4lecture;wastewater treatment

Upload: dlo-perera

Post on 06-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 4Lecture;Wastewater Treatment

    1/50

    12/5/20

    CE 4312 W

    W E

    ECE 4

    . , ,

    F E,

    830@.

    1

    :

    U      .

    U       : , , .

    A     .

    2

    C

    W

    ••  I TI T

    ••  W W

    ••   W W

    ••  W W

    •   W

    ••  P P 3

    W S ?W S ?•  W

    (, , , ), ( );D ( , .) (, ).

    •  W ,, .

    •   B , .

    4

  • 8/17/2019 4Lecture;Wastewater Treatment

    2/50

    12/5/20

    W

    I J T R

    E

    5

    Where does it all go!

    Where does thewater from thewasher go?

    When you flush thetoilet where doesthe contents go?

    By gravity flow, the waste is on its wayto your local wastewater treatment plant!

    6

    W ?

    •  C (

    DO )

    •  A ( )

    •  I

    ( )

    7

    W T

    G :

    B

    .

    R

    P

    A

    ..

    8

  • 8/17/2019 4Lecture;Wastewater Treatment

    3/50

    12/5/20

    WWTreatmentWWTreatmentWWTreatmentWWTreatment---- ObjectivesandregulationsObjectivesandregulationsObjectivesandregulationsObjectivesandregulations   D ,

    .

     T

    .

      BOD,

    .

      S 1980, (..

    ). R

    (: ) ..

    9

    I ,

    , ,

    VOC

    .

    10

    A F AEAE EAE

    W

    .

    11

    T GOAL W T :

    T

    ,

    .

    12

  • 8/17/2019 4Lecture;Wastewater Treatment

    4/50

    12/5/20

    K W T P

    13

    W T P D

      P

    .

      C (F) E  

    , ,

    .

      D S ,

    .

      C

    .

    14

    B :

    F

    I .. TSS, COD,

    BOD5, , TKN, T P,

    O.

    M .. ,

    .

    15

    •   E

    •   E (EP)

    •   E I , , /.

    •  T .

    16

  • 8/17/2019 4Lecture;Wastewater Treatment

    5/50

    12/5/20

    •   S D F

     – D: . V

     –  I: B

     – I/E: %

     – P F: D

    17

    •   F

    •  A

    () .

    •  E :

     – T ( .. 40 L/ .

    , 40 L/ .

    )

     – E , ,

     – N /.

    18

    •  E :

    C 15,000 EP 150 L/EP.

    E ADWF:

    ADWF = 15,000(EP) 150(L/EP.) 1(L)/1000 (L)

    = 2,250 L/

      P

    , .

      P

    , (

    )  19

     U

    .

    E: T N 50 /L, 6.5 ML/.

    •   M = 50 106/L 6.5 106L/

    = 325 /

     E EP.

    E: P BOD5 55 /EP.

    28,000 EP

    BOD5 = 55 (/EP.) 28,000 (EP)

    = 1,540,000 /

    = 1,540 /   20

  • 8/17/2019 4Lecture;Wastewater Treatment

    6/50

    12/5/20

    •   S D M L

     – A BOD S

    S P

    E (PE)

     – D

    ,

    .

    21

    •   WW

    .

    •  

    •   T WW :

    B

    P

    C (

    CFSTR)

    C

    A

    P

    F22

    23

    K D C

    24

  • 8/17/2019 4Lecture;Wastewater Treatment

    7/50

    12/5/20

    25 26

    27

    •       U , / .

    •    R .

    •   A , , .

    •   A   .

    28

  • 8/17/2019 4Lecture;Wastewater Treatment

    8/50

    12/5/20

    D

    •W .

    1. P :   , , , .

    2. C :   ,, , .

    3. B :   ( , ); ( )

    29

    B B

    30

    A , B C

    :

    C C

    B B

    C31

    R V

    32

  • 8/17/2019 4Lecture;Wastewater Treatment

    9/50

    12/5/20

    R V T

    .

    I

    (; RW)

    REACTORVESSEL

    E

    (; )

    33

    B R

      T

    .

      T .

      T .

      T , .

      M .

      E: BOD .

    34

    P , ( ) R

    F

    .

    T

    .

    T .

    35

    C ( )

    (CSTR)  C

    .

      C

    .

    36

  • 8/17/2019 4Lecture;Wastewater Treatment

    10/50

    12/5/20

    A

    •   A

    .

    37

    C

      T

    .

      I ,

    .

      I , .   38

    P

      R ,

    , , .

      W ,

    ( ) ( ).

    39

    •   T

    , :

     – T

     – T

     – T

     – A C

     – T .

    A

    Q, C0   Q, C

    C V, C

    40

  • 8/17/2019 4Lecture;Wastewater Treatment

    11/50

    12/5/20

    M E

    /

    IO+ G/ = A

    ORI S

    41

    S :M B

     =  − + (−) 

    = , 3  = ℎ ℎ ℎ , −3−1

     

    = ℎ ,3−1 0 = ℎ ,−3  = ,−3  

    = − , −1 42

    E F EAE F AEAE

    AEBC   AAEBC•   AEROBIC TREATMENT TAKES PLACE IN

    PRESENCE OF AIR.

    •   THE ORGANIC POLLUTANTS ARECONVERTED INTO CARBON DIOXIDE

    AND WATER

    •   THERE IS NO SMELL IN THESURROUNDING AREA

    •   IT CONSUMES MORE ELECTRICAL

    ENERGY.

    •   THE SLUDGE PRODUCTION IS HIGH

    •   ANAEROBI C TREATMENT TAKESPLACE IN ABSENCE OF AIR.

    •   THE ORGANIC POLLUTANTS ARECONVERTED BY ANAEROBICMICROORGANISMS TO A GASCONTAINING METHANE ANDCARBON DIOXIDE.

    •   THERE IS SMELL ALL AROUND THEPLANT

    •   THE ENERGY CONSUMPTION ISLOW

    •   THE SLUDGE PRODUCTION IS LOW

    43

    T

    W T P

    S   P

    SA

      S

    S

    D

    T

    F

    A

    D

    L D

    I

    C

    R

    S

    T

    44

  • 8/17/2019 4Lecture;Wastewater Treatment

    12/50

    12/5/20

    C T

    . T :

     A

     T

    45

    P (P T)

    46

     PT F

    .

      S ()

    ()

    .

    T :

      I

    .

    T .

    47

      T

    H

    H

    . T  

    .

      W

    .

      T

    .

      I

    ,

    .   48

  • 8/17/2019 4Lecture;Wastewater Treatment

    13/50

    12/5/20

      PT

    , .. F

    , ,

    .

    49

    MM

    TP

    TP

    G

    G

    FOG

    FOG

    SS

    B

    H, ,

    N,

    B

    H, ,

    N,

    50

      H,

    ( ),

    , ( )

    ( ).

    I

    A

    O

    H

    O

    P

    F

    P

    O

    A

    A

    K

     R S

     C (,

    )

     G C

     F (

    )

     F

     F

     C ( )

    52

  • 8/17/2019 4Lecture;Wastewater Treatment

    14/50

    12/5/20

    R SG:•   F .

    •   S .

    •   S

    , , ,

    •   S ( )

    P

    .

    O:

    R ,

    .., ,

    .

    P .

    P .

      53

    S E M S 10 30

    54

    S S 3 6

    55

    R D S 3 6

    56

  • 8/17/2019 4Lecture;Wastewater Treatment

    15/50

    12/5/20

    C :   O (, )

      C ( )

      M (,

    , )

      F

    57

    S C: T .

      I ,

    .

    C S•   C (

    )

    . C

    .

    B 5.08 10. 16

    0.64 5.08 .

    58

    •S

    ,

    .

    F S

    • F

    .

    •F S .

    59

    M

    .

    S

    .

    A

    .

    60

  • 8/17/2019 4Lecture;Wastewater Treatment

    16/50

    12/5/20

    D S

    V

    O = 0.6 / (

    )

    M = 0.751.0 / (

    .

    M = 0.4 /

    T = 0.6 1.0 /

    61

    H L

    (a) Head loss (hL) through bar racks as a function of:•

    62

    L   =  ()0.7 =

    .

    V = V  

    (/)

    U =

    (/)

    = (2)

    N:

    63

    () H (L)  

    •A

    •B

    •A

    : ;

    .

    L = ()

    W = ()

    = ( ) ()

    V = (/)

    = .

    = (2)

    β= ( = 2.42;= 1.79)

    64

  • 8/17/2019 4Lecture;Wastewater Treatment

    17/50

    12/5/20

    ( ) R

    H0 =

    P0 =

    P=

     = 0.050.15 .

     = 0.10.4 ().

    •   H .

    •   R

    .

    65

    C

    A 45 60 75 85

    M ) 80 80

    T

    . T  

    .

    66

    67   68

  • 8/17/2019 4Lecture;Wastewater Treatment

    18/50

    12/5/20

      S

      C

    F

    :

      B O,

      T S

      C W

      C C

      T C

    R, 3.5 35 L 1000 3

    .

    S 1020% 6401100 /3.   69

    W D S

     S

    .

    70

    T

    . T

    .

     T

    .

    71

      D

     G

      I T

    .T

    ,

    .

    C

    72

  • 8/17/2019 4Lecture;Wastewater Treatment

    19/50

    12/5/20

    73

    E 1: F :

     – P (Q) = 80 X 106 L/

     – C = 1 ; 5

     –  I = 60°

     – C = 0.75

    C;

     – C

     – M

     – C

    C

    C

    C

    610 ,

    .

    C

    .

    74

    G ()

    , , , ,

    :

    S G;

    •  S

    •  D ( , ,

    .)

    •  B

    GRIT REMOVAL

    75

    G ;

    U

    C ,

    B

    T

    T 70

      85%.

    M 10 70%.

    T 0.004 0.1

    3/ML . T

    .76

  • 8/17/2019 4Lecture;Wastewater Treatment

    20/50

    12/5/20

    O

      P

    .

      R ,

    .

      R .

    T

      B .

      U S ( )

      H

    , ( 1

    , ).

    77

    D

    ) C (T )  .

    ) A .

    ) M ( ).

    78

    C V G C ()

    C )T ,

    )V .79

    •   S

    0.3 /.

    •   L

    (

    ),

    Q/A

    .

    80

    H F G C D C

  • 8/17/2019 4Lecture;Wastewater Treatment

    21/50

    12/5/20

    W S

    81

     S L :

     = ( − )

      = (/) = (/)

     

     = (/)  = (/)  = ()  = (//) 

    82

    H F G C D C

    F = 0.2 ,

     =2650 /3 , =1.518× 103 //

     = ( − ) 2

    18  

     =  9.81 (2650 −1000) 0.00022

    18 1.518 10−3  

     = 0.021 / 

    83

    W

    84

  • 8/17/2019 4Lecture;Wastewater Treatment

    22/50

    12/5/20

    85

    Differentiationbetweenhorizontalcrosssection

    andtransversalcrosssection

    Horizontalcrosssectionarea=WXL

    QQ

    Transversalcrosssection

    area=WXH

    R , V

    H

    WL

    C

    (W X H);

    , =  (3   )

    ℎ ( ) 

    , =   max ℎ (0.3 )

     

    86

    C

    (W X L);

    , =  (3   )

    ( ) 

    , =   max (0.021 )

     

    87

    R :

    C ,

    At maximum flow, ℎ

    =  ℎ

      =  ℎ  

    = G.C.

    V   = / 0.2 = 0.021

    / (S )L = L G.C.

    V   = F (0.3 /)

    88

  • 8/17/2019 4Lecture;Wastewater Treatment

    23/50

    12/5/20

    T H F G C

    •   D 4590

    •   H 0.3 0.45 /

    •   S 0.61.2 /

    •  L . A

    1.52.0 .

    •   I ,

    , 20%

    .

    L 14  ; 1.2 1.5 L > = 18  

    •   H 3040%

    , .

    89

    A G C

    90

    A G C

    91

    •   T

    . T

    .

    •   A

    .

    •   T .

    N 0.15 0.45 3/

    .

    •   L

    .

    •   L 2.5 :1 5:1 2 5 .

    D

    R T

    D:

    D, 2:5

    L, 7.5:20

    W, 2.5:7.0

    W D 1:1 5:1 2:1

    D

    ,

    25 3

    A ,

    3/ .

    0.150.45 0.3

    G :

    G, 3/103 30.0040.200 0.015

    92

    S: M & E, I. [536]

  • 8/17/2019 4Lecture;Wastewater Treatment

    24/50

    12/5/20

    93

      P :•   H

    •   R

    •   U

    •  A

     T ,

    3 %.

     Q :

    • D

    •  R

    •   H

    ( )

    E 1: D

    :

    = 10600 L/

    = 17070 L/.

    E

    .

    E 2:   A

    0.2 ,

    2.65. S

    0.016 0.022 /,

    . A 0.3 /

    . D

    10 0003/.   94

    F .

    I , (FOG).

      I

      T .

    T

    . T . T .

    FLOTATION

    95

    FLOW BALANCINGT

    D 6

    ADWF

    T

    A 96

  • 8/17/2019 4Lecture;Wastewater Treatment

    25/50

    12/5/20

    P

    97

      P

    .

      T

    (),

    () .

      P

    (≈ 2)

    ( )

    .

     

     

      98

    T B :

      R

      R BOD5

      R (WAS)

      R

      P

    99

    E

    .

    .

      100

  • 8/17/2019 4Lecture;Wastewater Treatment

    26/50

    12/5/20

    L T P

    101

    T

    T :

    ()R ;

    ()C, ;

    ()H,

    102

    C,

    H, 103

    T C P S T

    104

  • 8/17/2019 4Lecture;Wastewater Treatment

    27/50

    12/5/20

    •   T 2 ( 20

    3 ). I ,

    .

    •   T

    , B

    S (SOR). T SOR 3//2.

    T 2 .

    105

    T C ST

     K

      B (S 3//2)

      D

      S G

      H

      I ( )

      I

      R :

    F

    S

    W

    106

      T . T

    .

      R

    .

      S BOD5 30

    .

      S

    .

      A ,

    . F ,

    2

    .

      E

    . I  

    (.. L )

    .

      H, , 50 70

    25 40 BOD . F .

    107

    S O R P

    R

    108

  • 8/17/2019 4Lecture;Wastewater Treatment

    28/50

    12/5/20

    R T

    D , 1.52.5 2.0

    O , 3/2.

    A 3050 40

    P 80120 100

    D,

    R

    D 34.9 4.3

    L 1590 2440

    W 324 4.99.8

    C

    D 34.9 4.3

    D 3.060 1245

    B , / 1/161/6 1/12

    Designcriteriaforprimarysedimentationtank

    109

    ExampleExampleExampleExample ::::   A WW

    5000 3/. D

    60 % .

    110

    S

    111

    S W T

    •   P

     –  C (60% 35% BOD )

    •  O & G

    •   T S S (TSS) 60% R

    •  P

    •   BOD 35%

     –  P

    •  S

    •  G S

    •   S F•  P S

  • 8/17/2019 4Lecture;Wastewater Treatment

    29/50

    12/5/20

    •   S

     – C

    •  BOD 90% R

    •  TSS 90% R

     – P

    •  T F

    •  A

    •  O

    ( )

    S ()W ?

    114

    S T O

    115

    Aerationand rapid

    mixing

    Settlingcollects sludge

    on bottom

    S

    airdiffuser

       F  r  o  m   p

      r   i  m  a  r  y

      p  r  o  c  e  s  s

     T  o t  e r  t  i   a r  y

     p r  o c  e s  s 

    116

  • 8/17/2019 4Lecture;Wastewater Treatment

    30/50

    12/5/20

    I

    117

    •   T

    . .. BOD, COD

    .

    •   T ,

    ,

    .

    •   T .

    •   I   .

    118

    •   A   . I

    .

    •   T

    .

    •   I ,

    , .

    •   B WW ,  

    , , .

    •   T

    .

    Q L

    119

    B

      H G?

    ?

    D?

    B

    120

    M

    •   T

    ,

    •   O

    C  

    •   O

     

  • 8/17/2019 4Lecture;Wastewater Treatment

    31/50

    12/5/20

    121

    •   H

    •   A

    :

      O ,

      B

    M C:

    122

      A

    .

     H (4.0

  • 8/17/2019 4Lecture;Wastewater Treatment

    32/50

    12/5/20

    B B

    125

    M

    C A

    A

    .

    O + O2  CO

    2 + H

    2O + NO

    3

    +

    A

    .

    T

    R +

    C (M) G F U

    126

    T

    .

    A

     

    .

    I   S (/L)   X

    (/L),

    F.

    B

    R

    WW

    B

    B U

    127

       C                                              /   

                               

                                             

                                                  

       E                                               

    B

    F

    T

    ()

     

     

     

     E

    128

      ( 1)

    T /

    .

    T () 1.

      ( 2)

    •   O , .

    • B ; ,

    .

    • T ,

    , .

    • S , 2 .

  • 8/17/2019 4Lecture;Wastewater Treatment

    33/50

    12/5/20

    129

     

    M . T

    , .

    S 3 ,

    .

     E

    • A

    , 4

    .

    • I , ,

    .

    N .

    T .

    • B M

    • L

      L .

    =0 , X=X , S=S

    T

    / /

      ∝  

    R

    M

     =  

    S

    U µ  ( 1)

    T µ .

    µ .

    S ,

    Aµ .

    L : .

    = () S

    µ  

    L .

    = .  +   D :

    Wµ = µ /2

    µ

    S

    µ :

    S µ

    A S µ : µ

    S= 0

    µµµµ

      S S :

    A (BOD)

    =0

    µµµµ=0 .

    A µµµµ

    S

  • 8/17/2019 4Lecture;Wastewater Treatment

    34/50

    12/5/20

    µµµµ :

    O .

    µµµµ = µµµµ /2

    S µ = µ /2

    K .   =  

      =

     .+

     X M

    S

    C (

    )

    G

    E & .

    L

    L C 1

    W S (. P .)

    . V S

    T .

    >>>>

    ∴  + ≈  

    ∴   = .

          =   .

    S .

       

    = 0 =    

    =0  

      =  

    µµµµ

    .

      = 0 max  I

    + + +

    T

    (.. 2)

    XS 2

    C 2

    W , ..

    S .

    S

  • 8/17/2019 4Lecture;Wastewater Treatment

    35/50

    12/5/20

    I 2, , .S ∴  + ≈  

    N  

      =

    =  .  +  

      =

     . +

      .  

      =

      .  

    S C

    C

    .

    , .(R : W ).

    S & X

    A S X & S

    S X .

    S .

    = ( )  

    =

    =  

    (−)   

    C =

    =   − 00 −  C

    = 0C

    =

    C

    = C

    = 0

    Y  T (Y) Y

    140

    E

    •   I ,

    .

    •  D

    .

    •  T, (X/, )

    .

    T .

     ( ) = X

     = , (1)

  • 8/17/2019 4Lecture;Wastewater Treatment

    36/50

    12/5/20

    B T P

    •   T :

     – S

     – A

    141

    A   A A F

    B

    O2

    B

    O2

    B

    O2

    M/O

    O2

    A

    S A

    M/O

    WW

    M/O

    ,

    D

    142

    SG P

    A

    AL

    AG P

    T

    R

    B

    143

    S G P

      B

    .

      A

    .

      S

    .

    144

    S G P C:

    C

    E

      C

    E

    C

  • 8/17/2019 4Lecture;Wastewater Treatment

    37/50

    12/5/20

    145

    A S P B•   T

    . T A,L F D S W M.

    •   S   .

    •   M .

    •  O .

    •   O CO2  .

    146

    A S P B

    147

    A S P

    •   A B

    •   A

    •   F •   R

    •   W

    C

    :

    •   C

    •  P

    •  O

    •  S

    148

  • 8/17/2019 4Lecture;Wastewater Treatment

    38/50

    12/5/20

    A S P•   W

    •   B

    • O

    • F (BOD)

    • N

    • C

    • T

    •   A BOD,

    •   T •   B ,

    •   P ,

    •   R .150

    Q , X, SQ, X0, S0

    Q , X

    Q , X, S

    Q , X, SQ, X0, S0

    Q , X, S

    Q , X

    Figure:Figure:Figure:Figure: Schematic diagramofASP(a)withwastingfromtheaerationtankand(b)withwastingfromthesludgereturnline(recycleline)

    ()

    ()

    Biological waste treatment with ASP is typically accomplished using a flow

    diagram such as that shown in the figure.

    A S P P

    151

    A S ()

    •   B () /.

    •  A .

    •   A , . T

    . T .

    152

    T

    S:

  • 8/17/2019 4Lecture;Wastewater Treatment

    39/50

    12/5/20

    A T () C:

    •   O

    .

    •   T M L.

    •   I ,

    .

    153

    :

    •   E :

    154

    A T () C:

    •   COHNS WW.

    •   I , ,

    BOD   1.42  

    .

    •   T  

    ,

    .

    •   A ,

    , WW.

    2. F A T SS (SST, S C)

    •   R .

    •   I , .

    •   C L

    , N .

    •   T .

    •   L   A ( 20%)

     RETURNED

    ACTIVATED SLUDGE (RAS). T

    .

    •   I ,

    80%

    .155

    S S T (SST)

    •   W M

    L :

    .

    •   MLSS: M T

    2000 4000 /L

    . T MLSS RAS

    10,000 20,000 /L. T

    MLSS

    > 2000 /L, O,

    .

    •   MLVSS : M : 80% MLSS

    MLVSS.   156

     

  • 8/17/2019 4Lecture;Wastewater Treatment

    40/50

    12/5/20

    •   T

    .

    •   A:

     – C

     – N M/O

     – W M/O

    157

    M

     –   VT = Volume of the reactor + Volume of the settling tank

     –   Q = Influentflow rate

     –   Vr  = Volume of the reactor

     –   Vs   = Volumethe settlingtank

    158

    P D P

    H T (HRT)

    θ

    159

    = ()  =    units of time    ( ) −  0   ( ) −  

    N: Ф HRT.

    160

    M C R T (θ )

    •   A S A

    •   T

    •   R

    .

    •   I

  • 8/17/2019 4Lecture;Wastewater Treatment

    41/50

    12/5/20

    161

    θ = /

    .

    X  = C MLSS ,

    /L

    Q   = T , ML/

    X   = S .

    , /L

    V = A , ML

    X = MLSS , /L

    Q   = V , ML/

    M C R T (θ )

    162

    , ,

     , ,

     , ,

     ,  ,

    A S N

    . ( , , .) BD

    .

    163

    DIAGRAM OF ACTIVATED SLUDGE

    164

    A T E D•   C

    ;

    aerationunder  MLVSS of  massTotal 

    daychamber aerationentering  BODof   Mass M 

     F    /=

     MLVSS kg 

    day BODkg    /=

    Note

    MLSS is simpler to measure than MLVSS and because the ratio of MLVSS

    to MLSS tends to be relatively constant for a given system (75 – 80%) F/M is

    often expressed in terms of MLSS concentration

    / =  3 (

    3 )

    3 (3) 

  • 8/17/2019 4Lecture;Wastewater Treatment

    42/50

    12/5/20

    165

    FM R

    •   C .

    •   S M L S SC (MLSS), (MLVSS)

    •   F/M .

    •   C

    166

    / =  3 (

    3 )

    3 (3) 

    / = 00   

    / =   

    0  = (3) 0  = (

    3) 

      = . . , (3)  = (3)  = ()  

    A T E DI :

    167

    A T V

    •  R :

    •   V F/M X

    / = 00   

    =   00 (/)  

    168

    A T E D

    P :

    •   N

    .

    •   D M

    C R T

  • 8/17/2019 4Lecture;Wastewater Treatment

    43/50

    12/5/20

    C M R•   T

    .

    •   T .

    •   A .

    •   T .

    •   T F/M 0.040.07.

    •   T 1 BOD5//3.

    •   D O

    2 /L.

    •   G (RAS)

    .

    •   A RAS

    .169

    C M R A

    •   A .

    •   D F/M .

    •   G .

    •   T, .

    170

    air or

    oxygen

    RAS

    WAS

    aeration basin clarifier 

    to tertiary treatmentor surface discharge

    C M R C:

    •  T

      I

     A

      S

     S

      S B

    171

    T C S

    172

  • 8/17/2019 4Lecture;Wastewater Treatment

    44/50

    12/5/20

    W

    •  Q= , 3/

    •  S = S , /3 /L

    •  X = B ( ) /L

    •  A T V 3

    173

    C M R C: A E

    •  T

    :

     – T

     – T

     – T

    •  A

    !

    U M B (

    175

    F .

    . 176

    Activated Sludge Wastewater

    Treatment Plant

    TertiaryFiltration(Optional)

    Bar Rack/Screens

    InfluentForceMain

    Screenings

    Grit

    GritTank

    PrimarySettling Tank

    PrimarySludge

    Activated SludgeAeration Basin

    Air or Oxygen

    Diffusers

    SecondarySettling Tank

    Return ActivatedSludge (RAS)

    Waste Activated Sludge (WAS)Cl2

    Chlorine Contact Basin

    (optional)

    toreceivingstream

    wastewater flow

    residuals flow

  • 8/17/2019 4Lecture;Wastewater Treatment

    45/50

    12/5/20

    Completely Mixed Activated Sludge (CMAS) Conventional (plug flow)

    Activated Sludge (CAS)

    plan viewPrimary effl.

    to secondary clarifierRAS

    C A S

    180

    •   ExampleExampleExampleExample1111  :Design a complete-mix ASP and secondary settling

    facilities to treat 0.25 m3/s of settled WW with 250 mg/L of 

    BOD5. The effluent is to have 20 mg/L of BOD 5  or less. Assume

    that the temperature is 20 ◦ C and that the following conditions

    are applicable:

     –   Influent VSS to reactor are negligible.

     –   Ratio of MLVSS to MLSS = 0.8.

     –   Return sludge concentration= 10000 mg/L of SS.

     –   MLVSS = = 3500 mg/L.

     –   D esig n = 1 0 d .

     –   Hydraulic regime of reactor = complete mix.

     –   Kinetic coefficients, Y = 0.65 lb cells/lb BOD5 utilized;kd = 0.06 d-1

     –   It is estimated that the effluent will contain about 22 mg/L of biological

    solids,of which 65 % is biodegradable. –   BOD5 = 0.68 X BODL.

     –  WW contains adequate nitrogen, phosphorus and other trace nutrients

    for biologicalgrowth.

  • 8/17/2019 4Lecture;Wastewater Treatment

    46/50

    12/5/20

    181

    •   ExampleExampleExampleExample 2222 ::::   An organic waste having a soluble BOD 5 of 250mg/L is to be treated with a complete-mix ASP. The effluent

    BOD5   is to be equal to or less than 20 mg/L. Assume that the

    temperature is 20 ◦ C, the flow rate is 5.0 Mgal/d, and that the

    following conditions are applicable.

     –   Influent VSS to reactor are negligible.

     –  Return sludge concentration = 10000 mg/L of suspended solids = 8000

    mg/L VSS.

     –  Mix ed-liquor VSS (MLVSS) = 3500 mg/L = 0.8 X total MLSS.

     –   = 10 d.

     –   Hydraulic regime of reactor = complete mix.

     –   Kinetic coefficients, Y = 0.65 lb cells/lb BOD5 utilized;kd = 0.06 d-1

     –   It is estimated that the effluent will contain about 20 mg/L of biological

    solids, of which 80 % is volatile and 65 % is biodegradable. Assume thatthe biodegradable biological solids can be converted from ultimate BOD

    demand to a BOD5 demand using the factor 0.68 ( e.g. BOD k value = 0.1

    d-1, base 10).

     –   Waste contains adequate nitrogen, phosphorus and other trace nutrientsfor biologicalgrowth.   182

    A G PM

    .

    E

      B (T )

      R

      B T

    183

    A G P C:

     

    ()

    C

    E

    E

    C

    ()

    184

    B (T) F

    L

  • 8/17/2019 4Lecture;Wastewater Treatment

    47/50

    12/5/20

    185

    B F C:C :

    •   W

    •   S ; T M/O WW . T .

    •   U ; T WW .

    •   E C

    •   S ;   T WW.

    •   R

    186

    O:

    •  W .

    •   M .

    •   O

    B F C:

    187

    •  O .

    •   W

    •   C

    B F C:

    188

    •   A

    .

    •   O2 

    .

    •  P

    , .

    B F C:

  • 8/17/2019 4Lecture;Wastewater Treatment

    48/50

    12/5/20

    189

    B FT

    190

    TF

    S

    R

    S

    A

    A

    A

    CO2

    O2D

    A ,

    191

    B F C

    •   M 1.8 2.0

    ( )

    •  M 50 100

    ( )

    •   S 40 60 3/2

    80 120 3/2

    192

    D G

    BOD Loading(Kg/m3

    media.d)

    HydraulicLoading(m3 /m2

    media.d)

    Sludge Yield(kg/kg BOD)

    Single pass 0.1 – 0.2 0.3 – 0.8 0.4 – 0.6

    High rate

    filtration(plasticmedia)

    Up to 0.6 Up to 20 0.8 – 1.0

  • 8/17/2019 4Lecture;Wastewater Treatment

    49/50

    12/5/20

    ROTATING BIOLOGICAL CONTACTOR

    A  

    . T

    (, PVC,

    )

    40% . T

    . A

    ,

    .

    ROTATING BIOLOGICAL CONTACTOR

    B

    •   D .

    •   L,

    .

    •   A,

    .

    •   D

    ,

    .•   F E;

    195

    •  S   = E (/L)

    •  S   = I (/L)

    •   = T

    , (1 )

    •  D = F ()

    •   Q = H (3/2.)

    •   = C

    ()

    196

    W:

  • 8/17/2019 4Lecture;Wastewater Treatment

    50/50

    12/5/20

    197

    F. S

    B

    S

    E

    I

    P

    D

    S

    E

    A

    S

    P

    P

    •  W ;

    •  O U M

    CO2, H2O .

    •   S,

    (.. M ).

    •   N .

    198

    S .............

    SECONDARY SEDIMENTATION TANK

    •   M .

    •   T

    .

    •   T

    .

    •   D Z

    S .

    (R .)

    199

    S S T D

    200