5-shear, anchorage & hold down reinforcement

Upload: ron-vora

Post on 03-Jun-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 5-Shear, Anchorage & Hold Down Reinforcement

    1/11

    201- 1-

    .

    201- 2-

    .

    201- -

    ,.

    Shear Capacity Checkdp =+++tdeck thaunch ytop_nc em 59.989inde =dp 59.989in since As=0 - No mild rf provided1 0.85 for =f'cdeck 4ksi

    k 0.28 for low relaxation strands Astr 0.217in 2b =wdeck 96in h =++hgirder tdeck thaunch 65.12in=c 8.517in =wweb 7.09in=a 7.239in Lbearing 10in

    Shear depth @ all sections after

    10ft. into the girder

    dv =max

    ,,dp

    a

    2 0.9 de 0.72 h

    4.697ft

    =dv 56.369inShear width (min. web width at point of shear calculation)bv =wweb 7.09in(remains constant along entire length of the girder)

    CRITICAL SECTION

    fpo =0.7 fpu 189ksi 1st Iteration

    Assume the length of critical section = =dv 4.697ftSince the shear and moment plots start from the end of the girder, and the cracks initiate from the edge ofthe bearing plate, the length of the bearing plate is added to the length of the critical section calculated

    above to find the effective length of the critical section :

    Lcr =+dv Lbearing 5.531ftMu@Lcr 2695.52kip ft

    Vu@Lcr 357.96kipNu 0kipVp =ndrap Astr fpe slope 29.027kip

    =Vu@Lcr Vp dv 1545.145 ip ft>Mu Vu@Lcr Vp dv OK.

    Net tensile strain at centroid of tensile rf

    s =

    ++Mu@Lcr

    dv0.5 Nu Vu@Lcr Vp Aps fpo

    +Aps Ep As Ep0.00308

    Assume s 0shear crack angle cr =+29 g 3500 s g 29 g

  • 8/12/2019 5-Shear, Anchorage & Hold Down Reinforcement

    2/11

    Lcr2 =+0.5 dv cot cr Lbearing 5.071ft 2nd Iteration

    Using =Lcr2 5.071ftMu@Lcr2 2820.74kip ft Vu@Lcr2 359.72kip

    s =

    ++Mu@Lcr2dv

    0.5 Nu 0.5 Vu@Lcr2 Vp Aps fpo

    +Aps Ep As Ep0.0036

    Assume s 0cr =+29 g 3500 s g 29 g

    Lcr3 =+0.5 dv cot cr Lbearing 5.071ft

    Length of critical section Lcr =+max ,dv 0.5 dv cot cr Lbearing 5.531ftAngle of Shear crack @ Lcr =cr 29 g

    Ultimate Shear at =Lcr 5.531ft Vu_Lcr 357.96kipUltimate Moment at =Lcr 5.531ft Mu_Lcr 2695.52kip ft1) Concrete Shear Capacity at Critical Section:

    Assuming shear rf provided is more than min. reqd.

    ecr 13.95in eccentricity of strands at critical lengthdp =+++tdeck thaunch ytop_nc ecr 52.78indv =dp

    a

    2 49.16in

    =4.8

    +1 750 s4.8

    Vc_Lcr =0.0316 f'c ip

    in 2 bv dv 149.532kip 0.9

    = Vc_Lcr 134.579kip

    Vs_reqd =Vu_Lcr +Vc_Lcr Vp

    219.175kip

    Vs Av

    sfy dv cot cr

    Using #4 bars - two legs, A4 0.2in 2 Av =2 A4 0.4in 2

    s =Av fy dv cot cr

    Vs_reqd9.711in

    Use s 9in

  • 8/12/2019 5-Shear, Anchorage & Hold Down Reinforcement

    3/11

    Vs_prov =Av fy dv cot cr

    s236.5kip

    Vn = ++Vs_prov Vc_Lcr Vp 373.553kip > =Vu_Lcr 357.96kip< =+0.25 f'c bv dv Vp 726.119kip

    Minimum shear reinf required:

    Av_min =0.0316 f'ckipin 2 bv

    s

    fy0.095in 2

    Provided = =Av 0.4in 2 O.KMaximum Spacing of shear reinf.:

    0.9

    vu =Vu_Lcr Vp

    bv dv1.058ksi =0.125 f'c 1ksi

    < ,vu 0.125 f'c smax =0.8 dv 39.328insmax 24 in

    =s 9in O.KProvide 2 legs of stirrups - #4 bars @ 9 in. c/c spacing upto 6ft into the girder.

    Horizontal Shear at Critical Section

    The nominal shear resistance of the interfaceplane shall be taken as:

    Vn +c Acv +Avf fy Pc Fy 60ksiShear at the abutment due to strength loading:

    Vu_Lcr 295.38kipEffective shear depth:

    =dv 49.16inInterface Shear Force:

    Vui =Vu_Lcr

    dv72.102

    ipft

    Area of interface between girder and deck per foot.

    Acv =whaunch 1ft 566.88in2

    vui =Vuift

    Acv0.127ksi

  • 8/12/2019 5-Shear, Anchorage & Hold Down Reinforcement

    4/11

    Permanent Net Compressive force Pc 0kipcohesion factor: (assumed concrete placed against clean, hardened concrete withsurface not intentionally roughened (smooth)).

    c 0.28ksifrom AAHTO 5.8.4.3

    friction factor: (for normal weight concrete)

    1

    use above equation to solve for required area of shear reinforcement:

    Avf_reqd =

    Vni_reqd c Acv ft 1

    Fy1.31

    n2ft

    Avf_reqd_min =0.05 Acv

    Fyksi 1 ft0.472

    n2ft

    To satisfy the minimum requirement criteria, use the same reinforcement as shear with a horizontal

    spacing , extending every alternate bar into the deck.sh

    =s 2 18inAvf_prov =

    A4 dvshft 0.546

    in 2ft

    Vni_prov =+c Acvft 1 +Avf_prov Fy Pcft 1 191.5kipft2) Longitudinal reinf check

    Transfer length lt =60 db 3ft strands have developed at critical sectionfpe

    fps_t =fpe 167.205ksi As_top 0in 2Tn =+Aps fps_t As_top fy 1523.906kipf 1.0 N 0.9 v 0.9

    T =++Mu_Lcr

    dv f0.5

    Nu

    N

    |

    |

    Vu_Lcr

    vVp

    |

    |0.5 Vs_prov

    cot cr 984.369kip

    T

    Tn No longitudinal rf reqd.

  • 8/12/2019 5-Shear, Anchorage & Hold Down Reinforcement

    5/11

    3) Anchorage Zone Transverse Reinforcement:

    Ldisturbed =hgirder 4.593ftLdisturbed.reinf =0.25 hgirder 13.78in

    =Pi 1691.215kip force due to strands before lossesPr.min =0.04 Pi 67.649kip

    Web Reinforcement Resistance required :>Pr 0.04 Pi

    fs 20ksi maximum allowed

    area of web rf reqd

    As.reqd =Pr.min

    fs3.382in 2

    Using #6 bars - 2 legs, A6 0.44in 2As =2 A6 0.88in 2

    spacing =As

    As.reqdLdisturbed.reinf 3.585in

    use spacing 3.5inAs.provided =

    As Ldisturbed.reinfspacing

    3.465in 2

    Web Resistance >Pr =As.provided fs 69.294kip Prmin Provide 2 legs of #6 bars spaced at 3.5 inches c/c upto a length of 14 inches into the

    girder, (i.e 4 pairs of #6 bars) followed by the shear reinforcement as stated above

    for the length of critical section, i.e 2 legs of stirrups - #4 bars @ 9 in. c/c spacing

    upto 12ft into the girder.

    4) Shear Reinforcement along beam length (every 12 ft. (L/10))

    Since the moment and shear values have the highest range along the halves of the girders connected to

    the pier, the shear reinforcement has been designed just for one of the two halves stated above, and the

    same shear reinforcement design has been used symmetrically.

    Strength 1 MOMENTS: Strength 1 SHEAR:

    Mu_12 3251.85kip ft Vu_12 333.20kipMu_24 5659.38kip ft Vu_24 278.76kipMu_36 7244.32kip ft Vu_36 219.89kipMu_48 8063.91kip ft Vu_48 168.06kipMu_60 8134.17kip ft Vu_60 110.39kip

    Nu 0kip throughout the girderVp =ndrap Astr fpe slope 29.027kip upto 37.6ft after which Vp=0

  • 8/12/2019 5-Shear, Anchorage & Hold Down Reinforcement

    6/11

    Shear Reinforcement at 12 ft.

    e12 15.4in e24 18.1indp =+++tdeck thaunch ytop_nc e12 54.23indv =dp

    a

    2 50.61in

    =Vu_12 Vp dv 1282.858 ip ft>Mu_12 Vu_12 Vp dv OK.

    Net tensile strain at centroid of tensile rf

    s =

    ++Mu_12

    dv0.5 Nu Vu_12 Vp Aps fpo

    +Aps Ep As Ep0.00227

    Assume s 0 only when has a negative value, as we go ahead along the length of the girder,sbecomes positive at about 36ft. for which the positive value should bes

    considered, which results in the crack angle increasing as we near midspan.(sample calculation for this shown later).

    shear crack angle =+29 g 3500 s g 29 gAssuming shear rf provided is more than min. reqd.

    =4.8

    +1 750 s4.8

    Vc =0.0316 f'c ip

    in 2 bv dv 153.942kip

    0.9= Vc 138.548kip

    Vs_12.reqd =Vu_12 +Vc Vp

    187.253kip

    Vs Av

    sfy dv cot

    Using #4 bars - two legs, A4 0.2in 2 Av =2 A4 0.4in 2

    s =Av fy dv cot

    Vs_12.reqd11.702in

    Use s 10inVs_12 =

    Av fy dv cot

    s219.128kip

    Vn = ++Vs_12 Vc Vp 361.888kip > =Vu_12 333.2kip< =+0.25 f'c bv dv Vp 746.68kip

  • 8/12/2019 5-Shear, Anchorage & Hold Down Reinforcement

    7/11

    Minimum shear reinf required:

    Av_min =0.0316

    f'ckipin 2 bv

    s

    fy0.106in 2

    Provided = =Av 0.4in 2 O.KMaximum Spacing of shear reinf.:

    0.9

    vu =Vu_12 Vp

    bv dv0.951ksi =0.125 f'c 1ksi

    < ,vu 0.125 f'c smax =0.8 dv 40.488insmax 24 in

    =s 10in O.KHorizontal Shear at 12 ft.

    The nominal shear resistance of the interfaceplane shall be taken as:

    Vn +c Acv +Avf fy Pc Fy 60ksiShear at the abutment due to strength loading:

    Vu_Lcr 295.38kipEffective shear depth:

    =dv 50.61inInterface Shear Force:

    Vui =Vu_12

    dv79.004

    ipft

    Area of interface between girder and deck per foot.

    Acv =whaunch 1ft 566.88in 2

    vui =Vuift

    Acv0.139ksi

  • 8/12/2019 5-Shear, Anchorage & Hold Down Reinforcement

    8/11

    use Vni equation to solve for required area of shear reinforcement:

    Avf_reqd =

    Vni_reqd c Acv ft 1

    Fy1.182

    in 2ft

    Avf_reqd_min =

    0.05 Acv

    Fyksi 1 ft 0.472in 2ft

    To satisfy the minimum requirement criteria, use the same reinforcement as shear with a horizontal

    spacing , extending every alternate bar into the deck.sh =s 2 20inAvf_prov =

    A4 dvshft 0.506

    n2ft

    Vni_prov =+c Acvft 1 +Avf_prov Fy Pcft 1 189.093ipft

    Shear Reinforcement at 48 ft.e48 =em 21.159in

    dp =+++tdeck thaunch ytop_nc e48 59.989indv =dp

    a

    2 56.369in

    Vp 0kip=Vu_48 Vp dv 789.452 ip ft

    >Mu_48 Vu_48 Vp dv OK.

    Net tensile strain at centroid of tensile rf

    s =

    ++Mu_48

    dv0.5 Nu Vu_48 Aps fpo

    +Aps Ep As Ep0.00057

    shear crack angle =+29 g 3500 s g 30.993 gAssuming shear rf provided is more than min. reqd.

    =4.8

    +1 750 s3.364

    Vc =0.0316 f'c ipin 2 bv dv 120.152kip 0.9

    = Vc 108.137kip Vs_48.reqd =

    Vu_48 +Vc Vp

    66.582kip

    Vs Av

    sfy dv cot

  • 8/12/2019 5-Shear, Anchorage & Hold Down Reinforcement

    9/11

    Using #4 bars - two legs, A4 0.2in 2 Av =2 A4 0.4in 2

    s =Av fy dv cot

    Vs_48.reqd33.826in

    Use s 24inVs_48 =

    Av fy dv cot

    s93.841kip

    Vn = ++Vs_48 Vc Vp 192.593kip > =Vu_48 168.06kip< =+0.25 f'c bv dv Vp 799.317kip

    Minimum shear reinf required:

    Av_min =0.0316 f'c ip

    in 2 bvs

    fy0.253in 2

    Provided = =Av

    0.4in 2 O.KMaximum Spacing of shear reinf.:

    0.9

    vu =Vu_48 Vp

    bv dv0.467ksi =0.125 f'c 1ksi

    < ,vu 0.125 f'c smax =0.8 dv 45.095insmax 24 in

    =s 24in O.KProvide 2 legs of stirrups - #4 bars @ 10 inch. c/c spacing after 12ft upto 24ft. into the girder.

    Using the same procedure and taking Vp=0 after 37.6 ft., the shear reinforcement is determined as:

    2 legs of stirrups - #4 bars @ 18 inch. c/c spacing after 24ft upto 36ft. into the girder.

    2 legs of stirrups - #4 bars @ 24 inch. c/c spacing after 36ft upto 60ft. into the girder.

    Beyond this, the shear reinforcement has a symmetrical layout till the end of the girder, and the

    same for the second girder.

    Horizontal Shear at 48 ft.

    The nominal shear resistance of the interfaceplane shall be taken as:

    Vn +c Acv +Avf fy Pc Fy 60ksiShear at the abutment due to strength loading:

    Vu_Lcr 295.38kipEffective shear depth:

    =dv 56.369inInterface Shear Force:

    Vui =Vu_48

    dv35.777

    kipft

  • 8/12/2019 5-Shear, Anchorage & Hold Down Reinforcement

    10/11

    Area of interface between girder and deck per foot.

    Acv =whaunch 1ft 566.88in 2

    vui =Vuift

    Acv0.063ksi

  • 8/12/2019 5-Shear, Anchorage & Hold Down Reinforcement

    11/11

    Hold down point force and rebar

    =slope 5.73 g angle of draped strands =slope 5.73 gthe hold down points need to be designed for the jacking force

    Pdraped =fpj ndrap Astr 351.54kip force along the draped strandsPdraped.normal =Pdraped sin 35.095kip resultant normal force of the draped strands

    Phold.down =Pdraped.normal 35.095kiptotal hold down reinforcement area reqd

    Ahold.down.rebar =Phold.down

    fy0.585in 2

    hold down reinf area for each ps strand

    Aindividual =Ahold.down.rebar

    ndrap

    0.073in 2 A3 0.11in 2 area of #3 bar

    Provide a hooked/bent down #3 bar at the hold down point for each draped strand