4.linked list(contd.)

70
Data Structure & Algorithm CS 102 Ashok K Turuk

Upload: chandan-singh

Post on 23-Jan-2017

71 views

Category:

Engineering


1 download

TRANSCRIPT

Page 1: 4.linked list(contd.)

Data Structure & AlgorithmCS 102

Ashok K Turuk

Page 2: 4.linked list(contd.)

2

List Traversal

Head

Data Link

Page 3: 4.linked list(contd.)

3

=

Head

Data Link

PTR

Page 4: 4.linked list(contd.)

4

=

Head

Data Link

PTR = PTR - > Link

Page 5: 4.linked list(contd.)

5

List Traversal

Let Head be a pointer to a linked list in memory. Write an algorithm to print the contents of each node of the list

Page 6: 4.linked list(contd.)

6

List Traversal Algorithm1. set PTR = Head 2. Repeat step 3 and 4 while

PTR NULL3. Print PTR->DATA4. Set PTR = PTR -> LINK5. Stop

Page 7: 4.linked list(contd.)

7

Search for an ITEM

• Let Head be a pointer to a linked list in memory. Write an algorithm that finds the location LOC of the node where ITEM first appears in the list, or sets LOC = NULL if search is unsuccessful.

Page 8: 4.linked list(contd.)

8

Search for an ITEM

Algorithm1. Set PTR = Head 2. Repeat step 3 while PTR NULL3. if ITEM == PTR -> DATA, then

Set LOC = PTR, and Exitelse Set PTR = PTR -> LINK

4. Set LOC = NULL /*search unsuccessful */

5. Stop

Page 9: 4.linked list(contd.)

9

Search for an ITEM

Algorithm [Sorted ]1. Set PTR = Head 2. Repeat step 3 while PTR NULL3. if ITEM < PTR -> DATA, then

Set PTR = PTR->LINK, else if ITEM == PTR->DATA, thenSet LOC = PTR, and Exit else Set LOC = NULL, and Exit

4. Set LOC = NULL /*search unsuccessful */5. Stop

Page 10: 4.linked list(contd.)

10

Insertion to a Linked List

Head

Data Link

Page 11: 4.linked list(contd.)

11

Insertion to Beginning

Head

Data Link

New Node PTR

Page 12: 4.linked list(contd.)

12

Insertion to Beginning

Head

Data Link

New Node PTRPTR->Link = Head

Page 13: 4.linked list(contd.)

13

Insertion to Beginning

Head

Data Link

New Node PTRPTR->Link = Head , Head = PTR

Page 14: 4.linked list(contd.)

14

Overflow and Underflow• Overflow : A new Data to be

inserted into a data structure but there is no available space.

• Underflow: A situation where one wants to delete data from a data structure that is empty.

Page 15: 4.linked list(contd.)

15

Insertion to Beginning

Head

Data Link

New Node PTROverflow , PTR == NULL

Page 16: 4.linked list(contd.)

16

Insertion at the Beginning

Let Head be a pointer to a linked list in memory. Write an algorithm to insert node PTR at the beginning of the List.

Page 17: 4.linked list(contd.)

17

Insertion at the BeginningAlgorithm

1. If PTR == NULL , then Write Overflow and Exit

2. Set PTR -> DATA = ITEM 3. Set PTR -> LINK = Head -> LINK4. Set Head = PTR 5. Exit

Page 18: 4.linked list(contd.)

18

Insertion After a Given Node

Let Head be a pointer to a linked list in memory. Write an algorithm to insert ITEM so that ITEM follows the node with location LOC or insert ITEM as the first node when LOC == NULL

Page 19: 4.linked list(contd.)

19

Insertion at a Given Node

Head

Data Link

New Node PTR

A BALOC

Page 20: 4.linked list(contd.)

20

Insertion at a Given Node

Head

Data Link

New Node PTR

BALOC

PTR->Link = LOC->Link

Page 21: 4.linked list(contd.)

21

Insertion at a Given Node

Head

Data Link

New Node PTR

BALOC

LOC->Link = PTR

Page 22: 4.linked list(contd.)

22

Insertion After a Given Node Algorithm

1. If PTR == NULL , then Write Overflow and Exit

2. Set PTR -> DATA = ITEM 3. If LOC == NULL

Set PTR -> LINK = HeadSet Head = PTR

Else Set PTR->Link = LOC->LinkSet LOC->Link = PTR

4. Exit

Page 23: 4.linked list(contd.)

23

Insertion into a Sorted Linked List

Head

Data Link

1000 2000 3000 4000 5000

35003000 < 3500 < 4000

Page 24: 4.linked list(contd.)

24

Insertion into a Sorted Linked List

1000 2000 3000 4000 5000

3000 < 3500 < 4000

BA

To Insert Between Node A and B We have to Remember the Pointer to Node A which is the predecessor Node of B

Page 25: 4.linked list(contd.)

25

Insertion into a Sorted Linked ListSteps to Find the LOC of Insertion

1. If Head == NULL, then Set LOC = NULL and Return

2. If ITEM < Head ->Data , then Set LOC = NULL and Return

3. Set SAVE = Head and PTR = Head -> Link 4. Repeat Steps 5 and 6 while PTR NULL5. If ITEM < PTR -> Data then

LOC = SAVE and Return6. Set SAVE = PTR and PTR = PTR->Link7. Set LOC = SAVE 8. Return

Page 26: 4.linked list(contd.)

26

Deletion Algorithm

A

Page 27: 4.linked list(contd.)

27

Deletion Algorithm

A

Page 28: 4.linked list(contd.)

28

Delete the Node Following a Given Node

• Write an Algorithm that deletes the Node N with location LOC. LOCP is the location of the node which precedes N or when N is the first node LOCP = NULL

Page 29: 4.linked list(contd.)

29

Delete the Node Following a Given Node

• Algorithm: Delete(Head, LOC, LOCP)

1 If LOCP = NULL thenSet Head = Head ->Link. [Deletes the 1st Node]

Else Set LOCP->Link = LOC->Link [Deletes Node N]

2. Exit

Page 30: 4.linked list(contd.)

30

Delete an ItemLet Head be a pointer to a linked list in memory that contains integer data. Write an algorithm to delete node which contains ITEM.

Page 31: 4.linked list(contd.)

31

Delete an Item

1000 2000 3000 4000 5000

4000BA

To delete a Node [Node B] We have to Remember the Pointer to its predecessor [Node A]

Page 32: 4.linked list(contd.)

32

Deletion of an ITEMAlgorithm

1. Set PTR=Head and TEMP = Head2. Repeat step 3 while PTR NULL3. If PTR->DATA == ITEM, then

Set TEMP->LINK = PTR -> LINK, exit else TEMP = PTR PTR = PTR -> LINK

4. Stop

Page 33: 4.linked list(contd.)

33

Deletion of an ITEMAlgorithm1. If Head == NULL , then

Write ITEM is not in the List, Exit

2. If Head ->Data == Item Head = Head -> Link

3. Set PTR=Head and TEMP = Head

Page 34: 4.linked list(contd.)

34

Deletion of an ITEMAlgorithm

4. Repeat step 4 while PTR NULL If PTR->DATA == ITEM, thenSet TEMP->LINK = PTR -> LINK, exit else TEMP = PTR PTR = PTR -> LINK

5. Stop

Page 35: 4.linked list(contd.)

35

Header Linked Lists• A header linked list is a linked list

which always contains a special node called header node

• Grounded Header List: A header list where the last node contains the NULL pointer.

Header Node

Page 36: 4.linked list(contd.)

36

Header Linked Lists

• Circular Header List: A header list where the last node points back to the header node.

Header Node

Page 37: 4.linked list(contd.)

37

Header Linked Lists• Pointer Head always points to the

header node.

• Head->Link == NULL indicates that a grounded header list is empty

• Head->Link == Head indicates that a circular header list is empty

Page 38: 4.linked list(contd.)

38

Header Linked Lists• The first node in a header list is the

node following the header node• Circular Header list are frequently

used instead of ordinary linked list– Null pointer are not used, hence all

pointer contain valid addresses– Every node has a predecessor, so the

first node may not require a special case.

Page 39: 4.linked list(contd.)

39

Traversing a Circular Header List

• Let Head be a circular header list in memory. Write an algorithm to print Data in each node in the list.

Page 40: 4.linked list(contd.)

40

Traversing a Circular Header List Algorithm

1. Set PTR = Head->Link;2. Repeat Steps 3 and 4 while PTR

Head3. Print PTR->Data4. Set PTR = PTR ->Link5. Exit

Page 41: 4.linked list(contd.)

41

Locating an ITEM

• Let Head be a circular header list in memory. Write an algorithm to find the location LOC of the first node in Head which contains ITEM or return LOC = NULL when the item is not present.

Page 42: 4.linked list(contd.)

42

Locating an ITEM Algorithm

1. Set PTR = Head->Link2. Repeat while PTR ->Data ITEM and PTR

Head Set PTR = PTR ->Link

3. If PTR->Data == ITEM thenSet LOC = PTR

elseSet LOC = NULL

4. Exit

Page 43: 4.linked list(contd.)

43

Other variation of Linked List • A linked list whose last node points

back to the first node instead of containing a NULL pointer called a circular list

Page 44: 4.linked list(contd.)

44

Other variation of Linked List

• A linked list which contains both a special header node at the beginning of the list and a special trailer node at the end of list

Header Node Trailer Node

Page 45: 4.linked list(contd.)

Applications of Linked Lists

1. Polynomial Representation and operation on Polynomials

Ex: 10 X 6 +20 X 3 + 55 

2. Sparse Matrix Representation

0 0 1122 0 00 0 66

Page 46: 4.linked list(contd.)

021021 ...)( ee

me

m xaxaxaxA mm

Representation of Node

Polynomials

coef expon link

Page 47: 4.linked list(contd.)

3 14 2 8 1 0a

8 14 -3 10 10 6b

123 814 xxa

61014 1038 xxxb

null

null

Example

Page 48: 4.linked list(contd.)

Polynomial Operation

1. Addition 2. Subtraction 3. Multiplication4. Scalar Division

Page 49: 4.linked list(contd.)

3 14 2 8 1 0a

-3 108 14 10 6b

11 14d

a->expon == b->expon

a

b

da->expon < b->expon-3 10

Polynomial Addition

3 14 2 8 1 0

-3 108 14 10 6

11 14

Page 50: 4.linked list(contd.)

3 14 2 8 1 0a

8 14 -3 10 10 6b

11 14a->expon > b->expon

-3 10d

2 8

Polynomial Addition

Page 51: 4.linked list(contd.)

3 14 2 8

1 0

a8 14 -3 10 10 6

b11 14

a->expon > b->expon-3 10

d2 8

Polynomial Addition (cont’d)

10 6

1 0

Page 52: 4.linked list(contd.)

3 14 2 8 1 0a

-3 108 14 10 6b

-5 14d

a->expon == b->expon

a

b

da->expon < b->expon3 10

Polynomial Subtraction

3 14 2 8 1 0

-3 108 14 10 6

-5 14

Page 53: 4.linked list(contd.)

3 14 2 8 1 0a

8 14 -3 10 10 6b

-5 14a->expon > b->expon

3 10d

2 8

Polynomial Subtraction (cont’d)

Page 54: 4.linked list(contd.)

3 14 2 8

1 0

a8 14 -3 10 10 6

b-5 14

a->expon > b->expon3 10

d2 8

Polynomial Addition (cont’d)

-10 6

1 0

Page 55: 4.linked list(contd.)

Sparse Matrix A sparse matrix is a very large matrix that contains lot of zero’s. In order to save storage space, a sparse matrix stores only the nonzero elements.

Page 56: 4.linked list(contd.)

Linked list representationSparse Matrix

m n -- i j val i j val Null

0830000090720500

A

4 4 -- 0 2 5 3 2 8 Null

Page 57: 4.linked list(contd.)

Linked list representationSparse Matrix

aij

i j

ROWLINK

COLLINK

Page 58: 4.linked list(contd.)

Linked list representationSparse Matrix

0830000090720500

A

0

1

2

3

2 5

0 2 1 7 3 9

1 3 2 8

Page 59: 4.linked list(contd.)

59

Two-Way List • What we have discussed till now is a

one-way list [ Only one way we can traversed the list]

• Two-way List : Can be traversed in two direction – Forward : From beginning of the list to

end– Backward: From end to beginning of the

list

Page 60: 4.linked list(contd.)

60

Two-Way List • A two-way list is a linear collection

of data element called nodes where each node N is divided into three parts:– A information field INFO which

contains the data of N– A pointer field FORW which contains

the location of the next node in the list– A pointer field BACK which contains

the location of the preceding node in the list

Page 61: 4.linked list(contd.)

61

Two-Way List • List requires two pointer variables:– FIRST: which points to the first node in

the list– LAST: which points to the last node in

the list INFO field BACK pointerFORW pointer

Page 62: 4.linked list(contd.)

62

Two-Way List

FIRST LAST

Page 63: 4.linked list(contd.)

63

Two-Way List Suppose LOCA and LOCB are the locations of nodes A and B respectively in a two-way list.

The statement that node B follows node A is equivalent to the statement that node A precedes node B

Pointer Property: LOCA->FORW = LOCB if and only if LOCB->BACK = LOCA

Page 64: 4.linked list(contd.)

64

Two-Way List

FIRST LAST

A BForward Pointer Node A Backward Pointer

Node A

Page 65: 4.linked list(contd.)

65

Two-Way List

FIRST LAST

A BLOCA LOCB

LOCA->FORW = LOCB if and only if LOCB->BACK = LOCA

Page 66: 4.linked list(contd.)

66

Operation in two-way list

• Traversing • Searching • Deleting • Inserting

Page 67: 4.linked list(contd.)

67

Deletion in Two-Way List

FIRST LAST

A BLOCB

DELETE NODE B

C

LOCB->BACK->FORW

LOCB->FORW =

Page 68: 4.linked list(contd.)

68

Deletion in Two-Way List

FIRST LAST

A BLOCB

DELETE NODE B

C

LOCB->FORW->BACK

LOCB->BACK =

Page 69: 4.linked list(contd.)

69

Insertion in Two-Way List

FIRST LAST

A BLOCA

INSERT NODE NEW

C

NEW

LOCA->FORW->BACK = NEWNEW->FORW = LOCA->FORW

LOCA->FORW = NEW NEW->BACK = LOCA

Page 70: 4.linked list(contd.)

70

?