + )](2

    )[(22

    inusefulnet

    innetinout

    inoutinout wqzzg

    VVhh +=+

    + )](

    2)[(

    22

    kJ/kg

  • 5/22/2018 _ _

    121/169

    121

    inusefulnet

    innetinout

    inoutinout wqzzg

    VVhh +=+

    + )](

    2)[(

    22

    kgkJw

    kgkJ

    kJ

    J

    sN

    mkgmN

    J

    s

    m

    kg

    kJ

    VVhhw

    out

    inoutinout

    inusefulnet

    /797

    /797

    )1000](1[2

    ]1[)3060(

    )33482550(

    2)(

    2

    2

    222

    22

    ==

    +=

    +=

    )(22

    22

    innetinoutin

    inin

    out

    outout quugzVp

    gzVp

    ++=++ ((

    lossquuinnetinout = )(

    ((

    kJ/kg

    0.4 kW

  • 5/22/2018 _ _

    122/169

    122

    losswzzgVV

    hh

    inusefulnetinout

    inoutinout =+

    + )](2

    )[(22

    )2

    ()2

    ( 1

    2

    112

    2

    22 gzVp

    gzVp

    lossw

    inusefulnet ++++=

    kgmNsNmkg

    smVlossw

    inusefulnet /72

    )]/()(1[2

    )/12(

    2 222

    2 =

    ==

    inusefulnet

    inusefulnet

    w

    lossw

    =

  • 5/22/2018 _ _

    123/169

    123

    m

    W

    w in

    usefulnet

    inusefulnet

    &

    &

    =

    AVm =&

    kgmN

    smmmkg

    skWmNkW

    VD

    W

    w in

    usefulnet

    inusefulnet

    /8.95

    )/12](4/)6.0()[/23.1(

    )]/()(1000)[4.0(

    )4/( 2322

    2

    =

    ==

    &

    %2.758.95

    72==

  • 5/22/2018 _ _

    124/169

    124

    differential analysis

    infinitesimal

    6.2 fluid element

    kinematics

    translationlinear deformation

  • 5/22/2018 _ _

    125/169

    125

    rotationangular

    deformation

    1. normal derivatives:z

    w

    y

    v

    x

    u

    ,,

    2. cross derivatives:y

    w

    x

    w

    z

    v

    x

    v

    z

    u

    y

    u

    ,,,,,

    normal derivatives

  • 5/22/2018 _ _

    126/169

    126

    cross derivatives

    x 0xu t

    ))()(( tzyxx

    uVinChange

    =

    x

    u

    t

    tx

    u

    dt

    Vd

    V t

    =

    =

    )][(lim)(1

    0

    yz 0,0

    z

    w

    y

    v

    V

    z

    w

    y

    v

    x

    u

    dt

    Vd

    V

    rr=

    +

    +

    =

    )(1

  • 5/22/2018 _ _

    127/169

    127

    volumetric dilation rate

    Why?

    t OA

    ttOA

    0lim

    =

    t

    x

    v

    x

    txxv

    =

    =

    )/(tan

    x

    v

    t

    txv

    tOA

    =

    =

    )/([lim

    0

    0>x

    v OA

    t OB

  • 5/22/2018 _ _

    128/169

    128

    tt

    OB

    0lim

    =

    tyux tyyu == )/(tan

    y

    u

    t

    tyu

    tOB

    =

    =

    )/([lim

    0

    0>y

    u OB

    x-y z

    )(2

    1

    y

    u

    x

    vz

    = Why 1/2 ?

    OBOA = x

    v

    y

    u

    =

    y-z x

    )(2

    1

    z

    v

    y

    wx

    =

    x-z y

    )(2

    1

    x

    w

    z

    uy

    =

    kji zyx

    rrrr

    ++=

  • 5/22/2018 _ _

    129/169

    129

    curl

    VVcurlrrrr

    ==2

    1

    2

    1

    wvu

    zyx

    kji

    V

    =

    rrr

    rr

    (vorticity)

    Vrrrr == 2

    0== Vrrr

    irrotational flow

    velocity

    potential

    jyxixyVrrr

    )(24 22 +=

    0),(2,4 22 === wyxvxyu

    0)(2

    1=

    =z

    v

    y

    wx

    0)(

    2

    1

    =

    x

    w

    z

    uy

  • 5/22/2018 _ _

    130/169

    130

    0)44(2

    1)(

    2

    1==

    = xxy

    u

    x

    vz

    y

    u

    x

    vorz

    =

    = 0 OA OB

    cross derivatives

    OA

    OB

    +=

    y

    u

    x

    v

    t

    ty

    ut

    x

    v

    t tt

    +

    =

    +

    ==

    ]

    )()(

    [limlim00

    &

    y

    u

    x

    v

    =

    6.1

  • 5/22/2018 _ _

    131/169

    131

    0=

    + CS CV

    Vdt

    dAnV rr

    0=+ SIO &&&

    ])()()[(

    ])()()[(

    ),,(),,(),,(

    ),,(),,(),,(

    dxdywdxdzvdydzu

    dxdywdxdzvdydzu

    VAVAdAnVIO

    zyxzyxzyx

    dzzyxzdyyxzydxx

    inininoutoutout

    CS

    ++

    ++=

    ==

    +++

    rr

    &&

    Taylors expansion

    dxx

    uuu zyxzydxx

    ++

    )()()( ),,(),,(

    dyy

    vvv zyxzdyyx

    ++

    )()()( ),,(),,(

    dzz

    www zyxdzzyx

    ++

    )()()( ),,(),,(

  • 5/22/2018 _ _

    132/169

    132

    dxdydzz

    w

    y

    v

    x

    uIO ]

    )()()([

    +

    +

    = &&

    dxdydzt

    Vdt

    Vdt

    SCVCV

    === &

    0])()()(

    [ =

    +

    +

    +

    dxdydzz

    w

    y

    v

    x

    udxdydz

    t

    0)()()(

    =

    +

    +

    +

    z

    w

    y

    v

    x

    u

    t

    0)( =+

    Vt

    rr

    1. )(r

    divergence

    )(

    )()()(

    scalaraz

    w

    y

    v

    x

    u

    wkjviukz

    jy

    ix

    V

    +

    +

    =

    ++

    +

    +

    = rrrrrrrr

    2. )(r

    gradient

  • 5/22/2018 _ _

    133/169

    133

    )(

    ))(()(

    vectorakz

    pj

    y

    pi

    x

    p

    pkz

    jy

    ix

    p

    rrr

    rrrr

    +

    +

    =

    +

    +

    =

    0)()()(

    =

    +

    +

    z

    w

    y

    v

    x

    u

    continuity equation

    u = Ax, v = ?

    0)()(

    =

    +

    y

    v

    x

    u

    A

    x

    u

    x

    v=

    =

    )(

    ?)()(

    xfAy

    Whyxfdyy

    vv

    constx

    +=

    +

    = =

    jxfAyiAxVrrr

    ))(( +=

    divergence theorem

    0=

    + CS CV

    Vdt

    dAnV rr

    0)()( == CS CV

    VdVectordAnVectorrr

  • 5/22/2018 _ _

    134/169

    134

    0)()( == CS CV

    VdVdAnVrrrr

    0)( =+ CV CV VdtVdV rr

    0)]([ =+

    VdVtCV

    rr

    0)( =+

    Vt

    rr

    cylindrical polar coordinates

    zzrr evevevtzrV rrrr

    ++= ),,,(

    0)()(1)(1

    =

    +

    +

    z

    vv

    rr

    rv

    r

    zr

  • 5/22/2018 _ _

    135/169

    135

    fully developed region

    r - direction

    0)()(1)(1

    =

    +

    +

    z

    vv

    rr

    rv

    r

    zr

    fully-developed

    symmetric in

    0)(1

    =

    r

    rv

    r

    r

    r

    CvCrv rr == ,

    r = 0 0=C 0= rv

    entrance region

    stream function

    0=

    +

    y

    v

    x

    u

    u v

    xv

    yu

    =

    =

    ,

  • 5/22/2018 _ _

    136/169

    136

    ( 0)]([)( =

    +

    xyyx

    )

    stream function udy vdx

    1. u(x,y) v(x,y) (x,y)

    2. streamlineaisconstayx .),( =

    u

    v

    dx

    dystreamlineaon =)(

    (x,y)

    (x+dx,y+dy)

    0=+=

    +

    = udyvdxdyy

    dxx

    d

    Cyx =),(

  • 5/22/2018 _ _

    137/169

    137

    volume flow rate

    + d AC

    ABC

    ddxx

    dyy

    vdxudydq =

    +

    ==

    1 2

    12 =q

    2 1 q > 0

    q < 0

    13.0, == sAjAyiAxVrrr

  • 5/22/2018 _ _

    138/169

    138

    y

    Axu

    ==

    )()( xfAxyxfdyy

    constx+=+= =

    f(x) v

    CfAydx

    dfAy

    xv ===

    = ,

    )/

    (3.03

    m

    smxy=

  • 5/22/2018 _ _

    139/169

    139

    01)(1

    =

    +

    v

    rr

    rv

    r

    r

    (r,)

    rv

    rvr

    =

    =

    ,

    1

    axisymmetric

    zzrr evevevzrV rrrr

    ++= ),,(

    )0( =

    =

    v

    0)()(1

    =

    +

    z

    v

    r

    rv

    r

    zr

  • 5/22/2018 _ _

    140/169

    140

    0)()(

    =

    +

    z

    rv

    r

    rv zr (Why?)

    (r,z)

    rrv

    zrv zr

    =

    = 1

    ,1

    )(2 1221 =q (Why 2?)

    6.3

    =+

    =

    +

    CVtheofcontentsininininoutoutoutout

    CV

    CSCV

    FVAVVAVVdVt

    dAnVVVdVt

    rrr

    rrrr)(

    x

    =

    +=

    =

    +=

    +

    CVtheofcontents

    CV

    ininoutout

    CV

    ininininoutoutoutout

    CSCV

    FVdut

    mumu

    Vdut

    VAuVAu

    dAnVuVdut

    &&

    rr

    )(

    =+ CVtheofcontentsFSIO &&&

  • 5/22/2018 _ _

    141/169

    141

    IO &&

    mv& mw& x

    x

  • 5/22/2018 _ _

    142/169

    142

    [ ]{ }

    [ ]{ }

    [ ]{ }

    dxdydzuwz

    uvy

    uux

    dxdyuwdxdydzuwz

    uw

    dxdzuvdxdzdyuvy

    uv

    dydzuudydzdxuux

    uuIO

    )]()()([

    )(

    )(

    )(

    +

    +

    =

    ++

    ++

    += &&

    dxdydzut

    S )]([

    =&

    += surfacexbodyxCV

    theofcontentsx FFF ,,, dxdydzgF xbodyx =

    ,

    += viscousxpressurexsurfacex FFF ,,,

    +

    +

    +

    =

    =

    zzzyzx

    yzyyyx

    xzxyxx

    zzzyzx

    yzyyyx

    xzxyxx

    ij

    p

    p

    p

    zyyzzxxzyxxy === ,, Why?

  • 5/22/2018 _ _

    143/169

    143

    [ ]{ }

    [ ]{ }

    [ ]{ }

    dxdydzzyxx

    p

    dxdydzzyx

    dxdydxdydzz

    dxdzdxdzdyy

    dydzdydzdxx

    F

    xzxyxx

    xzxyxx

    xzxzxz

    xyxyxy

    xxxxxxsurfacex

    )]()()([

    )]()()([

    )(

    )(

    )(,

    +

    +

    +

    =

    +

    +

    =

    ++

    ++

    +=

  • 5/22/2018 _ _

    144/169

    144

    SIO &&& +

    ?)()(

    )(])()()(

    [

    )]()()([)(

    Whyz

    uw

    y

    uv

    x

    uu

    t

    u

    z

    uw

    y

    uv

    x

    uu

    t

    u

    z

    w

    y

    v

    x

    u

    tu

    uwz

    uvy

    uux

    ut

    +

    +

    +

    =

    +

    +

    +

    +

    +

    +

    +

    =

    +

    +

    +

    x

    )()(zyxx

    pg

    z

    uw

    y

    uv

    x

    uu

    t

    u xzxyxxx

    +

    +

    +

    =

    +

    +

    +

    y

    )()(zyxy

    pg

    z

    vw

    y

    vv

    x

    vu

    t

    v yzyyyxy

    +

    +

    +

    =

    +

    +

    +

    z

    )()(zyxz

    pg

    z

    ww

    y

    wv

    x

    wu

    t

    w zzzyzxz

    +

    +

    +=

    +

    +

    +

    ijpgVVt

    V

    Dt

    VD

    rrrrrrrrr

    +=+

    = ])([

    6.4 inviscid flow

    ijrr

  • 5/22/2018 _ _

    145/169

    145

    x

    pg

    z

    uw

    y

    uv

    x

    uu

    t

    ux

    =

    +

    +

    +

    )(

    y

    pg

    z

    vw

    y

    vv

    x

    vu

    t

    vy

    =

    +

    +

    +

    )(

    z

    pg

    z

    ww

    y

    wv

    x

    wu

    t

    wz

    =

    +

    +

    +

    )(

    pgVVt

    V=+

    rrrrrr

    ])([

    Eulers equation

    pgVV = rrrrr )(

  • 5/22/2018 _ _

    146/169

    146

    zgkz

    zj

    y

    zi

    x

    zgkjigkgg =

    +

    +

    =++== rrrrrrrrr

    )()100(

    )()(2

    1

    )( VVVVVV

    rrrrrrrrr

    = What is )( Vrr

    pzgVVVV =

    rrrrrrrr )]()(

    2

    1[

    )()(2

    1 2VVzgV

    p rrrrrr

    =++

    (inner product

    sdVVsdzgsdVsdp rrrrrrrrrr

    =++

    )()(2

    1 2

    0)( = sdVV rrrr

    )( VVrrr

    Vr

    sdr

    kdzjdyidxsdrrrr

    ++=

    dpdzz

    pdy

    y

    pdx

    x

    psdp =

    +

    +

    = )()()(rr

    Eulers equation

    0)(2

    1 2 =++ gdzVddp

    tconsgdzVddp

    streamline

    tan)(2

    1 2 =++

    ideal fluids

  • 5/22/2018 _ _

    147/169

    147

    tconsgzVp

    tan2

    2

    =++

    1.2.3. 4.

    irrotational

    1.

    2. velocitypotential

    )(0)( directionanyindssdVsdVV == rrrrrrr

    ds

    tconsgdzVddp

    spacein spotwoany

    tan)(2

    1

    int

    2 =++

  • 5/22/2018 _ _

    148/169

    148

    2

    2

    221

    2

    11

    22

    gzVp

    gzVp

    ++=++

    velocity potential

    0)(,0)(,0)( =

    =

    =

    x

    w

    z

    u

    z

    v

    y

    w

    y

    u

    x

    v

    zw

    yv

    xu

    =

    =

    =

    ,,

    0)()( =

    =

    xyyxy

    u

    x

    v

    velocity potential

    = rr

    V

    1.

  • 5/22/2018 _ _

    149/169

    149

    2.

    0)( 2 === rrrr

    V

    )()(2

    scalarscalar = rr

    Laplacian operator

    02

    2

    2

    2

    2

    2

    =

    +

    +

    zyx

    potential flow

    y

    u

    x

    v

    =

    )()(yyxx

    =

    0

    2

    2

    2

    2

    =

    +

    yx

  • 5/22/2018 _ _

    150/169

    150

    u

    v

    dx

    dyconstalong ==)(

    (x,y)

    (x+dx,y+dy) d

    0=+=

    +

    = vdyudxdyy

    dxx

    d

    v

    u

    dx

    dyconstalong ==)(

    -1

  • 5/22/2018 _ _

    151/169

    151

    = rr

    V

    zv

    rv

    rv zr

    =

    =

    =

    ,

    1,

    01

    )(1

    2

    2

    2

    2

    2 =

    +

    +

    zrrr

    rr

    )/(2sin2 22 smr =

    (1) 30 kPa(2)

    ?)(4cossin42sin2 22 Whyxyrr ===

  • 5/22/2018 _ _

    152/169

    152

    yx

    vxy

    u 4,4 =

    ==

    =

    alirrotation

    y

    u

    x

    v==

    ,000

    yv

    xu

    =

    =

    ,

    )(2 12 yfxudxconsty

    +== =

    )(2 22 xfyvdyconstx

    +== =

    Cyx += 22 22

    (0,0) 0 22 22 yx =

    2cos2

    )sin(cos222

    2

    22222

    r

    ryx

    =

    ==

    2sin4,2cos41

    rr

    vrr

    vr

    =

    ==

    =

    =

    =r

    vr

    vr1

    ,

    )(2cos2 12

    frdrvconst

    r +== =

    )(2cos2 22 rfrdrvconstr

    +== =

    Cr += 2cos2 2

  • 5/22/2018 _ _

    153/169

    153

    (0,0) 0 2cos2 2r=

    22

    2222

    22

    )sin(cos22cos2

    yx

    rr

    =

    ==

    2

    2

    221

    2

    11

    22gz

    Vpgz

    Vp++=++

    )(2

    2

    2

    2

    112 VVpp +=

    222222 16)2sin4()2cos4( rrrvvV r =+=+=

    kPamkNsmkg

    smmkgkPap 36

    /)//.(1000

    )/)(416(

    2

    )/(100030

    22

    223

    2 =

    +=

    sin/Ar=

  • 5/22/2018 _ _

    154/169

    154

    cos/Ar=

    6.5 viscous flow

    normal stresses:

    z

    wp

    y

    vp

    x

    up

    zz

    yy

    xx

    +=

    +=

    +=

    2

    2

    2

    shear stresses

    )(

    )(

    )(

    z

    u

    x

    w

    y

    w

    z

    v

    x

    v

    y

    u

    zxxz

    zyyz

    yxxy

    +

    ==

    +

    ==

    +

    ==

  • 5/22/2018 _ _

    155/169

    155

    normal stresses:

    z

    vp

    r

    vv

    rp

    r

    vp

    zzz

    r

    rrr

    +=

    +

    +=

    +=

    2

    )1

    (2

    2

    shear stresses

    )(

    )1

    (

    ]

    1

    )([

    r

    v

    z

    v

    v

    rz

    v

    v

    rr

    v

    rr

    zrzrrz

    zzz

    rrr

    +

    ==

    +

    ==

    +

    ==

    x

    )()(2

    2

    2

    2

    2

    2

    z

    u

    y

    u

    x

    u

    x

    pg

    z

    uw

    y

    uv

    x

    uu

    t

    ux

    +

    +

    +

    =

    +

    +

    +

    y

    )()(2

    2

    2

    2

    2

    2

    z

    v

    y

    v

    x

    v

    y

    pg

    z

    vw

    y

    vv

    x

    vu

    t

    v

    y

    +

    +

    +

    =

    +

    +

    +

    z

    )()(2

    2

    2

    2

    2

    2

    z

    w

    y

    w

    x

    w

    z

    pg

    z

    ww

    y

    wv

    x

    wu

    t

    wz

    +

    +

    +

    =

    +

    +

    +

    -Navier-Stokes

    - u

  • 5/22/2018 _ _

    156/169

    156

    v w p

    (CFD)

    -

    r

    )21

    )(1

    [

    )(

    2

    2

    22

    2

    22

    2

    z

    vv

    r

    v

    rr

    v

    r

    vr

    rrr

    pg

    z

    vv

    r

    vv

    r

    v

    r

    vv

    t

    v

    rrrrr

    rz

    rrr

    r

    +

    +

    +

    =

    +

    +

    +

    )21

    )(1

    [1

    )(

    2

    2

    22

    2

    22 z

    vv

    r

    v

    rr

    v

    r

    vr

    rrr

    p

    rg

    z

    v

    vr

    vvv

    r

    v

    r

    v

    vt

    v

    r

    z

    r

    r

    +

    +

    +

    +

    =

    ++

    +

    +

    z

    )1

    )(1

    [

    )(

    2

    2

    2

    2

    2 z

    vv

    rr

    vr

    rrz

    pg

    z

    vv

    v

    r

    v

    r

    vv

    t

    v

    zzzz

    zz

    zzr

    z

    +

    +

    +

    =

    +

    +

    +

  • 5/22/2018 _ _

    157/169

    157

    1.2.3. 4. 0=x (Why?)5.

    kwjviuVrrrr

    ++=

    4 3

    u = u(x, y, z, t)

    4 3 1

    u = u(y)

  • 5/22/2018 _ _

    158/169

    158

    x

    )()(2

    2

    2

    2

    2

    2

    z

    u

    y

    u

    x

    u

    x

    pg

    z

    uw

    y

    uv

    x

    uu

    t

    ux

    +

    +

    +

    =

    +

    +

    +

    1 4 4 3 5 4 3

    y

    )()(2

    2

    2

    2

    2

    2

    z

    v

    y

    v

    x

    v

    y

    pg

    z

    vw

    y

    vv

    x

    vu

    t

    vy

    +

    +

    +

    =

    +

    +

    +

    1 4 4 3 -g 4 4 4

    z

    )()(2

    2

    2

    2

    2

    2

    z

    w

    y

    w

    x

    w

    z

    pg

    z

    ww

    y

    wv

    x

    wu

    t

    wz

    +

    +

    +

    =

    +

    +

    +

    1 3 3 3 5 3 3 3

    2

    2

    0x

    u

    x

    p

    +

    =

    gy

    p

    =0

    z

    p

    =0 z

    y

    )(),( xfgyyxp +=

    y

    x

  • 5/22/2018 _ _

    159/169

    159

    x

    p

    dy

    ud

    =

    12

    2

    1)(1 Cyxp

    dydu +=

    21

    2)(2

    1)( CyCy

    x

    pyu ++

    =

    )(x

    p

    Why?

    B.C #1 y = -h, u = 0

    B.C #2 y = +h, u = 0

    2

    21 )(2

    1,0 h

    x

    pCC

    ==

    ))((2

    1)( 22 hy

    x

    pyu

    =

    )1)((3

    2

    )1())((2

    1)1(

    3

    22

    =

    ==

    x

    ph

    dyhyx

    pudyq

    h

    h

    h

    h

    pressure drop

  • 5/22/2018 _ _

    160/169

    160

    x

    pppp rightleft

    =

    =

    ll

    )1(3

    2 3

    =

    l

    phq

    l3)1(2

    2ph

    h

    qVave

    =

    =

    aveVxph

    u 2

    3)(2

    2

    max =

    =

    aveVu 2max=

    )(),( xfgyyxp +=

    opxxpxf

    dxxdf

    xp +==

    )()(,)(

    opxx

    pgyyxp +

    += )(),(

    po (0,0)

    laminar flowReynolds

    number ~ 1400

    fluidofforceviscous

    fluidofforceinertiahVave ==

    )2(Re

    ~ 1400 turbulent

  • 5/22/2018 _ _

    161/169

    161

    flow

    Couette flow

    U

    Why?

    21

    2)(2

    1)( CyCy

    x

    pyu ++

    =

  • 5/22/2018 _ _

    162/169

    162

    B.C #1 y = 0, u = 0

    B.C #2 y = b, u = u

    ))((2

    1)( 2 byy

    x

    p

    b

    yUyu

    +=

    dimensionless

    )(2

    )1)((

    )1)()((2

    )(

    2

    2

    x

    p

    U

    bP

    b

    y

    b

    yPb

    y

    b

    y

    b

    y

    x

    p

    U

    b

    b

    y

    U

    yu

    =

    +=

    =

    P P

    P = 0

    byUyu =)(

  • 5/22/2018 _ _

    163/169

    163

    1.2.3.4. 0=

    y

    (Why?)

    5.kwjviuV rrrr ++=

    4 3

    v = v(x, y, z, t)

    4 3 1

    v = v(x)

    x

    )()(2

    2

    2

    2

    2

    2

    z

    u

    y

    u

    x

    u

    x

    pg

    z

    uw

    y

    uv

    x

    uu

    t

    ux

    +

    +

    +

    =

    +

    +

    +

    u = 0 5 u = 0

    y

    )()(2

    2

    2

    2

    2

    2

    z

    v

    y

    v

    x

    v

    y

    pg

    z

    vw

    y

    vv

    x

    vu

    t

    vy

    +

    +

    +

    =

    +

    +

    +

    1 4 4 3 -g 4 3

    z

  • 5/22/2018 _ _

    164/169

    164

    )()( 22

    2

    2

    2

    2

    z

    w

    y

    w

    x

    w

    z

    pg

    z

    ww

    y

    wv

    x

    wu

    t

    wz

    +

    +

    +

    =

    +

    +

    +

    w = 0 5 w = 0

    x

    p

    =0 x

    2

    2

    0dx

    vdg

    y

    p +

    =

    zp

    =0 z

    0=x

    p x

    y

    0=y

    p

    y

    2

    2

    0dx

    vdg +=

    g

    dx

    vd=

    2

    2

    1Cxg

    dx

    dv+=

    v(x)

    BC #1: x = h, 0== dxdv

    xy

  • 5/22/2018 _ _

    165/169

    165

    ghC = 1

    22

    2)( Cxghxgxv +=

    BC #2: x = 0, v = 0

    oVC = 2

    oVxgh

    xg

    xv +=

    2

    2)(

    )1)(

    3(

    )1()2

    ()1()(

    3

    0

    2

    0

    =

    +==

    ghhV

    dxVxgh

    xg

    dxxvq

    o

    h

    o

    h

    -

    Hagen-Poiseuille flow

    -

  • 5/22/2018 _ _

    166/169

    166

    1.2.3. 4. 0=

    z (Why?)

    5. zzrr evevevV

    rrrr ++=

    4 3

    ),,,( tzrvv zz =

    3 4 1

    )(rvv zz=

    -

    r

    vr= v= 0

    )21

    )(1

    [

    )(

    2

    2

    22

    2

    22

    2

    z

    vv

    r

    v

    rr

    v

    r

    vr

    rrr

    pg

    z

    vv

    r

    vv

    r

    v

    r

    vv

    t

    v

    rrrrr

    rz

    rrr

    r

    +

    +

    +

    =

    +

    +

    +

    -g sin vr= v= 0

  • 5/22/2018 _ _

    167/169

    167

    vr= v= 0

    )21

    )(1

    [1

    )(

    2

    2

    22

    2

    22 z

    vv

    r

    v

    rr

    v

    r

    vr

    rrr

    p

    rg

    z

    vv

    r

    vvv

    r

    v

    r

    vv

    t

    v

    r

    z

    r

    r

    +

    +

    +

    +

    =

    ++

    +

    +

    -g cos vr= v= 0

    z

    1 4 3 4

    )

    1

    )(

    1

    [

    )(

    2

    2

    2

    2

    2z

    vv

    rr

    v

    rrrz

    p

    g

    z

    vv

    v

    r

    v

    r

    vv

    t

    v

    zzz

    z

    zz

    zzr

    z

    +

    +

    +

    =

    +

    +

    +

    5 3 4

    r

    pg

    = sin0

    = p

    rg

    1cos0

    )](1

    [0r

    vr

    rrz

    pz

    +

    =

    )(

    )(sin),,(

    zfgyp

    zfgrzrp

    +=

    +=

    y

    z

  • 5/22/2018 _ _

    168/169

    168

    z

    zf

    z

    p

    = )(

    z

    p

    r

    Z

    )(1

    )(1

    z

    p

    r

    vr

    rr

    z

    =

    1

    2)(2

    1Cr

    z

    p

    r

    vr z +

    =

    21

    2 ln)(4

    1)( CrCr

    z

    prvz ++

    =

    BC #1: r = 0, vz= finite

    BC #2: r = R, vz= 0

    2

    21 )(4

    1

    ,0 Rz

    p

    CC

    ==

    ))((4

    1)( 22 rR

    z

    prvz

    =

    )(8

    )2(4

    0 z

    pRdrrvQ

    R

    z

    ==

    l

    8

    4pR

    Q

    =

    Poiseuilles law

  • 5/22/2018 _ _

    169/169

    l 8

    2

    2

    pR

    R

    QVave

    ==

    aveVpRzpRv 2

    4)(

    4

    22

    max === l

    2

    2

    max

    1R

    r

    v

    vz =

    aveVu2

    3max=

    laminar flowReynolds

    number ~ 2100 ~ 2100