5535 chapter 19

Upload: chunting-lin

Post on 07-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 5535 Chapter 19

    1/56

    1

    Basic Numerical Procedure

  • 8/6/2019 5535 Chapter 19

    2/56

    2

    Content

    1 Binomial Trees

    2 Using the binomial tree for options on indices,

    currencies, and futures contracts

    3 Binomial model for a dividend-paying stock

    4 Alternative procedures for constructing trees

    5 Time-dependent parameters6 Monte Carlo simulation

    7 Variance reduction procedures

    8 Finite difference methods

  • 8/6/2019 5535 Chapter 19

    3/56

    3

    Binomial Trees

    In each small interval of time tthe

    stock price is assumed to move up by

    a proportional amount u or to move

    down by a proportional amount d

    Su

    Sd

    S

  • 8/6/2019 5535 Chapter 19

    4/56

    4

    Risk-Neutral Valuation

    1. Assume that the expected return from

    all traded assets is the risk-free

    interest rate.

    2. Value payoffs from the derivative by

    calculating their expected values and

    discounting at the risk-free interestrate.

  • 8/6/2019 5535 Chapter 19

    5/56

    5

    Determination ofp, u, and d

    Mean: e(r-q)(t =pu + (1p )d

    Variance:W

    2

    (t =pu2 + (1p )d2 e2(r-q)(t

    A third condition often imposed is u =1/d

  • 8/6/2019 5535 Chapter 19

    6/56

    6

    A solution to the equations, when terms of

    higher order than (tare ignored, is

    where

    )( tqr

    t

    t

    ea

    ed

    eu

    du

    dap

    (

    (

    (

    !

    !

    !

    !

    W

    W

  • 8/6/2019 5535 Chapter 19

    7/56

    7

    Tree of Asset Prices At time it

    S0u2

    S0u4

    S0d2

    S0d4

    S0

    S0u

    S0d

    S0 S0

    S0u2

    S0d2

    S0u3

    S0u

    S0d

    S0d3

    i0,1,...,j,duSS j-ij0i !!

  • 8/6/2019 5535 Chapter 19

    8/56

    8

    Working Backward through the Tree

    Example : American put optionS

    0=

    50; K=

    50; r=

    10%; W=

    40%;T= 5 months = 0.4167;

    (t= 1 month = 0.0833

    The parameters imply

    u =1.1224; d=0.8909;

    a =1.0084; p =0.5073

  • 8/6/2019 5535 Chapter 19

    9/56

    9

    Example (continued)

    9 . 0 7

    0 . 0 0

    7 9 . 3 5

    0 . 0 0

    7 0 .7 0 7 0 . 7 0

    0 . 0 0 0 . 0 0

    6 2 . 9 9 6 2 .9 9

    0 . 6 4 0 .0 0

    5 6 .1 2 5 6 .1 2 5 6 .1 2

    2 .1 6 1 .3 0 0 . 0 0

    5 0 . 0 0 5 0 . 0 0 5 0 . 0 0

    4 .4 9 3 . 7 7 2 .6 6

    4 4 .5 5 4 4 .5 5 4 4 .5 5

    6 .9 6 6 .3 8 5 . 4 5

    3 9 . 6 9 3 9 .6 9

    1 0 . 3 6 1 0 . 3 1

    3 5 .3 6 3 5 . 3 6

    1 4 .6 4 1 4 . 6 4

    3 1 . 5 0

    1 8 . 5 0

    2 8 . 0 7

    2 1 . 9 3

    G

    F

    ED C

    B A

    39.690.89091.122450du 31310A !vv!! 14.6435.36-50,0)-max(f TG !!! SK 2.665.45)e0.49270(0.5073efp-1pff0.0833-0.1t-r

    duE !vv!!v( 9.9014.64)e0.49275.45(0.5073f 0.0833-0.1A !vv!

    v4.496.96)e0.49272.16(0.5073f 0.0833-0.1D !vv!

    v

  • 8/6/2019 5535 Chapter 19

    10/56

    10

    Example (continued) In practice, a smaller value oft, and

    many more nodes, would be used.

    DerivaGem shows

    steps 5 30 50 100 500

    f0 4.49 4.263 4.272 4.278 4.283

  • 8/6/2019 5535 Chapter 19

    11/56

    11

    Expressing the Approach Algebraically

    ? A_ aj1,i1j1,it-rj-ij0ji, fp-1pfe,duS-Kmaxf ( !

  • 8/6/2019 5535 Chapter 19

    12/56

    12

    Estimating Delta and OtherGreek Letters

    deltaat time t

    dS-uS

    f-f

    Sf

    00

    1,01,1!((!(

    S0u2

    S0u4

    S0d2

    S0d4

    S0

    S0u

    S0dS0 S0

    S0u2

    S0d2

    S0u3

    S0u

    S0d

    S0d3

  • 8/6/2019 5535 Chapter 19

    13/56

    13

    gamma at time 2t

    )dS-u0.5(S

    dS-S

    f-f

    -S-uS

    f-f

    S

    f2

    0

    2

    0

    200

    2,02,1

    02

    0

    2,12,2

    2

    2

    !x

    x!+

    S0u2

    S0u4

    S0d2

    S0d4

    S0

    S0u

    S0dS0 S0

    S0u2

    S0d2

    S0u3

    S0u

    S0d

    S0d3

  • 8/6/2019 5535 Chapter 19

    14/56

    14

    theta

    t2

    f-f

    t

    f 0,02,1

    (!x

    x!5

    S0u

    2

    S0u4

    S0d2

    S0d4

    S0

    S0u

    S0d

    S0 S0

    S0u2

    S0d2

    S0u3

    S0u

    S0d

    S0d3

    f

    2

    1rS 22 rS !+(5

  • 8/6/2019 5535 Chapter 19

    15/56

    15

    Vega

    Rho

    WR

    (!ff -

    *

    r

    ff

    (!

    -*V

  • 8/6/2019 5535 Chapter 19

    16/56

    16

    Example

    89.0 7

    0.00

    79.3 5

    0.00

    70.70 70.70

    0.00 0.0062.99 62.99

    0.64 0.00

    56.12 56.12 56.12

    2.16 1.30 0.00

    50.00 50.00 50.00

    4. 49 3.77 2.6 6

    44.55 44.55 44.55

    6. 96 6.38 5.45

    39.6 9 39.6 9

    10.36 10.31

    35.36 35.36

    14.64 14.6431.50

    18.50

    28.07

    21. 93

    G

    F

    ED C

    B A

    -0.4144.55-56.12

    6.96-2.16

    dS-uS

    f-f

    00

    1,01,1 !!!(

    0.0311.65

    (-0.64)-(-0.24)

    39.69)-0.5(62.99

    39.69-50

    10.36-3.77-

    50-62.99

    3.77-0.64

    )dS-u0.5(S

    -2

    0

    2

    0

    21

    !!

    !

    ((!+

    daycalendarper-0.012or

    yearper-4.30.08332

    4.49-3.77

    t2

    f-f 0,02,1

    !

    !v

    !(

    !5

  • 8/6/2019 5535 Chapter 19

    17/56

    17

    Using the binomial tree for options on

    indices, currencies, and futures contracts

    As with Black-Scholes

    For options on stock indices, q equals the

    dividend yield on the index

    For options on a foreign currency, q

    equals the foreign risk-free rate

    For options on futures contracts q = r

  • 8/6/2019 5535 Chapter 19

    18/56

    18

    Example

  • 8/6/2019 5535 Chapter 19

    19/56

    19

    Example

  • 8/6/2019 5535 Chapter 19

    20/56

    20

    Binomial model for a dividend-paying

    stock

    Known Dividend Yield

    before

    after

    Several known dividend yields

    i0,1,...,j,duSS j-ij0ji, !!

    i0,1,...,j,d)u-(1SS j-ij0ji, !! H

    j-ij

    i0ji, d)u-(1SS H!

  • 8/6/2019 5535 Chapter 19

    21/56

    21

    Known Dollar Dividend

    ik

    i=k+1

    i=k+2

    i0,1,...,,duSS j-ij0ji, !!

    i0,1,...,jD,-duSS j-ij0ji, !!

    1-i0,1,...,jfor

    D)d-du(SandD)u-du(SS j-1-ij0j-1-ij

    0ji,

    !

    !

    nodes.1mkn

    rath

    erth

    a2)m(kare

    th

    ere

    mkihenandnodes,1inrathertha2iarethere

    !

  • 8/6/2019 5535 Chapter 19

    22/56

    22

    Simplify the problem

    The stock price has two componentsa part that is

    uncertain and a part that is the present value of all future

    dividends during the life of the option.

    Step 1A tree can be structured in the usual way to model .

    Step 2By adding to the stock price at each nodes, thepresent value of future dividends, the tree can be converted

    into model S.

    *S

    X

    X

    X

    e(!

    "(!( tihen,De-SS

    tihen,SS

    t)i-r(-*

    *

    X

    X

    X(!

    "(!

    ( tihen,DeduSS

    tihen,duSS

    t)i-r(-j-ij*

    0ji,

    j-ij*

    0ji,

  • 8/6/2019 5535 Chapter 19

    23/56

    23

    Example

  • 8/6/2019 5535 Chapter 19

    24/56

    24

    Control Variate Technique

    1. Using the same tree to calculate both the

    value of the American option and the

    value of the European option .

    2. Calculating the Black-Scholes price of the

    European option .

    3. This gives the estimate of the value of the

    American option asEBSA -fff

    Af

    Ef

    Sf

  • 8/6/2019 5535 Chapter 19

    25/56

    25

    Example

    B-S model

    4.08)(-)(e 12T

    BS !! -dNS-dNKf 0-r

    4 . 3 2E

    f !A 4 . 4 9f !

    4.254.32-4.084.49P0 !!

  • 8/6/2019 5535 Chapter 19

    26/56

    26

    Alternative procedures for

    constructing trees

    Instead of setting u =1/dwe can set each of

    the 2 probabilities to 0.5 and

    ttqr

    ttqr

    ed

    eu

    (W(W

    (W(W

    !

    !

    )2/(

    )2/(

    2

    2

  • 8/6/2019 5535 Chapter 19

    27/56

    27

    Example

    0.9703

    ed

    1.0098

    eu

    and0.5psetWe

    0.25t,0.75T

    0.04

    0.10r,0.06r

    0.795K,0.79S

    ]0.250.04-.250.0016/2)0-0.1-[(0.06

    ]0.250.04.250.0016/2)0-0.1-[(0.06

    f

    0

    !

    !

    !

    !

    !

    !(!

    !

    !!

    !!

    W

  • 8/6/2019 5535 Chapter 19

    28/56

    28

    Trinomial Trees

    6

    1

    212

    3

    2

    6

    1

    212

    /1

    2

    2

    2

    2

    3

    W

    W

    (!

    !

    W

    W

    (

    !

    !! (W

    rt

    p

    p

    r

    t

    p

    udeu

    d

    m

    u

    t

    S S

    Sd

    Su

    pu

    pm

    pd

  • 8/6/2019 5535 Chapter 19

    29/56

    29

    Adaptive mesh modelFiglewski and Gao,1999

  • 8/6/2019 5535 Chapter 19

    30/56

    30

    Time-dependent parameters

    V/Nt)(t then

    steps,timeNoftotalaisthereIf

    stepth timetheofendtheist

    treetheoflifetheisT,T(T)VDefine

    maturitytaforyvolatilittheis(t)thatSuppos

    :timeoffuctionamakeTo2

    ofvalueforwardtheis(t)

    rateinterestforwardtheis(t)

    esetWe

    :timeoffuctiona)(orandmakeTo1

    2

    2

    t(t)]-(t)[

    i

    i

    qg

    f

    a

    rqr

    ii

    i

    gf

    f

    !

    !

    ! (

    W

    W

    W

    W

  • 8/6/2019 5535 Chapter 19

    31/56

    31

    Monte Carlo simulation

    When used to value an option, Monte Carlo simulationuses the risk-neutral valuation result. It involves thefollowing steps:

    1. Simulate a random path forS in a risk neutral world.2. Calculate the payoff from the derivative.

    3. Repeat steps 1 and 2 to get many sample values ofthe payoff from the derivative in a risk neutral world.

    4. Calculate the mean of the sample payoffs to get anestimate of the expected payoff.

    5. Discount this expected payoff at risk-free rate to getan estimate of the value of the derivative.

  • 8/6/2019 5535 Chapter 19

    32/56

    32

    Monte Carlo simulation (continued)

    In a risk neutral world the process for astock price is

    We can simulate a path by choosing timesteps of length t and using the discreteversion of this

    where is a random sample from J (0,1)

    dS S

    dtS

    d z! Q W

    ttSttStSttS ((!( IWQ )()()(-)(

  • 8/6/2019 5535 Chapter 19

    33/56

    33

    Monte Carlo simulation (continued)

    TT2

    )0(ln)T(ln

    thenconstant,areandif

    )()(or

    2)(ln)(ln

    isthisofversiondiscreteThe

    2

    ln

    .nratherthalnestimatetoaccuratemoreisIt

    2

    2/

    2

    2

    2

    WIW

    Q

    WQ

    WIW

    Q

    WW

    Q

    IWWQ

    !

    !(

    ((

    !(

    !

    ((

    SS

    etSttS

    tttSttS

    dzdtSd

    SS

    tt

  • 8/6/2019 5535 Chapter 19

    34/56

    34

    Derivatives Dependent on More than

    One Market Variable

    When a derivative depends on several

    underlying variables we can simulate

    paths for each of them in a risk-neutralworld to calculate the values for the

    derivative

    ttSttmttt iiiiiii ((!( IUUUU )()()()(

  • 8/6/2019 5535 Chapter 19

    35/56

    35

    Generating the Random Samples from

    Normal Distributions

    How to get two correlated samples 1

    and 2 from univariate standard normal

    distributions x1 and x2

    n.correlatiooftcoefficientheishere

    -1xx

    x

    2212

    11

    V

    VVI

    I

    !

    !

  • 8/6/2019 5535 Chapter 19

    36/56

    36

    Cholesky decomposition

    ijfor,

    1here

    x

    j

    1k

    ijjkik

    i

    1k

    2

    ik

    i

    1k

    kiki

    !

    !

    !

    !

    !

    !

    VEE

    E

    EI

  • 8/6/2019 5535 Chapter 19

    37/56

    37

    Number of Trials

    Denote the mean by and the standard deviation

    by .

    The standard error of the estimate is

    where M is the number of trials.

    A 95% confidence interval for the price fof the

    derivative is

    To double the accuracy of a simulation, we must

    quadruple the number of trials.

    M

    [

    Mf

    M

    [Q[Q 1.961.96-

  • 8/6/2019 5535 Chapter 19

    38/56

    38

    Applications

    Advantage

    1. It tends to be numerically more efficient

    increases linearlythan other procedures

    increases exponentiallywhen there are

    more stochastic variables.

    2. It can provide a standard error for the

    estimates.3. It is an approach that can accommodate

    complex payoffs and complex stocastic

    processes.

  • 8/6/2019 5535 Chapter 19

    39/56

    39

    Applications (continued)

    An estimate for the hedge parameter is

    Sampling through a Tree

    x

    ff*

    (

    -

  • 8/6/2019 5535 Chapter 19

    40/56

    40

    Variance reduction procedures

    Antithetic Variable Techniques

    standard error of the estimate is

    Control Variate Technique

    2

    21 ff

    f

    !

    BBAA ffff !**

    M

    [

  • 8/6/2019 5535 Chapter 19

    41/56

    41

    Variance reduction procedures

    (continued)

    Importance Sampling:

    Stratified Sampling:

    Moment Matching:

    Using Quasi-Random Sequences:

    )

    0.5-

    (1-

    n

    i

    N

    s

    mi*i

    -I

    I !

  • 8/6/2019 5535 Chapter 19

    42/56

    42

    Finite difference methods

    Define i,j as the

    value of at time

    i(twhen the stockprice is j(S

    T=T/N;

    S=Smax /M

  • 8/6/2019 5535 Chapter 19

    43/56

    43

    Implicit Finite Difference Method

    Forward difference approximation

    backward difference approximation

    S

    ff

    S

    f jiji

    (

    !xx ,1,

    S

    ff

    S

    f jiji

    (!

    x

    x 1,,

  • 8/6/2019 5535 Chapter 19

    44/56

    44

    Implicit Finite Difference Methods(continued)

    2

    or

    2

    setwe

    2

    1In

    2

    ,1,1,

    2

    2

    1,,,1,

    2

    2

    1,1,

    2

    222

    SS

    SSSS

    SS

    rS

    SS

    rSt

    jijiji

    jijijiji

    jiji

    (

    !

    (

    (

    (

    !

    (

    !

    !

    xx

    xx

    xx

    xx

    Wxx

    xx

  • 8/6/2019 5535 Chapter 19

    45/56

    45

    Implicit Finite Difference Methods(continued)

    tj2

    1-(r-q)j

    2

    1-c

    rtj1b

    tj2

    1-(r-q)j

    2

    1a

    ffcfbfa

    jSt

    ff

    t

    f

    22

    j

    22

    j

    22

    j

    jijijjijjij

    jiji

    t

    t

    there

    :obtaine

    tandsetalsoeIf

    ,11,,1,

    ,,1

    !

    !

    !

    !

    !(

    !

    xx

  • 8/6/2019 5535 Chapter 19

    46/56

    46

    Implicit Finite Difference Methods(continued)

  • 8/6/2019 5535 Chapter 19

    47/56

    47

    Explicit Finite Difference Methods

    :obtainwe

    point)(atthearetheyaspoint)1(atthe

    samethebetoassumedareandIf22

    i,j,ji

    SfSf

    xxxx

    2

    1,11,11,

    2

    2

    11,11,

    2

    2

    SS

    SS

    jijiji

    jiji

    (

    !

    (

    !

    xx

    xx

  • 8/6/2019 5535 Chapter 19

    48/56

    48

    Explicit Finite Difference Methods(continued)

    1,1

    *

    ,1

    *

    1,1

    *

    ,

    isequationdifferenceThe

    ! jijjijjijji cbaf

    )t(1

    1

    )-(1

    1

    )t(-1

    1where *

    tj2

    1(r-q)j

    2

    1

    trc

    tj1tr

    b

    tj2

    1(r-q)j

    2

    1

    tra

    22*

    j

    22*

    j

    22

    j

    (

    !(

    !

    (

    !

  • 8/6/2019 5535 Chapter 19

    49/56

    49

    Explicit Finite Difference Methods(continued)

  • 8/6/2019 5535 Chapter 19

    50/56

    50

    Difference between implicit and

    explicit finite difference methods

    i+1,j+1

    i,j i+1,j

    i+1,j1

    i+1,ji,j

    i,j 1

    i,j+1

    Implicit Method Explicit Method

  • 8/6/2019 5535 Chapter 19

    51/56

    51

    Change of Variable

    Z

    2

    1

    Z

    )

    2-q-(

    ,lnZDefine

    2

    22

    2

    rrt

    S

    !

    !

    xx

    WxxW

    xx

    2

    j

    2

    j

    2

    j

    jijijjijjij

    2

    )-(r-q2

    r1

    2

    )-(r-q2

    ffff

    2

    2

    2

    2

    2

    ,11,,1,

    Z

    t

    2

    -

    Z

    t-

    tZ

    t

    Z

    t

    2

    -

    Z

    there

    becomesmethodimplicitfortheequationdifferenceThe

    (

    (

    (

    (!

    (

    (!

    (

    (

    (

    (!

    !

    WK

    F

    WE

    KFE

  • 8/6/2019 5535 Chapter 19

    52/56

    52

    Change of Variable (continued)

    1,1

    *

    ,1

    *

    1,1

    *

    ,

    becomesmethodexplicitfortheequationdifferenceThe

    ! jijjijjijjif KFE

    )Z

    t)

    2-(

    Z

    t(

    1

    1

    )

    Z

    t-(

    1

    1

    )Z

    t)

    2-(

    Z

    t(-

    1

    1where

    2

    2

    2

    2

    2*

    2*

    j

    2*

    j

    2

    j

    2

    r-q2tr

    1

    tr

    2

    r-q2tr

    ((

    ((

    (!

    (

    (

    (!

    ((

    ((

    (!

    WK

    WE

  • 8/6/2019 5535 Chapter 19

    53/56

    53

    Relation to Trinomial Tree Approaches

    The three probabilities sum to unity.

  • 8/6/2019 5535 Chapter 19

    54/56

    54

    Relation to Trinomial Tree Approaches(continued)

    2 2

    2

    2

    2

    2

    2

    1- j tisnegative henj 13.

    Wecanusechange-of-variableapproch:

    t t - ( - )

    Z 2 Z

    t -

    Zt t

    ( - )Z 2 Z

    2

    u

    2

    m

    2

    d

    p r - q 2 2

    p 1

    p r - q 2 2

    W

    W

    W

    ( u

    ( (! ( (

    (!

    (( (

    ! ( (

  • 8/6/2019 5535 Chapter 19

    55/56

    55

    Other Finite Difference Methods

    Hopscotch method

    Crank-Nicolson scheme

    Quadratic approximation

  • 8/6/2019 5535 Chapter 19

    56/56

    56

    Summary

    We have three different numerical procedures for valuingderivatives when no analytic solution: trees, Monte Carlosimulation, and finite difference methods.

    Trees: derivative price are calculated by starting at theend of the tree and working backwards.

    Monte Carlo simulation: works forward from thebeginning, and becomes relatively more efficient as thenumber of underlying variables increases.

    Finite difference method: similar to tree approaches. Theimplicit finite difference method is more complicated buthas the advantage that does not have to take any specialprecautions to ensure convergence.