45nm pll loop measurement circuit - dennis...

23
1 An On-Chip All-Digital Measurement Circuit to Characterize Phase-Locked Loop Response in 45-nm SOI Dennis Fischette, Richard DeSantis, John H. Lee 1 AMD, Sunnyvale, California, USA 1 MIT, Cambridge, Massachusetts, USA Custom Integrated Circuits Conference September 16, 2009

Upload: buithu

Post on 20-Apr-2018

224 views

Category:

Documents


3 download

TRANSCRIPT

1

An On-Chip All-Digital Measurement Circuit to Characterize Phase-Locked Loop Response in 45-nm SOI

Dennis Fischette, Richard DeSantis, John H. Lee1

AMD, Sunnyvale, California, USA1 MIT, Cambridge, Massachusetts, USA

Custom Integrated Circuits ConferenceSeptember 16, 2009

2

Outline

Motivation

Loop Measurement Circuit

• Algorithm

• Architecture

Silicon Results

Conclusion

3

PLL Closed-Loop Transfer Function

Frequency domain model

Input: “excess” phase modulation of input (reference) clock

Output: “excess” phase modulation of feedback clock

Jitter Modulation Frequency

100kHz 1MHz 10MHz 100MHz

No

rmali

zed

Jit

ter

Tra

ns

fer

(dB

)

Low

damping

High

damping

0

+2

+4

+6

-6

-4

-2

PLL

tftft cfeedback mod 2

BW

Peaking

ttft crefclk mod 2

4

Motivation

Strict bandwidth and peaking requirements

e.g., PCI Express Generation II @ 5 Gb/s

58 MHz BW / < 1 dB peaking

816 MHz BW / < 3 dB peaking

Locktime (function of BW) increasingly important given frequent exit from sleep/power-save states

Device PVT variation simulations inadequate

Standard methods

Spectrum Analyzer, Waveform Generator

Problems with standard methods

Slow expensive

Wafer? Package? Product? inflexible

5

Outline

Motivation

Loop Measurement Circuit

• Algorithm

• Architecture

Silicon Results

Conclusion

6

Simulated Step Response vs. Time

0

+2

+4

+6

-6

-4

-2

-8

Time (µs)

Ph

ase

Err

or

(ns)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Tcrossover

MaxOvershoot

7

Basis of Algorithm

Relationship between time & frequency domain behavior

Lower BW higher Tcrossover

Larger input phase step larger peaking

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.1 0.2 0.3 0.4 0.5 0.6

50%

75%

1/BW (µs)

Tc

ros

so

ve

r(µ

s)

Linear Fit

Trefclk

Phase StepM

axO

vers

ho

ot

(ns)

Peaking (dB)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

50%

75%

Trefclk

Phase Step

Linear Fit

8

Closed-Form Equations for Phase Error

Damping Factor < 1 (underdamped)

Damping Factor = 1 (critically damped)

Damping Factor > 1 (overdamped)

tet n

t

steperrn

1

1

11 2

2

2

ttet nn

t

steperrn sinhcosh

2

2

2 11

1

ttet nn

t

steperrn sincos

Source: Gardner, Phaselock Techniques, 2005

9

Closed-Form Equations vs. Simulations

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Simulation

Equation

1/BW (µs)

Tcro

sso

ve

r(µ

s)

Ma

xO

ve

rsh

oo

t (n

s)

Peaking (dB)

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9

Simulation

Equation

75% Trefclk Phase Step 75% Trefclk Phase Step

Equations become less accurate at high due to smoothing loop filter pole for reference spur reduction

10

PLL + Loop Measurement Circuit

Digital State Machine no analog circuits

Minimal overhead/intrusion communicates with feedback divider only

Instantaneously steps feedback clock phase – programmable, directional

Measures Tcrossover and MaxOvershoot

UP

Gain Control Range ControlRefClk

FbClk

FbDiv[5:0]FbCnt[5:0]

Nstep[5:0]

N[5:0]

Start

BwCnt[9:0]

MaxOvershoot[5:0]

BwValid

FeedbackDivider

LoopMeasurement

Circuit

Phase-FrequencyDetector DN

ChargePump

Voltage-ControlledOscillator

Vco

11

Loop Measurement Circuit

DD QQ DD QQ

RefRiseRefRise

RefFallRefFallVcoVco VcoVco

RefClkRefClk

DD QQ DD QQ

StartRiseStartRise

VcoVco VcoVco

StartStart

FbDiv[5:0]FbDiv[5:0]

To Feedback

Divider

To Feedback

Divider

BwValidBwValid

BwEnBwEn

RefRiseRefRise

Edge DetectorEdge Detector

Edge DetectorEdge Detector

From

JTAG

From

JTAG

Control

Unit

Control

Unit

N[5:0]N[5:0]

N[5:0]+K[5:0]N[5:0]+K[5:0]

StepEnStepEn

DD QQ

RefClkRefClk

FbClkFbClkBBPDBBPD

DD QQ

VcoVco

BwValidBwValid

Tcrossover

Detector

Tcrossover

Detector

To JTAGTo JTAG

RefRiseRefRise

BBPD2BBPD2

Load_BBPDLoad_BBPD

CompareCompare

FbCnt[5:0]FbCnt[5:0]

RefRiseRefRise

VcoVco

DD QQ

SmplCnt[5:0]SmplCnt[5:0]

UpdateOSUpdateOS

RefFallRefFall

MaxOvershoot[5:0]MaxOvershoot[5:0]

NewMaxOSNewMaxOSMaxOvershoot

Detector

MaxOvershoot

Detector

From

Feedback

Divider

From

Feedback

Divider

VcoVco

FbRiseFbRise

VcoVco

ClrClr

DD QQ DD QQ

EnEn BBPD1BBPD1DD QQ

VcoVco

EnEn

VcoVco

EnEn

CounterCounterBWBW BwCnt[9:0]BwCnt[9:0]QQ

To JTAGTo JTAG

DD QQEnEn

Hold D

until

En=1

Hold D

until

En=1

EnEn EnEn

Delay D

until En=1

Hold D

until Clr=1

Delay D

until En=1

Hold D

until Clr=1

12

Control Unit

VcoVco

RefClkRefClk

RefFallRefFall

RefRiseRefRise

StartStart

StartRiseStartRise

StepEnStepEn

FbRiseFbRise

BwEnBwEn

DD QQ DD QQ

RefRiseRefRise

RefFallRefFallVcoVco VcoVco

RefClkRefClk

DD QQ DD QQ

StartRiseStartRise

VcoVco VcoVco

StartStart

FbDiv[5:0]FbDiv[5:0]

To Feedback

Divider

To Feedback

Divider

BwValidBwValid RefRiseRefRise

Edge DetectorEdge Detector

Edge DetectorEdge Detector

From

JTAG

From

JTAG

N[5:0]N[5:0]

N[5:0]+K[5:0]N[5:0]+K[5:0]

StepEnStepEn

VcoVco

FbRiseFbRise

VcoVco

ClrClr

DD QQ DD QQ

Hold D

until

En=1

Hold D

until

En=1

EnEn EnEn

Delay D

until En=1

Hold D

until Clr=1

Delay D

until En=1

Hold D

until Clr=1

To Tcrossover DetectorTo Tcrossover Detector

BwEnBwEn

13

Control Unit and Phase Step

VcoVco

RefClkRefClk

BwEnBwEn

BwCnt[9:0]BwCnt[9:0] 11 22 33 5544 66 77 88 99 1010 1111 1212 131300

FbDiv[5:0]FbDiv[5:0] 88 881111

FbClkFbClk

FbCnt[5:0]FbCnt[5:0] 1100 22 33 44 55 66 77 00 11 22 33 44 55 66 77 88 99 1010 1100 22 33 44 55 66 77 0077

StepEnStepEn

DD QQ DD QQ

RefRiseRefRise

RefFallRefFallVcoVco VcoVco

RefClkRefClk

DD QQ DD QQ

StartRiseStartRise

VcoVco VcoVco

StartStart

FbDiv[5:0]FbDiv[5:0]

To Feedback

Divider

To Feedback

Divider

BwValidBwValid RefRiseRefRise

Edge DetectorEdge Detector

Edge DetectorEdge Detector

From

JTAG

From

JTAG

N[5:0]N[5:0]

N[5:0]+K[5:0]N[5:0]+K[5:0]

StepEnStepEn

VcoVco

FbRiseFbRise

VcoVco

ClrClr

DD QQ DD QQ

Hold D

until

En=1

Hold D

until

En=1

EnEn EnEn

Delay D

until En=1

Hold D

until Clr=1

Delay D

until En=1

Hold D

until Clr=1

To Tcrossover DetectorTo Tcrossover Detector

BwEnBwEn

14

Bandwidth/Tcrossover Test

BwEnBwEn

DD QQ

RefClkRefClk

FbClkFbClkBBPDBBPD

DD QQ

VcoVco

BwValidBwValid

To JTAGTo JTAG

RefRiseRefRise

BBPD2BBPD2

Load_BBPDLoad_BBPD

EnEn BBPD1BBPD1DD QQ

VcoVco

EnEn

VcoVco

EnEn

CounterCounterBWBW BwCnt[9:0]BwCnt[9:0]QQ

From Control UnitFrom Control Unit

RefClkRefClk

BwCnt[5:0]BwCnt[5:0]

Load_BBPDLoad_BBPD

FbClkFbClk

BBPDBBPD

BBPD1BBPD1

BBPD2BBPD2

BwValidBwValid

VcoVco

4646 4747 4848 4949 5050 5151 5252 5353 5454 5555 5656 5757 5858 5959 60604444 4545

15

Peaking/MaxOvershoot Test

RefClkRefClk

FbCnt[5:0]FbCnt[5:0] 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44 55 66 77 00 11 22 33 44

33 4422 33 22SmplCnt[5:0]SmplCnt[5:0]

RefFallRefFall

RefRiseRefRise

VcoVco

UpdateOSUpdateOS

4400MaxOvershoot[5:0]MaxOvershoot[5:0] 33

CompareCompare

FbCnt[5:0]FbCnt[5:0]

RefRiseRefRise

VcoVco

DD QQ

SmplCnt[5:0]SmplCnt[5:0]

UpdateOSUpdateOS

RefFallRefFall

MaxOvershoot[5:0]MaxOvershoot[5:0]

NewMaxOSNewMaxOS

From

Feedback

Divider

From

Feedback

DividerTo JTAGTo JTAG

DD QQEnEn

BwValidBwValid

16

Outline

Motivation

Loop Measurement Circuit

• Algorithm

• Architecture

Silicon Results

Conclusion

17

Simulations vs. Measurements

100 MHz refclk, feedback divisor = 50 (2x25)

CaseRlpf

(kW)

Icp

(µA)

Bandwidth (MHz) Peaking (dB)

Simulated

Measured

Simulated

Measured

Part

1

Part

2

Part

3

Part

1

Part

2

Part

3

1 3.2 2.5 1.8 3.4 3.4 3.0 8.5 4.2 4.1 4.2

2 3.2 5 2.6 3.1 3.2 3.2 6.2 4.3 4.0 4.2

3 3.2 10 4.0 5.0 5.4 5.3 4.3 3.0 2.8 2.8

4 3.2 20 6.6 9.3 10.0 10.0 2.9 1.8 1.5 1.7

5 4.8 10 4.8 6.2 6.8 6.5 2.6 1.7 1.5 1.3

6 4.8 20 9.0 13.2 14.8 14.2 1.7 0.9 0.7 0.7

7 6.4 5 3.3 4.3 4.5 4.5 2.8 1.9 2.0 1.7

8 6.4 10 6.0 8.1 9.1 9.0 1.8 1.1 1.0 1.0

9 6.4 20 12.0 17.6 19.7 18.7 1.2 0.7 1.1 1.0

10 6.4 30 18.1 25.6 27.1 26.2 0.8 2.1 2.6 2.8

11 6.4 40 23.3 25.7 26.8 26.1 1.2 2.2 2.5 2.8

12 6.4 70 35.2 25.7 26.7 25.9 3.0 2.1 2.3 2.6

18

Measured Tcrossover vs. 1/BW

1/BW (µs)

Tcro

sso

ver(µ

s)

0.00

0.03

0.06

0.09

0.12

0.15

0.0 0.1 0.2 0.3 0.4

50% measured

75% simulated

75% measured

Trefclk Phase Step

19

Measured MaxOvershoot vs. Peaking

Ma

xO

ve

rsh

oo

t (n

s)

Peaking (dB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5

50% simulated

50% measured

75% simulated

75% measured

Trefclk Phase Step

20

Power and Area

Power (simulated) = 2.5 mW

Output frequency = 2.5 GHz

VDD = 1.2 V

Clocks gated when not in use

Area = 2,750 µm2

45-nm SOI-CMOS

Can easily be reduced by 4050% by replacing non-critical sense-amplifier flip-flops with smaller master-slave flip-flops and optimizing overshoot comparator

Layout area not a serious concern in this design

21

Outline

Motivation

Loop Measurement Circuit

• Algorithm

• Architecture

Silicon Results

Conclusions

22

Conclusion

An on-chip, all-digital state machine can be used to accurately estimate PLL bandwidth and peaking with potentially large savings in tester time.

This flexible circuit may be used from wafer level to product level, minimizing die/package waste and allowing for adaptive PLL loop calibration.

23

Acknowledgments

Alvin Loke - AMD

Gerry Talbot - AMD